Тепловые электростанции (ТЭЦ, КЭС): разновидности, типы, принцип работы, топливо


Превращение природных энергетических ресурсов в электричество осуществляется с помощью специальных установок, функционирующих на различных принципах. Среди них наиболее широкое распространение получили тепловые электростанции, применяющие для работы жидкое, твердое и газообразное органическое топливо. Они вырабатывают более 70% всей мировой электроэнергии и располагаются поблизости от месторождений природных ресурсов. Многие ТЭС производят не только электричество, но и тепловую энергию.

Виды тепловых электростанций

Стандартная тепловая электростанция представляет собой целый комплекс, включающий в себя различные устройства и оборудование, преобразующие топливную энергию в электричество и тепло.

Подобные установки отличаются параметрами и техническими характеристиками, по которым и выполняется их классификация:

  • В соответствии с видами и назначением поставляемой электроэнергии, тепловые станции могут быть районными и промышленными. Районные установки известны как ГРЭС или КЭС и предназначены для обслуживания всех потребителей региона. Электростанции, вырабатывающие тепло, называются ТЭЦ. Мощность районных станций превышает 1 млн. кВт. Промышленные электростанции предназначены для электро- и теплоснабжения конкретных предприятий и производственных комплексов. Их мощность значительно меньше, чем у ГРЭС и устанавливается в соответствии с потребностями того или иного объекта.
  • Все типы тепловых электростанций работают на различных источниках энергии. Прежде всего, это обычные органические ресурсы, используемые большинством ТЭС и продукты нефтепереработки. Наибольшее распространение получили уголь, природный газ, мазут. Наиболее прогрессивные установки работают на ядерном топливе и называются атомными электростанциями – АЭС.
  • Силовые установки, преобразующие энергию тепла в электричество, бывают паротурбинными, газотурбинными и смешанной парогазовой конструкции.
  • Технологическая схема паропроводов ТЭС может быть разной. В блочных конструкциях тепловые электрические станции используют одинаковые энергетические установки или энергоблоки. В них пар от котла подается лишь к собственной турбине и после конденсации он вновь возвращается в свой котел. По данной схеме построено большинство ГРЭС (КЭС) и ТЭЦ. Другой вариант предполагает использование поперечных связей, когда пар от котлов подается к общему коллектору – паропроводу, обеспечивающему работу всей паровых турбин станции.
  • По параметрам начального давления ТЭС могут быть с критическим и сверхкритическим давлением. В первом случае российские стандарты для ТЭС-ТЭЦ составляют 8,8-12,8 Мпа или 90-130 атмосфер. Второй вариант имеет более высокие параметры, составляющие 23,5 Мпа или 240 атмосфер. В таких конструкциях используется промежуточный перегрев и блочная схема.

Самая мощная электростанция в мире

Рассказ о принципе работы ТЭС был бы не полным без упоминания о рекордах. Мы же их все так любим, верно?

Самой мощной тепловой электростанцией в мире является китайская ТЭС, получившая название Tuoketuo. Ее мощность составляет 6 600 МВт и состоит она из пяти аналогичных по мощности энергоблоков. Для того, чтобы разместить все это, потребовалось выделить под нее площадь размером 2,5 квадратных километра.

ТЭЦ Tuoketuo.

Если цифра 6 600 МВт вам не о чем не говорит, то это мощнее, чем Запорожская атомная станция (Украина). Всего же, если включить Tuoketuo в рейтинг самых мощных атомных станций (забыв, что она тепловая), она займет почетное третье место. Вот такая мощь.

Принцип работы атомных станций я подробно описывал в этой статье. Если коротко — там тоже используется пар.

Следом за Tuoketuo в рейтинге самых мощных тепловых станций идет Тайчжунская ТЭС в Китае (5 824 МВт). С третьего по пятое места расположились Сургутская ГРЭС-2 в России (5 597 МВт), Белхатувская ТЭС в Польше (5 354 МВт) и Futtsu CCGT Power Plant в Японии (5 040 МВт).

Принцип работы тепловой электростанции

Основной принцип работы тепловой электростанции заключается в производстве тепловой энергии из органического топлива, которая в дальнейшем используется для выработки электрического тока.

Понятия ТЭС и ТЭЦ существенно различаются между собой. Первые установки относятся к так называемым чистым электростанциям, вырабатывающим только электрический ток. Каждая из них известна еще и как конденсационная электростанция – КЭС. ТЭЦ расшифровывается как теплоэлектроцентраль и является разновидностью ТЭС. Данные установки не только генерируют электричество, но и являются тепловыми, то есть дают тепло в системы отопления и горячего водоснабжения. Такое комбинированное использование требует специальных паровых турбин с противодавлением или системой промежуточного отбора пара.

ТЭС на угле

Уголь уже давно стал одним из основных источников энергии в повседневной жизни и производственной деятельности людей. Широкое распространение данного вида топлива стало возможным благодаря его доступности. Во многих месторождениях он расположен в нескольких метрах от поверхности земли и может добываться более дешевым открытым способом. Кроме того, уголь не требует каких-то особых условий хранения и складируется в обычные кучи неподалеку от объекта.

Промышленное использование угля началось в конце 18-го века. В дальнейшем, когда появился железнодорожный транспорт, уголь стал источником движущей силы для паровозов. Позднее он стал применяться на первых тепловых электростанциях, построенных в конце 19-го века. Многие ТЭС и в настоящее время работают на угле.

На самых первых электростанциях сжигание угля осуществлялось путем его укладки на колосниковые решетки. Загрузка топлива и удаление шлака выполнялось вручную. Постепенно эти процессы были механизированы и уголь попадал на решетки из верхнего бункера. Решетка приводилась в движение и отработанный шлак ссыпался в специальный приемник.

Современные тепловые электростанции уже давно не пользуются кусковым углем. Вместо него в котлы загружается угольная пыль, получаемая в дробилках или мельницах. Подача топлива к горелкам производится сжатым воздухом. Попадая в топку, угольная пыль вперемешку с воздухом начинает гореть, выделяя большое количество тепла.

Газовые ТЭС

Вторым после угля по своей значимости является природный газ, используемый многими ТЭС. Данный вид топлива обладает несомненными преимуществами. Вредные выбросы, отравляющие атмосферу, значительно ниже, чем при сжигании угля. После сжигания не остается побочных продуктов в виде шлака или золы.

Эксплуатация ТЭС на газе становится значительно проще, поскольку в этом случае не требуется приготовление угольной пыли. Газу не требуется какая-либо специальная подготовка, и он сразу готов к использованию. Газовые тепловые электростанции считаются более маневренными, что немаловажно в ситуациях с изменяющимися нагрузками.

Эффективность и коэффициент полезного действия газовых ТЭС значительно увеличились при переходе в рабочий режим с циклом парогазовых установок. Сжигание топлива производится не в котле, а в газовой турбине. Такие установки предназначены только для газа и не могут работать на угольной пыли.

Новые технологии сжигания угля

КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.

Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.

Чистое сжигание угля (Clean Coal)

Особенность данного метода состоит в том, что вместо воздуха в качестве окислителя при сжигании угольной пыли используется выделенный из воздуха чистый кислород. В результате, из дымовых газов удаляется вредная примесь – NОx. Остальные вредные примеси отфильтровываются в процессе нескольких ступеней очистки. Оставшийся на выходе СО2 закачивается в емкости под большим давлением и подлежит захоронению на глубине до 1 км.

Метод «oxyfuel capture»

Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.

Метод «pre-combustion»

Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO2 – оксид серы. Далее происходит удаление СО2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.

Другие виды топлива для ТЭС

Помимо традиционных видов топлива тепловые электростанции применяют в своей работе и другие источники энергии. Одним из таких энергоресурсов является мазут, который использовался на многих электростанциях во второй половине 20-го века.

В современных условиях цена продуктов нефтепереработки существенно увеличилась, поэтому мазут перестал быть основным топливом. Его частично используют угольные электростанции для растопки. Эксплуатационные качества мазута аналогичны с природным газом, однако при его сжигании в большом количестве выделяется оксид серы, загрязняющий окружающую среду.

В 20-м веке некоторые ТЭС работали на торфе. В настоящее время этот ресурс практически не используется из-за низкой эффективности по сравнению с газом и углем. Установки на дизельном топливе применяются на небольших объектах, где не требуются значительные объемы электроэнергии. В основном, они предназначены для удаленных районов, расположенных на значительном расстоянии от сетей централизованного электроснабжения.

КПД тепловой электростанции

Основным показателем любой тепловой электростанции является ее коэффициент полезного действия. Например, для угольных ТЭС существует термический КПД, определяемый количеством угля, необходимого для выработки 1 кВт*ч электроэнергии. Если в начале 20-х годов прошлого века этот показатель составлял 15,4 кг, то в 60-е годы он снизился до 3,95 кг. В дальнейшем расход угля вновь незначительно поднялся до 4,6 кг.

Причиной такого подъема стали газоочистители, уловители пыли и золы, из-за которых угольная электростанция снизила выходную мощность на 10%. Многие станции пользуются более чистым в экологическом плане углем, что также привело к увеличению потребления топлива.

Процентное выражение термического КПД тепловой электростанции составляет не более 36%, что связано с высокими тепловыми потерями, вызываемыми отходящими газами при горении. У атомных электростанций, отличающимися низкими температурами и давлением термический КПД еще ниже – 32%. Самый высокий показатель у газотурбинных установок, оборудованных котлами-утилизаторами и дополнительными паровыми турбинами. КПД электростанций с таким оборудованием превышает 40%. Этот показатель полностью зависит от величины рабочих температур и давления пара.

Конденсационные электростанции

Конденсационные электростанции часто называют государственными районными электрическими станциями (ГРЭС). КЭС в основном располагаются вблизи районов добычи топлива или водоемов, используемых для охлаждения и конденсации пара, отработавшего в турбинах.

Характерные особенности конденсационных электрических станции

  1. в большинстве своем значительная удаленность от потребителей электрической энергии, что обуславливает необходимость передавать электроэнергию в основном на напряжениях 110-750 кВ;
  2. блочный принцип построения станции, обеспечивающий значительные технико-экономические преимущества, заключающиеся в увеличении надежности работы и облегчении эксплуатации, в снижении объема строительных и монтажных работ.
  3. Механизмы и установки, обеспечивающие нормальное функционирование станции, составляют систему ее собственных нужд.

КЭС могут работать на твердом (уголь, торф), жидком (мазут, нефть) топливе или газе.

Топливоподача и приготовление твердого топлива заключается в транспортировке его из складов в систему топливоприготовления. В этой системе топливо доводится до пылевидного состояния с целью дальнейшего вдувания его к горелкам топки котла. Для поддержания процесса горения специальным вентилятором в топку нагнетается воздух, подогретый отходящими газами, которые отсасываются из топки дымососом.

Жидкое топливо подается к горелкам непосредственно со склада в подогретом виде специальными насосами.

Подготовка газового топлива состоит в основном в регулировании давления газа перед сжиганием. Газ от месторождения или хранилища транспортируется по газопроводу к газораспределительному пункту (ГРП) станции. На ГРП осуществляется распределение газа и регулирование его параметров.

Процессы в пароводяном контуре

Основной пароводяного контур осуществляет следующие процессы:

  1. Горение топлива в топке сопровождается выделением тепла, которое нагревает воду, протекающую в трубах котла.
  2. Вода превращается в пар с давлением 13…25 МПа при температуре 540..560 °С.
  3. Пар, полученный в котле, подается в турбину, где совершает механическую работу — вращает вал турбины. Вследствие этого вращается и ротор генератора, находящийся на общем с турбиной валу.
  4. Отработанный в турбине пар с давлением 0,003…0,005 МПа при температуре 120…140°С поступаетв конденсатор, где превращается в воду, которая откачивается в деаэратор.
  5. В деаэраторе происходит удаление растворенных газов, и прежде всего кислорода, опасного ввиду своей коррозийной активности.Система циркуляционного водоснабжения обеспечивает охлаждение пара в конденсаторе водой из внешнего источника (водоема, реки, артезианской скважины). Охлажденная вода, имеющая на выходе из конденсатора температуру, не превышающую 25…36 °С, сбрасывается в систему водоснабжения.

Интересное видео о работе ТЭЦ можно посмотреть ниже:

Для компенсации потерь пара в основную пароводяную систему насосом подается подпиточная вода, предварительно прошедшая химическую очистку.

Следует отметить, что для нормальной работы пароводяных установок, особенно со сверх критическими параметрами пара, важное значение имеет качество воды, подаваемой в котел, поэтому турбинный конденсат пропускается через систему фильтров обессоливания. Система водоподготовки предназначена для очистки подпиточной и конденсатной воды, удаления из нее растворенных газов.

На станциях, использующих твердое топливо, продукты сгорания в виде шлака и золы удаляются из топки котлов специальной системой шлака- и золоудаления, оборудованной специальными насосами.

При сжигании газа и мазута такой системы не требуется.

На КЭС имеют место значительные потери энергии. Особенно велики потери тепла в конденсаторе (до 40..50 % общего количества тепла, выделяемого в топке), а также с отходящими газами (до 10 %). Коэффициент полезного действия современных КЭС с высокими параметрами давления и температуры пара достигает 42 %.

Электрическая часть КЭС представляет совокупность основного электрооборудования (генераторов, трансформаторов) и электрооборудования собственных нужд, в том числе сборных шин, коммутационной и другой аппаратуры со всеми выполненными между ними соединениями.

Генераторы станции соединяются в блоки с повышающими трансформаторами без каких-либо аппаратов между ними.

В связи с этим на КЭС не сооружается распределительное устройство генераторного напряжения.

Распределительные устройства на напряжения 110—750 кВ в зависимости от количества присоединений, напряжения, передаваемой мощности и требуемого уровня надежности выполняются по типовым схемам электрических соединений. Поперечные связи между блоками имеют место только в распределительных устройствах высшего напряжения или в энергосистеме, а также по топливу, воде и пару.

В связи с этим каждый энергоблок можно рассматривать как отдельную автономную станцию.

Для обеспечения электроэнергией собственных нужд станции выполняются отпайки от генераторов каждого блока. Для питания мощных электродвигателей (200 кВт и более) используется генераторное напряжение, для питания двигателей меньшей мощности и осветительных установок — система напряжения 380/220 В. Электрические схемы собственных нужд станции могут быть различными.

Ещё одно интересное видео о работе ТЭЦ изнутри:

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]