Что такое автономный инвертер
Инвертором в технике электроснабжения называется устройство, обеспечивающее переход от постоянного напряжения к переменному.
Как один из функциональных модулей он входит в перечень обязательных блоков солнечной батареи и позволяет получить из постоянного тока стандартное сетевое однофазное или трехфазное напряжение.
В зависимости от конструктивных особенностей, применяемой схемы включения и перечня решаемых задач инвертор может иметь различное исполнение, что в схематической форме отражено на классификации рисунка.
Рисунок 1. Иерархия инверторов
Устройство вполне допустимо рассматривать как источник бесперебойного питания с расширенными функциональными возможностями.
При этом от обычных ИБП начального уровня он отличается в первую очередь следующими основными признаками:
- содержит несколько равноправных входов для подключения к ним различных источников электрической энергии;
- самостоятельно управляет источниками получения электроэнергии, обеспечивая нормируемое стандартами напряжение и частоту силовой сети во всем диапазоне разрешенных нагрузок;
- обеспечивает полную развязку внешнего электрического ввода от внутридомовой сети, для которой функции источника электрической энергии вне зависимости от режима работы всегда берет на себя инвертор.
Последняя особенность определила общепринятое обозначение этого устройства как автономного инвертора.
Электричество постоянного и переменного тока
Когда преподаватели науки объясняют основную идею электричества как поток электронов, они обычно говорят о постоянном токе (DC). Мы узнаем, что электроны немного похожи на линию муравьев, идущих вместе с пакетами электрической энергии так же, как муравьи несут листья. Это достаточно хорошая аналогия для чего-то вроде базового фонарика, где у нас есть схема (сплошная электрическая петля), соединяющая батарею, лампу и выключатель, а электрическая энергия систематически транспортируется от батареи к лампе, пока вся энергия батареи истощается.
В больших бытовых приборах электричество работает по-другому. Источник питания, который поступает от розетки в стене, основан на переменном токе (AC), где электричество переключается в направлении 50−60 раз в секунду (другими словами, на частоте 50−60 Гц). Трудно понять, как AC доставляет энергию, когда он постоянно меняет свое мнение о том, куда он идет. Если электроны, выходящие из настенной розетки, добираются, скажем, на несколько миллиметров вниз по кабелю, тогда нужно обратить вспять направление и вернуться назад, как они когда-либо добираются до лампы на столе, чтобы та засветилась?
Ответ на самом деле довольно прост. Представьте, что между лампой и стеной заполнены электроны. Когда вы щелкаете на переключателе, все электроны, заполняющие кабель, вибрируют назад и вперед в нитях лампы — и это быстрое перетасовка преобразует электрическую энергию в тепло и лампа засвечивается. Электроны необязательно должны вращаться по кругу для переноса энергии: в АС они просто «бегут на месте».
Где используется и как включается
Применительно к солнечной энергетике автономный инвертор как устройство, которое выполняет в первую очередь функции выбора одного из возможных источников электроснабжения, устанавливается между выходом солнечной батареи и вводным щитком.
Место установки диктуется простыми соображениями: потребитель электричества не должен знать, от какого источника он получает электроэнергию в данный конкретный момент времени, а необходимое качество этой энергии, в т.ч. в момент переключения между источниками, определяется выбором соответствующих схемных решений и используемой элементной базы.
Из соображений обеспечения максимальной эксплуатационной гибкости внутридомовой проводки подключение внешнего ввода физически также может осуществляться на домовой вводной щиток, что отдельно выделено на рисунке 2.
Рисунок 2. Схема взаимодействия внешней сети, автономного инвертора, вводного щитка и потребителей в штатном режиме работы
При этом данный ввод снабжается всеми необходимыми аксессуарами и автоматами для защиты от короткого замыкания, чрезмерно больших токов утечки и аналогичных им.
Сильная сторона такого подхода заключается в том, что позволяет в случае необходимости, без проблем простой перекоммутацией буквально нескольких выводов перейти на типовую схему электроснабжения, в которой отсутствуют альтернативные источники.
Способы применения
Особенно широко преобразователи тока с 12 на 220 В применяются в местах, где отсутствует снабжение электроэнергией. От любого автомобильного аккумулятора можно сделать 220 В для обеспечения подачи электричества в загородный дом.
Следует помнить, что инверторы напряжения из 12 В в 220 В преобразуют форму электрического тока, которая ограничивает его использование. То есть не все электрические приборы способны воспринимать напряжение, подающееся графически почти по прямоугольной форме. Конструктивно инверторы бывают:
- автомобильными;
- стационарными;
- мобильными.
Если рассматривать выходную мощность, то автомобильные АКБ максимально выдают 500 Вт, а стационарные — до 10 тыс. Вт. Если при выезде за город на отдых или дачный участок необходимо в вечернее время осветить помещение или место ночевки, то самый простой способ заключается в подсоединении к преобразователю светодиодного светильника.
Стационарные преобразователи напряжения 12—220 вольт в основном применяются для трансформирования электрической энергии солнечных батарей и ветряных конструкций. Мобильные инверторные преобразователи подключаются к сети от 12 до 50 В и считаются неприхотливыми в выборе источника питания. Для обслуживания автомобилей это устройство представляет собой зарядное устройство с розеткой.
Устройство
Автономный инвертор с функциональной точки зрения представляет собой источник бесперебойного электропитания, дополненный многовходовым силовым коммутатором, формирователем выходного напряжения и снабженный блоком управления.
Алгоритм функционирования блока управления в ряде случаев может меняться в достаточно широких пределах.
Структурная схема этого устройства, на которой указаны отдельные блоки и приведены особенности их взаимодействия, представлена на рисунке 3.
Рисунок 3. Упрощенная структурная схема автономного инвертора
Считается, что согласование по типу тока (постоянный – переменный) и величин напряжений конкретного входа и общего выхода осуществляется в схеме коммутатора.
Внешний ввод, солнечная и аккумуляторные батареи, а также бензогенератор в данном случае рассматриваются как взаимно дополняющие друг друга источники энергии и не могут функционировать параллельно.
Порядок их подключения к выходу вводного щитка для последующего питания силовых потребителей может быть задан жестко с учетом приоритетов, установленных разработчиком оборудования.
У старших моделей инверторов имеется возможность самостоятельного определения этой последовательности пользователем или разработчиком проекта путем соответствующего программирования.
Это позволяет полноценно принять во внимание местные особенности электрохозяйства, реализуемого на конкретном объекте жилой недвижимости.
При соответствующем программировании в режиме получения энергии от внешнего ввода или бензогенератора дополнительно возможен также заряд аккумуляторной батареи до уровня полной или иной также выбираемой емкости.
Бестрансформаторные преобразователи напряжения
В последнее время они стали очень популярны, так как на их изготовление, а в частности, производство трансформаторов, нужно тратить немалые средства, ведь обмотка их выполняется из цветного металла, цена на который постоянно растёт. Основное преимущество таких преобразователей это, конечно же, цена. Среди отрицательных сторон есть одно существенно отличающее его от трансформаторных блоков питания и преобразователей. В результате пробоя одного или нескольких полупроводниковых приборов, вся выходная энергия может попасть на клеммы потребителя, а это обязательно выведет его из строя. Вот простейший преобразователь переменного напряжения в постоянное. Роль регулирующего элемента играет тиристор.
Проще обстоят дела с преобразователями, в которых отсутствуют трансформаторы, но работающие на основе и в режиме повышающего напряжение аппарата. Здесь даже при выходе одного элемента или нескольких на нагрузке не появится опасной губительной энергии.
Отличие от сетевого и гибридного инвертера
Потенциально все описанные функции может выполнять также т.н. гибридный инвертор, который под этим углом зрения допустимо рассматривать как наиболее технически совершенный представитель техники рассматриваемой разновидности.
Его основное отличие – возможность возврата излишков вырабатываемой электроэнергии обратно в сеть.
Практическому применению гибридных инверторов препятствует преимущественно не технические проблемы реализации этой техники, а отсутствие соответствующей правовой базы.
Действующие нормативные документы не предусматривают саму возможность самостоятельной выработки электроэнергии частным лицом и ее продажу энергосбытовой компании.
Прямым следствием такого положения дел становится также отсутствие серийных сертифицированных двухнаправленных счетчиков как оборудования, которое необходимо для выполнения взаимных расчетов после завершения отчетного периода (например, привычный для всех календарный месяц).
С учетом иерархии, представленной на рисунке 1, сетевой инвертор считается на фоне гибридного устройством более низкого класса, который реализует следующий простой двухрежимный алгоритм функционирования:
- днем при наличии достаточной мощности, отдаваемой солнечной батареей, внутридомовая сеть отключена от электрического ввода и полностью обеспечивается электрической энергией от альтернативного источника;
- утром, вечером и ночью, а также в пасмурную погоду, когда солнечная батарея не в состоянии обеспечить нормальное функционирование домовых потребителей, инвертор отключается и за счет байпасного переключателя электроснабжение домохозяйства полностью выполняется от сети электросбытовой компании.
Виды по способу переключения тока
Отдельно выделенный на схеме рисунка 3 формирователь выходного напряжения 220 или 380 В, который обязательно присутствует в составе любого инвертора, реализуется только по импульсной схеме.
Выгодность такого решения определяется тем, что при нахождении ключевого полупроводникового элемента в полностью открытом и полностью закрытом состоянии за счет минимального напряжения или, соответственно, минимального тока достигается значительное снижение мощности бесполезных потерь энергии.
Все это позволяет нарастить общий КПД устройства до значений свыше 90%, рисунок 4.
Рисунок 4. Мгновенное и среднее КПД инвертора импульсного типа
Фактически основные потери происходят в момент перехода их одного состояния в другое, что определяет наличие дополнительных высоких требований к ключевым элементам устройства и их быстродействия.
Особенность импульсных схем состоит в том, что в отличие от аналоговых, выходное напряжение представляет собой не чистую, а т.н. аппроксимированную синусоиду.
Принцип работы генератора инвертора резонансного типа
Резонансная схема построения генератора автономного инвертора уступает по популярности двухтактной, в т.ч. из-за сложностей обеспечения нормального функционирования на холостом ходе.
Со схемотехнической точки зрения выгодно отличается от своего двухтактного аналога возможностью реализации только на одном активном элементе (из-за довольно низкого КПД при мощностях свыше 200 – 300 Вт становится неэффективной).
Идея резонансной схемы состоит в том, что переменное напряжение создается колебательным контуром, т.е. при правильном подборе параметров и, в первую очередь выбора номиналов L и С его форма будет близка к синусоидальной.
Одиночный ключевой элемент или их комбинация предназначен для ввода в этот контур энергии от источника постоянного тока, что позволяет компенсировать внутренние потери и создать соответствующую работу в нагрузке.
В зависимости от вида соединения колебательного контура и нагрузки такие генераторы делят на последовательные, параллельные и частично параллельные.
Дополнительно различают схемы закрытого и открытого типа, отличие между которыми состоит только в том, протекает ли постоянный ток через индуктивность.
При его наличии говорят о закрытых схемах, а при отсутствии – о открытых резонансных генераторах.
Одна из возможных схем простейших резонансных инверторов приведена на рисунке 6.
Рисунок 6. Упрощенная схема генератора автономного инвертора резонансного типа
Конструкция инвертора
Первоначально создание знакопеременного напряжения в цепи обеспечивалось буквальным переключением проводов с одной клеммы на другую. Так действовали механические инверторы, которые иногда применяются и сейчас. Это довольно громоздкие устройства с низким КПД.
После развития полупроводниковых технологий появилась возможность обеспечивать смену полюсов без применения механических приспособлений. Для этого используются тиристоры, полупроводниковые приборы, действующие как электронные ключи. Возможно использование и другой элементной базы – транзисторов в сочетании с диодами. Тиристоры коммутируются сигналами управления, генерируемыми автоматически. В простейшем случае их источником может быть обыкновенное реле, действующее через строго определенные промежутки времени. В современных инверторах для создания управляющих импульсов используется программное обеспечение. Это даёт возможность варьировать частоту и амплитуду переменного тока.
Важной частью инвертора является преобразователь. Он повышает напряжение до требуемой величины, чаще всего от 12 вольт на выходе аккумулятора до 220 на входе в тиристорный мост. Преобразователи часто продаются также как отдельные устройства.
Применение конденсаторов и обратных диодов в схемах автономных резонансных инверторов
Определенное увеличение КПД преобразования достигается введением в состав схемы резонансных инверторов различных дополнительных элементов. Чаще всего используют конденсаторы и т.н. обратные диоды.
Конденсатор С1 на рисунке 6 включается параллельно нагрузке при наличии у нее существенной индуктивности. Назначение этого элемента – максимизация параметра cosφ.
Суть применения т.н. обратных диодов, которые включают встречно-параллельно каждому ключевому элементу, состоит в создании условий для рекуперации энергии, накопленной в реактивных элементах, за счет возврата ее в источник постоянного напряжения.
Любой из обратных диодов заперт в открытом состоянии ключевого элемента и открывается при переходе в запертое, что позволяет “сбросить” энергию реактивных элементов L и С обратно в источник «И».
Критерии выбора автономных инверторов
При выборе автономного инвертора обратите внимание на несколько главных характеристик. Выделим главные параметры и их особенности.
Количество фаз
При выборе числа фаз учтите следующие моменты:
- Если к вашему дому походит трехфазное напряжение (380 В), автономный инвертор также должен быть трехфазным.
- В ситуации, когда к автомату подключено только однофазное напряжение (220 В), оборудование должно быть соответствующим.
Номинальная / пиковая мощность на выходе
Оптимально, чтобы номинальная мощность автономного инвертора равнялась сумме нагрузок (потребителей в доме). Для надежности лучше покупать оборудование с запасом и учетом пусковых токов.
Фактор пусковых I характерен для холодильного оборудования, насосов и иной техники с индукционной нагрузкой. В ней токи в момент запуска могут в 7-10 раз превышать номинальный параметр.
Для расчета перемножьте пусковой ток на напряжение в доме и сравните с пиковым параметром мощности (первый показатель должен быть ниже).
Если разработчик не указал пиковый мощностной параметр автономного инвертора, это означает, что номинальный параметр в реальности пиковый.
Форма U вых
Это ключевой параметр, от которого зависит качество работы приемников.
Здесь выделяется три типа:
- Чистый синус.
- Квази синусоида.
- Прямоугольная синусоида.
Во избежание проблем в эксплуатации и повреждения оборудования рекомендуется выбирать автономный инвертор с правильной синусоидой.
Это связано с тем, что индуктивная нагрузка очень чувствительная к форме напряжения. Если на выходе устройства прямоугольная синусоида, основное оборудование не будет работать и может поломаться.
Квази синусоида — некий компромисс между чистой и прямоугольной синусоидой. Большая часть моделей автономных инверторов, представленных на рынке и имеющих такую характеристику, являются качественными. Но нужно быть осторожным, ведь попадаются и малонадежные варианты.
Защита оборудования
Хорошая модель автономного инвертора должна обладать полным набором разного рода защитных характеристик.
Выделим основные виды защит:
- от перегрева;
- защита АКБ;
- от КЗ;
- от перегруза на выходе.
Если на модели установлен вентилятор для принудительного снижения температуры, уточните у консультанта, функционирует ли он во всех ситуациях или включается только при повышении нагрузки выше определенного значения.
В лучших моделях вентилятор выключается при минимальной нагрузке. Как результат, автономный инвертор издает меньше шума, что важно при его установке в жилом доме.
КПД
По параметру КПД можно понять, сколько энергии устройство расходует без пользы. Лучшие представители имеют КПД в диапазоне от 90 до 95%. Если этот параметр меньше 90%, 1/10 часть энергии будет расходоваться впустую, что является недопустимым для солнечных станций.
Собственное потребление
Показатель отображает, какую мощность потребляет оборудование без подключенной к нему нагрузки. Оптимально, если этот параметр составляет не больше 1% от номинальной мощности.
К примеру, если Sном автономного инвертора (номинальная мощность) составляет 3000 Вт, собственное потребление не должно превышать 30 Вт. Если устройство будет постоянно включено в сеть, лучше выбирать модель с низким параметром мощности.
Наличие спящего / дежурного режима
Суть опции состоит в отключении устройства, если оно не используется длительное время и отсутствует нагрузка.
В этом случае собственная мощность опускается до трех-шести Ватт. При этом автономный инвертор находится в режиме постоянного отслеживания тока, чтобы в любой момент включиться на полную мощность.
Но есть особенность. Во избежание трудностей с питанием девайсов, имеющих небольшие нагрузки, нужна опция ручного отключения дежурного / спящего режима. В этом случае владелец сможет сам активировать и деактивировать функцию в случае необходимости.
Если отключение не предусмотрено, возможна ситуация, когда автономный инвертор останется в дежурном режиме при подключении маломощной нагрузки, к примеру, зарядки.
В завершение отметим, что не берите слишком дешевые устройства, ведь их качество может оказаться далеким от идеала. Лучше выбирать модели с учетом производителя, характеристик и других параметров.
Что такое инвертор, он же преобразователь напряжения с 12 на 220 Вольт?
Инвертор (в узком электротехническом понимании этого слова) – это устройство для преобразования постоянного тока в переменное с изменением величины действующего значения напряжения. В ещё более узком – преобразователь постоянного напряжения (12, 24 или 48 В) в переменное 220 В. И наконец, в радикально узком понимании – штуковина, позволяющая запитать от автомобильного аккумулятора различные бытовые приборы, рассчитанные на сетевое питание, а короче – весьма полезный и удобный в хозяйстве прибамбас!
По форме выходного напряжения инверторы подразделяются на следующие виды:
- Постоянное выпрямленное напряжение 220 В или переменное импульсное напряжение высокой частоты (десятки килогерц). Используются такие преобразователи крайне редко, т. к. непригодны для многих источников потребления, мало того, для некоторых могут представлять серьёзную опасность и угрозу полного кирдыка.
- Меандр 50 Гц. Используются также редко, так как выходное напряжение содержит большое количество высокочастотных составляющих. Пригодны для питания телефонных зарядок, большинства импульсных источников питания, ламп накаливания, люминесцентных и светодиодных ламп. Малопригодны для приборов с силовыми трансформаторами на железе и электромоторами переменного тока.
- Модифицированное синусоидальное напряжение 50Гц. От инверторов с модифицированной синусоидой работает практически всё, но менее эффективно, чем с чистой синусоидой. Некоторые приборы могут больше греться, сильнее гудеть и работать с пониженной мощностью. Нежелательны для работы с электродвигателями и компрессорами, а так же чувствительной радиоаппаратурой с 50-герцовыми трансформаторами.
- Чистое синусоидальное напряжение. Пригодно без всяких ограничений для любых потребителей электроэнергии!
Из сказанного выше вытекает, что предпочтительными и более универсальными являются инверторы с выходным напряжением 220 В и частотой 50 Гц. Причём, для их реализации подходят готовые низкочастотные силовые трансформаторы необходимой номинальной мощности, включённые «задом на перёд». То есть — его вторичная низковольтная обмотка служит первичной, а высоковольтная первичная — вторичной. Именно такие схемы мы и рассмотрим в рамках данной статьи.
Схема, изображённая на Рис.1, а также комментарии к ней заимствованы из книги М. А. Шустова «Практическая схемотехника», раздел — «Преобразователи напряжения». Рис.1 Схема простого преобразователя напряжения 220 В, 50 Гц
«Максимальная выходная мощность преобразователя — 100 Вт, КПД — до 50%. Задающий генератор выполнен по схеме традиционного симметричного мультивибратора, выполненного на транзисторах ѴТ1 и ѴТ2 (КТ815). Выходные каскады преобразователя собраны на составных транзисторах ѴТ3 и ѴТ4 (КТ825). Эти транзисторы устанавливают без изолирующих прокладок на общий радиатор. Устройство потребляет от аккумулятора ток до 20 А. В качестве силового использован готовый сетевой трансформатор на 100 Вт (сечение центральной части железного сердечника — около 10 см2). У него должны быть две вторичные обмотки, рассчитанные на 8В/10А каждая. Для того, чтобы частота работы задающего генератора была равна 50 Гц, подбирают номиналы резисторов R1 и R2». Так как мультивибратор генерирует меандр с заваленными фронтами, а мощные эмиттерные повторители повторяют эту форму, то и в нагрузке будет протекать переменный ток, напоминающий по форме синусоиду и дополнительных мер по сглаживанию не требуется.
Значительно повысить КПД инвертора можно, если применить в качестве силовых каскадов не повторители напряжения, а транзисторы, работающие в ключевом режиме. Такая модификация преобразователя приведена на Рис.2.
Рис.2 Схема простого преобразователя напряжения с повышенным КПД
Принцип работы преобразователя такой же, как и у предыдущего устройства. Задающий генератор (Т1, Т2) формирует два пара-фазных напряжения с частотой 50 Гц. Напряжения с выходов задающего генератора подаются на два однотипных ключевых каскада (Т3, Т4), которые коммутируют напряжение на первичной обмотке трансформатора. Поскольку мультивибратор генерирует меандр с заваленными фронтами, ключевые транзисторы срабатывают с некоторой задержкой, обуславливая формирование на выходе инвертора подобие модифицированного синусоидального напряжения. С указанными на схеме элементами выходная мощность преобразователя составляет около 200 Вт. Дальнейшего повышения КПД и увеличения мощности инвертора можно добиться простой заменой биполярных ключевых элементов на мощные MOSFET транзисторы, как это показано на Рис.2.
Многочисленные и довольно популярные схемы инверторов, построенные на специализированных микросхемах для импульсных источников питания (типа TL494, TL594 и др.) обладают следующими преимуществами: высоким КПД и не менее высокой стабильность частоты, мало зависящей от напряжения питания и внешних условий. Приведём для примера подобную схему импульсного преобразователя напряжения +12V в ~220V мощностью 100W, опубликованную в журнале «Радиоконструктор» — 07 — 17.
Рис.3 Принципиальная схема импульсного преобразователя напряжения +12V в ~220V
«Эквивалентная частота генерации составляет 50 Гц и задаётся величиной сопротивления резистора R5 и ёмкостью конденсатора С5. Резистором R4 регулируется скважность выходных импульсов. Им можно регулировать выходное напряжение. На выходах микросхемы (выводы 9 и 10) выделяются противофазные импульсы, немного задержанные относительно друг друга, чтобы не вызывать сквозного тока в схеме выходного каскада в моменты переключения. Импульсы поступают на мощные ключевые полевые транзисторы VT1 и VT2. Диоды VD2 и VD3 защищают эти транзисторы от выбросов отрицательной ЭДС на первичной обмотке импульсного трансформатора Т1.
Трансформатор Т1 — готовый низкочастотный силовой трансформатор номинальной мощностью 100W с одной первичной обмоткой на 220V и вторичной обмоткой на 18V с отводом от середины. Можно попробовать и трансформатор с вторичной обмоткой на 12V с отводом от середины или на 24V с отводом от середины. Но во втором случае, боюсь, что выходное напряжение окажется несколько ниже 220V. Трансформатор включён «задом на перёд», то есть, его вторичная низковольтная обмотка теперь служит первичной, а высоковольтная первичная — вторичной. Подключив нагрузку и мультиметр, резистором R4 выставить напряжение на нагрузке 220V».
Многие схемы, построенные на TL494, TL594 и т. д., при всех своих достоинствах, часто обладают одним, но существенным недостатком. Если не позаботиться о корректной установке «мёртвого времени» ИМС (в приведённой схеме — резистором R4), то напряжения на выходе преобразователей будет иметь форму, близкую к форме меандра со всеми вытекающими отсюда последствиями. Причём, никакие дополнительные дроссели, а также конденсаторы во вторичной обмотке трансформатора — к существенному результату не приведут!
А вот уважаемый товарищ А.П. Семьян в своей книжке «500 схем для радиолюбителей» порадовал нас оригинальным схемотехническим решением с формированием модифицированного синуса посредством цифровой микросхемы 561ИЕ8 (Рис.4).
Рис.4 Схема простого импульсного преобразователя напряжения на микросхеме 561ИЕ8
На элементах DD1.1, DD1.2 собран задающий генератор с частотой 500 Гц. Делитель на DD2 формирует две импульсные последовательности частотой 50 Гц со сдвинутыми на 180° фазами для управления силовыми ключами VT1 и VT2 двухтактного преобразователя. Чтобы избежать сквозных токов переключения между выключением одного ключа и включением другого существует «мёртвая зона», равная 10% длительности периода. При подаче высокого уровня (логической «1») на вход «Блокировка» оба выходных ключа запираются. Выходная мощность преобразователя ограничена мощностью силового трансформатора Т1 и максимальным допустимым током выходных транзисторов. Коэффициент трансформации силового трансформатора Кт = 20.
В качестве выходных транзисторов подойдут IRFZ034 (15А), IRFZ044 и RG723A (30A), IRFZ046 (50A), IRFP064 (100А). Для надёжности устройства рекомендуется иметь двойной запас по току и тройной — по напряжению. Силовые цепи должны быть по возможности короче и выполнены проводами соответствующего сечения.
Создание преобразователей с чистым 50-герцовым синусом обычно сопряжено с использованием микроконтроллерных прибамбасов, что делает рассмотрение этого вопроса (для нас доблестных электронщиков) не таким уж и простым и в рамках данной статьи — нецелесообразным.
Популярные модели
Чтобы упростить выбор, рассмотрим несколько моделей автономных инверторов, выделим их нюансы и параметры.
Инвертор / ИБП SILA EP20-300
Модель SILA EP20-300 — универсальное оборудование, сочетающее в себе опции источника бесперебойного питания, ЗУ и преобразователя.
Предусмотрена возможность автоматического перевода режимов поступления U от АКБ или от сети. Обеспечивает непрерывную работу подключенного оборудования.
Инвертор применяется в роли ИБП (при наличии АКБ) или в комплексе с солнечной электростанцией (потребуется внешний контроллер заряда). Страна-изготовитель — Тайвань.
Основные параметры:
- Защита от КЗ, высокого и низкого напряжения.
- Быстрое переключение — 6 мс.
- Автозапуск после работы защиты.
- LCD-дисплей.
- Автоматическая зарядка (3-шаговая): постоянный ток / напряжение, поддержка заряда.
- Чистый синус на выходе.
Характеристики:
- Большой диапазон U на выходе — от 140 до 280 В.
- Регулировка тока — от 5 до 10 А (задается программой).
- Стабилизация U на выходе.
- Номинальная / максимальная мощность — 300 / 900 Вт.
- Напряжение АКБ — 12 В.
- КПД — 90%.
- Личное потребление — 24 Вт.
- Гарантия — 2 года.
Модель SILA EP20-300 способна работать при влажности от 0 до 90% и в широком диапазоне температур. Размеры автономного инвертора всего 31,5х14,5х21 см, а вес — 7,5 кг. В продаже имеются аналогичные модели на мощности 600 и 1000 Вт.