Электромагнитная индукция — причины возникновения, значение и способы применения явления


Явление электромагнитной индукции

При изменении тока происходит образование магнитного поля. Это явление, в свою очередь, влияет на движение электронов.

Если рассматривать одиночный провод, расположенный прямо, то он будет создавать поле, направление силовых линий которого идёт по кругу в перпендикулярной ему плоскости.

Если в магнитном поле происходят изменения, то это увеличивает или ослабляет силу тока, который проходит по проводнику. Направление изменения зависит от того, как меняется поле. Это явление позволяет преобразовывать электрическую энергию в механическую или наоборот.

Учёный, которому принадлежит заслуга открытия взаимодействия электрического и магнитного полей — Майкл Фарадей.

Были проведены опыты, которые показали, что изменение магнитного поля способно порождать движение электронов. Это явление впоследствии назвали индукционным током.

Опыты, выполненные этим учёным, выглядят следующим образом:

  1. Фарадей сделал катушку с полой серединой. Её концы соединил с гальванометром. Взял в руки магнит и поместил его внутрь катушки. Если его вдвигать или выдвигать, то на гальванометре отклоняется стрелка, доказывая наличие тока. Чем быстрее выполняемое движение, тем выше его сила. Аналогичный эффект будет достигнут, если магнит будет неподвижен, но будет перемещаться соленоид.
  2. В следующем опыте были использованы две катушки. Большая подключена к гальванометру, а вторая — к источнику. Одна из катушек была настолько узкой, чтоб могла проходить внутрь второй. Если её поместить туда и несколько раз включить и выключить ток, то на гальванометре стрелка отклонится, показывая наличие тока.
  3. Если взять два соленоида под током и один из них подвигать рядом с другим, то в них также возникнет движение электронов.

При проведении таких опытов более быстрое движение создаёт более сильное движение электронов.

Одновременно с Фарадеем аналогичные исследования осуществил Джозеф Генри, однако опубликовал свои результаты позже.

Объяснение явления

Движение носителей заряда — электронов происходит в том случае, когда на них действует электродвижущая сила, создаваемая разностью потенциалов.

Возникновение тока под действием изменения магнитного поля происходит из-за того, что оно создаёт такую силу, которая носит название ЭДС индукции. Хотя явление индуктивности было обнаружено Фарадеем, он не дал ему теоретического объяснения.

Теория электромагнитного поля в физике была создана Максвеллом в 1861 году. Этому явлению присущи такие черты:

  • источником движения электронов является переменное магнитное поле;
  • его наличие можно обнаружить по производимому воздействию на электрические заряды;
  • это поле не является потенциальным;
  • силовые линии поля представляют собой замкнутые кривые.

Работа магнитного поля выражается в создании электродвижущей силы для электронов.

Электромагнитная индукция в современной технике

Слайд 1

Электромагнитная индукция в современной технике Выполнили ученики 11 «А» класса МОУСОШ №2 города Суворова Хныков Игорь, Худолей Андрей

Слайд 2

Содержание: Открытие электромагнитной индукции; Основные источники электромагнитного поля; Металлодетекторы.

Слайд 3

Явление электромагнитной индукции было открыто 29 августа 1831 г. Майклом Фарадеем. Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется.

Слайд 4

ЭДС электромагнитной индукции в замкнутом контуре численно равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Направление индукционного тока (так же, как и величина ЭДС), считается положительным, если оно совпадает с выбранным направлением обхода контура.

Слайд 5

Опыт Фарадея постоянный магнит вставляют в катушку, замкнутую на гальванометр, или вынимают из нее. При движении магнита в контуре возникает электрический ток В течение одного месяца Фарадей опытным путём открыл все существенные особенности явления электромагнитной индукции. В настоящее время опыты Фарадея может провести каждый.

Слайд 6

Основные источники электромагнитного поля В качестве основных источников электромагнитного поля можно выделить: Линии электропередач. Электропроводка (внутри зданий и сооружений). Бытовые электроприборы. Персональные компьютеры. Теле- и радиопередающие станции. Спутниковая и сотовая связь (приборы, ретрансляторы). Электротранспорт. Радарные установки.

Слайд 7

Линии электропередач Провода работающей линии электропередач создают в прилегающем пространстве (на расстояниях порядка десятков метров от провода) электромагнитное поле промышленной частоты (50 Гц). Причем напряженность поля вблизи линии может изменяться в широких пределах, в зависимости от ее электрической нагрузки. Фактически границы санитарно-защитной зоны устанавливаются по наиболее удаленной от проводов граничной линии максимальной напряженности электрического поля, равной 1 кВ/м.

Слайд 8

Электропроводка К электропроводке относятся: кабели электропитания систем жизнеобеспечения зданий, токораспределительные провода, а также разветвительные щиты, силовые ящики и трансформаторы. Электропроводка является основным источником электромагнитного поля промышленной частоты в жилых помещениях. При этом уровень напряженности электрического поля, излучаемого источником, зачастую относительно невысок (не превышает 500 В/м).

Слайд 9

Бытовые электроприборы Источниками электромагнитных полей являются все бытовые приборы, работающие с использованием электрического тока. При этом уровень излучения изменяется в широчайших пределах в зависимости от модели, устройства прибора и конкретного режима работы. Также уровень излучения сильно зависит от потребляемой мощности прибора – чем выше мощность, тем выше уровень электромагнитного поля при работе прибора. Напряженность электрического поля вблизи электробытовых приборов не превышает десятков В/м.

Слайд 10

Персональные компьютеры Основным источником неблагоприятного воздействия на здоровье пользователя компьютера является средство визуального отображения (СВО) монитора. Кроме монитора и системного блока персональный компьютер может также включать в себя большое количество других устройств (таких, как принтеры, сканеры, сетевые фильтры и т.п.). Все эти устройства работают с применением электрического тока, а значит, являются источниками электромагнитного поля.

Слайд 11

Электромагнитное поле персональных компьютеров имеет сложнейший волновой и спектральный состав и трудно поддается измерению и количественной оценке. Оно имеет магнитную, электростатическую и лучевую составляющие (в частности, электростатический потенциал сидящего перед монитором человека может колебаться от –3 до +5 В). Учитывая то условие, что персональные компьютеры сейчас активно используются во всех отраслях человеческой деятельности, их влияние на здоровье людей подлежит тщательнейшему изучению и контролю

Слайд 12

Теле- и радиопередающие станции На территории России в настоящее время размещается значительное количество радиотрансляционных станций и центров различной принадлежности. Передающие станции и центры размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики, и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС). Каждая система включает в себя излучающую антенну и фидерную линию, подводящую транслируемый сигнал.

Слайд 13

Спутниковая связь Системы спутниковой связи состоят из передающей станции на Земле и спутников – ретрансляторов, находящихся на орбите. Передающие станции спутниковой связи излучают узконаправленный волновой пучок, плотность потока энергии в котором достигает сотен Вт/м. Системы спутниковой связи создают высокие напряженности электромагнитного поля на значительных расстояниях от антенн. Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км плотность потока энергии 2,8 Вт/м2. Рассеяние энергии относительно основного луча очень небольшое и происходит больше всего в районе непосредственного размещения антенны.

Слайд 14

Сотовая связь Сотовая радиотелефония является сегодня одной из наиболее интенсивно развивающихся телекоммуникационных систем. Основными элементами системы сотовой связи являются базовые станции и мобильные радиотелефонные аппараты. Базовые станции поддерживают радиосвязь с мобильными аппаратами, вследствие чего они являются источниками электромагнитного поля. В работе системы применяется принцип деления территории покрытия на зоны, или так называемые «соты», радиусом [0,5..10] км.

Слайд 15

Интенсивность излучения базовой станции определяется нагрузкой, то есть наличием владельцев сотовых телефонов в зоне обслуживания конкретной базовой станции и их желанием воспользоваться телефоном для разговора, что, в свою очередь, коренным образом зависит от времени суток, места расположения станции, дня недели и других факторов. В ночные часы загрузка станций практически равна нулю. Интенсивность же излучения мобильных аппаратов зависит в значительной степени от состояния канала связи «мобильный радиотелефон – базовая станция» (чем больше расстояние от базовой станции, тем выше интенсивность излучения аппарата).

Слайд 16

Электротранспорт Электротранспорт (троллейбусы, трамваи, поезда метрополитена и т.п.) является мощным источником электромагнитного поля в диапазоне частот [0..1000]Гц. При этом в роли главного излучателя в подавляющем большинстве случаев выступает тяговый электродвигатель (для троллейбусов и трамваев воздушные токоприёмники по напряженности излучаемого электрического поля соперничают с электродвигателем).

Слайд 17

Радарные установки Радиолокационные и радарные установки имеют обычно антенны рефлекторного типа («тарелки») и излучают узконаправленный радиолуч. Периодическое перемещение антенны в пространстве приводит к пространственной прерывистости излучения. Наблюдается также временная прерывистость излучения, обусловленная цикличностью работы радиолокатора на излучение. Они работают на частотах от 500 МГц до 15 ГГц, однако отдельные специальные установки могут работать на частотах до 100 ГГц и более. Вследствие особого характера излучения они могут создавать на местности зоны с высокой плотностью потока энергии (100 Вт/м2 и более).

Слайд 18

Металлодетекторы Технологически, принцип действия металлодетектора основан на явлении регистрации электромагнитного поля, которое создается вокруг любого металлического предмета при помещении его в электромагнитное поле. Это вторичное электромагнитное поле различается как по напряженности (силе поля), так и по прочим параметрам. Эти параметры зависят от размера предмета и его проводимости (у золота и серебра проводимость гораздо лучше, чем, например, у свинца) и естественно — от расстояния между антенной металлодетектора и самим предметом (глубины залегания).

Слайд 19

Вышеприведенная технология обусловила состав металлодетектора: он состоит из четырех основных блоков: антенны (иногда излучающая и принимающая антенны различаются, а иногда — это одна и та же антенна), электронного обрабатывающего блока, блока вывода информации (визуальной — ЖК-дисплей или стрелочный индикатор и аудио — динамика или гнезда для наушников) и блока питания.

Слайд 20

Металлодетекторы бывают : Поисковые Досмотровые Для строительных целей

Слайд 21

Поисковые Данный металлодетектор предназначен для поиска всевозможных металлических предметов. Как правило — это самые большие по размеру, стоимости и естественно по выполняемым функциям модели. Это обусловлено тем, что иногда нужно находить предметы на глубине до нескольких метров в толще земли. Мощная антенна способна создавать большой уровень электромагнитного поля и с высокой чувствительностью обнаруживать даже малейшие токи на большой глубине. Например поисковый металлодетектор, обнаруживает металлическую монету на глубине в 2-3 метра в толще земли, которая может даже содержать железистые геологические соединения.

Слайд 22

Досмотровые Используется спецслужбами, таможенниками и сотрудниками охраны самых различных организаций для поиска металлических предметов (оружия, драгоценных металлов, проводов взрывчатых устройств и т.д.) спрятанных на теле и в одежде человека. Эти металлодетекторы отличают компактность, удобство в обращении, наличие таких режимов, как беззвучная вибрация рукоятки (чтобы обыскиваемый человек не узнал, что сотрудник, производящий поиск что-то нашел). Дальность (глубина) обнаружения рублевой монеты в таких металлодетекторах доходит до 10-15 см.

Слайд 23

Также широкое распространение получили арочные металлодетекторы, которые внешне напоминают арку и требуют прохождения человека через нее. Вдоль их вертикальных стен проложены сверхчувствительные антенны, которые обнаруживают металлические предметы на всех уровнях роста человека. Их обычно устанавливают перед местами культурно-массовых развлечений, в банках, учреждениях и т.д. Главная особенность арочных металлодетекторов — высокая чувствительность (настраиваемая) и большая скорость обработки потока людей.

Слайд 24

Для строительных целей Данный класс металлодетекторов при помощи звуковой и световой сигнализации помогает строителям отыскать металлические трубы, элементы конструкций или привода, расположенные как в толще стен, так и за перегородками и фальш-панелями. Некоторые металлодетекторы для строительных целей часто объединяют в одном приборе с детекторами деревянных конструкция, детекторами напряжения на токоведущих проводах, детекторами протечек и т.д

Закон электромагнитной индукции Фарадея

Основной характеристикой магнитного поля является магнитный поток. Зрительно его можно представить, как силовые линии, пронизывающие перпендикулярную плоскую фигуру, ограниченную замкнутой линией. Эти линии выражают вектор магнитной индукции.

Произведение модуля этой величины на площадь для равномерного и однородного магнитного поля равно потоку поля через рассматриваемый контур.

При рассмотрении сложного поля, фигуру разбивают на небольшие участки, в которых поле равномерно и суммируют значения для каждого из них. Для вычисления в таких случаях используются методы дифференциального и интегрального исчисления.

Электромагнитная индукция измеряется в Тесла (Тл). Эта единица получила своё название в честь великого учёного-физика.

Закон Фарадея

количественно описывает влияние магнитного поля на движение электронов. Он утверждает следующее:
скорость изменения потока электромагнитного поля равна порождаемой им электродвижущей силе, воздействующей на электроны и создающей ток.
Нужно заметить, что когда магнитное поле порождается изменением силы тока, то возникающая электродвижущая сила воздействует на него противоположным образом. Это можно прояснить на таком примере.

Если рассматривается провод, и в нём увеличивается сила тока, то это создаёт магнитное поле. Оно, в свою очередь, создаёт ЭДС, которая препятствует увеличению.

Взаимодействие магнита с контуром

В качестве наглядного примера взаимодействия магнита и контура в сделанную из медного провода катушку помещают магнит. Если магнит медленно вставлять внутрь катушки, происходит постепенное увеличение пересекающего ее витки создаваемого магнитом потока. Появляющееся вследствие такой манипуляции упорядоченное движение частиц в катушке будет направлено по часовой стрелке, создавая собственное магнитное поле, ослабляющее поле магнита, отталкивая его тем самым от катушки.

Если магнит отдаляют от контура, его поток уменьшается, а заряженные частицы начинают двигаться против часовой стрелки, вследствие чего возникающая совокупность силовых магнитных линий будет притягивать магнит.

На заметку. В случае с незамкнутым (открытым) контуром: металлическим или алюминиевым кольцом, имеющим прорезь; катушкой, витки которой не замкнуты через амперметр, источник питания, данная закономерность, как и правило Ленца, не работает.

Правило Ленца

Это правило даёт возможность правильно определить направление индукционного тока в различных ситуациях. Оно формулируется следующим образом: направление тока, порождённого индукцией, создаёт такое изменение магнитного потока, препятствующее изменению внешнего поля, благодаря которому оно возникло.

Это можно пояснить на следующем примере. Будет рассмотрена ситуация, когда внешнее магнитное поле со временем будет возрастать, а его силовые линии направлены вверх.

Это произойдёт, например, в той ситуации, когда снизу к контуру, расположенному горизонтально, будут приближать магнит так, чтобы его северный полюс был обращён вверх. В этом случае магнитный поток будет увеличиваться, создавая электродвижущую силу.

В контуре будет создан индукционный ток. Он будет таким, чтобы магнитные силовые линии были противоположными по отношению к тем, которые характеризуют первоначальное. Теперь можно определить направление индукционного тока в контуре.

Как известно, если смотреть со стороны создаваемого поля, то он будет направлен по часовой стрелке. То есть, если смотреть сверху, направление будет против неё.

На этом примере можно увидеть, как с помощью правила Ленца можно определить направление магнитного поля и индукционного тока.

Правило правой руки

Вы, наверное, обратили внимание, что при изменении направления перемещения проводника в магнитном поле изменяется и направление отклонения стрелочки гальванометра. Следовательно, и индуцируемая электродвижущая сила изменила свое направление. Существует правило, благодаря которому можно определить направление индуцируемой электродвижущей силы. Это правило называется «Правило правой руки».

«Если ладонь правой руки держать так, чтобы в нее входили магнитные силовые линии поля, а отогнутый большой палец совместить с направлением движения проводника, то вытянутые четыре пальца укажут направление индуцированной электродвижущей силы»

Самоиндукция

В этом случае рассматривается ситуация, когда изменение движения электронов порождает ЭДС, вызывающий индукционный ток в этом же проводнике.

Взяв за основу правило Ленца, можно утверждать, что он имеет направление, противоположное первоначальному изменению.

Самоиндукция похожа на явление инерции. Тяжёлое тело невозможно остановить мгновенно. Также нельзя изменить силу тока за один миг до нужной величины из-за наличия явления самоиндукции.

Это свойство можно продемонстрировать следующим опытом. Нужно сделать две электрических цепи. В одной из них имеется источник и лампочка. Другая сделана аналогичным образом, но различие состоит в том, что в цепь добавлена катушка.

В первой цепи после включения лампочка загорается сразу. Во второй, учитывая наличие индуктивного элемента, это происходит с заметным опозданием.

После размыкания свет в первой лампочке отключается практически мгновенно, а во второй это происходит замедленно. Важно отметить, что в процессе выключения индукционный ток может превысить первоначальный. Поскольку в этой ситуации он направлен также, как и рабочий, то сила тока может возрасти. В некоторых цепях это может вызвать перегорание лампочки.

Применение магнитного поля. Сила Ампера

Амперметр

Еще одно открытие Ампера – это закон действия магнитного поля на проводник с током. Он выражается прежде всего в действии магнитного поля на виток или рамку с током. Так, на виток с током в магнитном поле действует момент силы, которая стремится развернуть этот виток таким образом, чтобы его плоскость стала перпендикулярна линиям магнитного поля.

Угол поворота витка прямо пропорционален величине тока в витке. Если внешнее магнитное поле в витке постоянно, то значение модуля магнитной индукции также величина постоянная. Площадь витка при не очень больших токах также можно считать постоянной, следовательно, справедливо то, что сила тока равна произведению момента сил, разворачивающих виток с током, на некоторую постоянную при неизменных условиях величину.

l = M * const

l – сила тока,

M – момент сил, разворачивающих виток с током.

Следовательно, появляется возможность измерять силу тока по величине угла поворота рамки, которая реализована в измерительном приборе – амперметре.

Рисунок 11. Амперметр

Электродвигатель

После открытия действия магнитного поля на проводник с током Ампер понял, что это открытие можно использовать для того, чтобы заставить проводник двигаться в магнитном поле. Так, магнетизм можно превратить в механическое движение – создать двигатель. Одним из первых, работающих на постоянном токе, был электродвигатель (рис. 3), созданный в 1834 г. русским электротехником Б.С. Якоби.

Рисунок 12. Электродвигатель

Рассмотрим упрощенную модель двигателя, которая состоит из неподвижной части с закрепленными на ней магнитами – статора. Внутри статора может свободно вращаться рамка из проводящего материала, которая называется ротором. Для того чтобы по рамке мог протекать электрический ток, она соединена с клеммами при помощи скользящих контактов (рис. 4). Если подключить двигатель к источнику постоянного тока, то при замыкании цепи рамка с током начнет вращение.

Рисунок 13. Схема электродвигателя

Электромагнит

Необходимо упомянуть еще об одном устройстве, работающем на основе законов Ампера. Ампер показал, что катушка с током ведет себя подобно постоянному магниту. Это значит, что можно сконструировать
электромагнит – устройство, которое при прохождении через него электрического тока, создает вокруг себя магнитное поле.
Рисунок 14. Электромагнит

Рисунок 14.2 Пример применения электромагнитов. Электромагнит на производстве

Маглев

Маглев, или поезд на магнитной подушке, — это состав, который удерживается над дорожным полотном и движется силой электромагнитного поля. В основу маглева положено базовое свойство магнитов: одинаковые полюса отталкиваются, а разные – притягиваются.

Рисунок 15. Маглев

Движение поезда осуществляется линейным двигателем – поочерёдно включаются обмотки статора, создавая бегущее магнитное поле. Статор поезда втягивается в это поле и движет весь состав. При этом с частотой 4000 раз в секунду происходит смена полюсов на магнитах путем попеременной подачи тока. Изменение силы и частоты тока позволяет регулировать скорость состава.

Рисунок 16. Схема маглева

Маглев — самый быстрый наземный общественный транспорт. Рекорд скорости был установлен японским поездом Синкансэн L0 в апреле 2015 года — он разогнался до 603 км/ч.

Рисунок 17. Синкансэн L0

Телеграф

Именно Амперу пришла идея о том, что, скомбинировав проводники и магнитные стрелки, можно создать устройство, которое предает информацию на расстояние.

Рисунок 18. Электрический телеграф

Идея телеграфа возникла в первые же месяцы после открытия электромагнетизма.

Однако широкое распространение электромагнитный телеграф приобрел после того, как Самюэль Морзе создал более удобный аппарат и, главное, разработал двоичную азбуку, состоящую из точек и тире, которая так и называется: азбука Морзе.

С передающего телеграфного аппарата с помощью «ключа Морзе», который замыкает электрическую цепь, в линии связи формируются короткие или длинные электрические сигналы, соответствующие точкам или тире азбуки Морзе. На приемном телеграфном аппарате (пишущий прибор) на время прохождения сигнала (электрического тока) электромагнит притягивает якорь, с которым жестко связано пишущее металлическое колесико или писец, которые оставляют чернильный след на бумажной ленте (рис. 7).

Рисунок 19. Схема работы телеграфа

Пушка Гаусса

Математик Гаусс, познакомившись с исследованиями Ампера, предложил создать оригинальную пушку, работающую на принципе действия магнитного поля на железный шарик или стержень – снаряд: в цилиндрической обмотке (соленоиде) при протекании через нее электрического тока возникает магнитное поле. Это магнитное поле начинает втягивать внутрь соленоида снаряд, который от этого начинает разгоняться. Если в тот момент, когда снаряд окажется в середине обмотки ток в последней отключить, то втягивающее магнитное поле исчезнет и снаряд, набравший скорость, свободно вылетит через другой конец обмотки.

Рисунок 20. Пушка Гаусса

Динамик

Так же сила Ампера применяется и в динамиках, чей принцип действия основан на действии магнитного поля постоянного магнита на переменный ток в подвижной катушке: катушка, по которой течет измененный ток звуковой частоты, колеблется в магнитном поле магнита. Вместе с катушкой колеблется диффузор, излучающий звук.

Рисунок 21. Устройство динамика

Рисунок 22. Динамик (внешний вид)

Сила Лоренца

Кинескоп — телевизионная трубка, электронно-лучевая трубка

Действие магнитного поля на движущийся заряд широко используют в технике. Достаточно упомянуть телевизионные трубки (= кинескопы), в которых летящие к экрану электроны отклоняются с помощью магнитного поля, создаваемого особыми катушками. Иначе телевизионную трубку можно называть электронно-лучевой трубкой.

Рисунок 23. Кинескоп

Масс-спектрограф

Другое применение действие магнитного поля нашло в приборах, позволяющих разделять заряженные частицы по их удельным зарядам, т.е. по отношению заряда частицы к её массе, и по полученным результатам точно определять массы частиц. Такие приборы получили название масс-спектрографов. На рисунке изображена принципиальная схема простейшего масс-спектрографа.

Вакуумная камера прибора помещена в магнитное поле (вектор индукции В перпендикулярен рисунку). Ускоренные электрическим полем заряженные частицы (электроны или ионы), описав дугу, попадают на фотопластинку, где оставляют след, позволяющий с большой точностью измерить радиус траектории r. По этому радиусу определяется удельный заряд иона. Зная же заряд иона, легко вычислить его массу. Изучить

химический состав грунта, взятого на Луне, например, поможет тот же масс-спектр.

Циклотрон — ускоритель заряженных частиц

На рисунке 25 показано движение заряженных частиц в вакуумной камере циклотрона.

Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода в виде полых металлических полуцилиндров (дуантов). К дуантам приложено переменное электрическое напряжение, частота которого равна циклотронной частоте. Заряженные частицы инжектируются в центре вакуумной камеры. Частицы ускоряются электрическим полем в промежутке между дуантами. Внутри дуантов частицы движутся под действием силы Лоренца по полуокружностям, радиус которых растет по мере увеличения энергии частиц.

Каждый раз, когда частица пролетает через зазор между дуантами, она ускоряется электрическим полем. Таким образом, в циклотроне, как и во всех других ускорителях, заряженная частица ускоряется электрическим полем, а удерживается на траектории магнитным полем. Циклотроны позволяют ускорять протоны до энергии порядка 20 МэВ.

Рисунок 25.2. Циклотрон (внешний вид)

Синхрофазотрон

В 1957 году Советский Союз осуществил революционный научный прорыв сразу в двух направлениях: в октябре был запущен первый искусственный спутник Земли, а за несколько месяцев до этого, в марте, в Дубне начал работать легендарный синхрофазотрон — гигантская установка для исследования микромира. Эти два события потрясли весь мир, и слова «спутник» и «синхрофазотрон» прочно вошли в нашу жизнь.

Синхрофазотрон — это циклический резонансный ускоритель заряженных частиц. Циклический – значит, что частицы циркулируют по замкнутой траектории, которая формируется магнитными полями. Резонансный — что на кольце расположен высокочастотый электромагнитный резонатор, в котором внешним генератором раскачана волна электрического поля; сгусток частиц пролетает этот резонатор на каждом обороте синхронно с колебанием поля, и это электрическое поле его резонансным образом легонько ускоряет (как мама легонько толкает качели, добиваясь большой скорости). Таким образом удаётся электрическим полем с амплитудой в десятки киловольт ускорить частицы до десятков гига(электрон)вольт.

Рисунок 26. Синхрофазотрон (схема)

Рисунок 26.2. Синхрофазотрон (внешний вид)

Магнетрон

Магнетрон — это мощная электронная лампа, генерирующая микроволны при взаимодействии потока электронов с магнитным полем.

Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.

Магнетроны обладают высоким КПД (до 80 %), то есть, способны преобразовывать до 80% подводимой к ним электроэнергии в СВЧ-поле.

Магнетроны бывают как не перестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) — ротационные и вибрационные механизмы.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.

Рисунок 27. Магнетрон (схема)

Магнитное поле в медицине

Магнитное поле широко применяется в медицине. Существует и специальный термин – магнитотерапия.

Магнитотерапия – это метод физиотерапии, в основе которого лежит действие на организм магнитными полями различных параметров.

С лечебно-профилактическими целями используются:

  • постоянное магнитное поле (постоянная магнитотерапия);
  • импульсное магнитное поле (импульсная магнитотерапия);
  • переменное магнитное поле (низкочастотная магнитотерапия).

Постоянная магнитотерапия

При постоянной магнитотерапии на организм с лечебно-профилактическими целями воздействуют постоянным магнитным полем. Для получения постоянного магнитного поля (ПМП) используют постоянные магниты из различных материалов и различных конструкций, а также электромагниты с ферромагнитными сердечниками или без них, в обмотках которых течет постоянный электрический ток. Индукция постоянных магнитных полей чаще составляет 30-60 мТл.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.

Индуктивность

Проводник, через который проходит изменяющийся ток, способен накапливать энергию путём использования магнитного поля. У прямолинейного отрезка провода эта способность имеет незначительную величину.

Однако, если речь идёт о катушке, то её величина гораздо сильнее. Эта характеристика называется индуктивностью. Она обозначается как «L» и играет важную роль при определении различных характеристик электромагнитного поля.

Магнитный поток в определённом контуре можно выразить посредством формулы Ф = L* I, а электродвижущую силу в виде E = L* (dI/dt).

Ток, проходящий через контур, способен создать электромагнитное поле, причём оно будет тем сильнее, чем быстрее будут происходить его изменения.

На практике для увеличения индуктивности катушки используют вставленные внутрь стержни из ферромагнетика.

Продолжение опытов

Но это еще не все, что сделал ученый. Раз магнитное и электрическое поле связаны тесно, требовалось выяснить, насколько.

Для этого Фарадей к одной обмотке подвел ток и вдвинул ее внутрь другой такой же обмотки радиусом больше первой. И снова было индуцировано электричество. Таким образом, ученый доказал: движущийся заряд порождает и электрическое, и магнитное поля одновременно.

Стоит подчеркнуть, что речь идет о движении магнита или магнитного поля внутри замкнутого контура пружины. То есть поток должен все время меняться. Если этого не происходит, ток не генерируется.

Энергия магнитного поля

Электрический ток создаёт магнитное поле. При этом он затрачивает определённую энергию. Её величина равна той работе, которая была затрачена на создание поля. Она вычисляется по следующей формуле:

Здесь использовались такие обозначения:

  • W – энергия магнитного поля;
  • L – индуктивность;
  • I – сила тока.

Если магнитное поле по какой-то причине пропадёт, то его энергия выделится в той или иной форме.

Магнитный поток

Гофротруба

Данное явление магнитный поток представляет собой совокупность силовых линий, проходящих через определённое сечение проводника или замкнутого токопроводящего контура.

Рассчитывается модуль этой величины Ф по следующей формуле:

Ф= B×S×Cos ​α​, где:

  • В – модуль вектора создаваемой силовыми линиями индукции;
  • S – площадь поверхности​, через которую проходит поток силовых линий;
  • ​α​ – угол между векторами силовых линий индукции и нормали (т.е. перпендикуляром к пронизываемой силовыми магнитными линиями плоскости).

Измеряется данная величина в Веберах (Вб).

Применение электромагнитной индукции

Это явление активно применяется в различных сферах жизни человеческого общества.

Далее будут приведены несколько наиболее известных примеров:

  • радиовещание невозможно без использования явления электромагнитной индукции;
  • в медицине магнитотерапия является одним из эффективных методов лечения;
  • при фундаментальных исследованиях для разгона элементарных частиц применяются синхрофазотроны, работа которых основана на явлении индуктивности;
  • счётчики электричества, применяемые в быту для его учёта, используют рассматриваемое явление;
  • для того, чтобы передавать произведённую электростанциями электрическую энергию на большие расстояния, применяются трансформаторы, работа которых построена на использовании электромагнитной индукции;
  • в металлургии для плавки металла применяются индукционные печи.

Использование этого явления очень широко распространено. Приведённые примеры являются только частью различных вариантов использования.

Основные формулы

Основные формулы для явления магнитной индукции указаны на рисунке ниже.

Поняв, в чем заключается суть явления электромагнитной индукции, можно разобраться в том, как работают электродвигатели, генераторы. Эти знания, помимо большой теоретической ценности, имеет достаточно полезное практическое применение, позволяя самостоятельно находить, в ряде случаев и устранять, неисправности агрегатов, не прибегая к дорогостоящим услугам специалистов.

Все формулы по теме «Электромагнитная индукция»

Для того чтобы кратко освежить в памяти формулы, относящиеся к магнитной индукции, далее приводится перечень наиболее важных из них.

Открытие законов, которые описывают поведение электромагнитного поля, является одним из важнейших достижений науки за всю историю. В современной жизни использование этого явления происходит практически во всех областях жизни общества.

Магнитное или электрическое?

В начале девятнадцатого века ученые поняли, как получать постоянный ток. Была создана первая примитивная батарейка. Ее хватало для того, чтобы пустить по металлическим проводникам поток электронов. Благодаря первому источнику электричества был совершен ряд открытий.

В 1820 году датский ученый Ханс Кристиан Эрстед выяснил: магнитная стрелка отклоняется рядом со включенным в сеть проводником. Положительный полюс компаса всегда расположен определенным образом по отношению к направлению тока. Ученый производил опыт во всех возможных геометриях: проводник был над или под стрелкой, они располагались параллельно или перпендикулярно. В результате всегда получалось одно и то же: включенный ток приводил в движение магнит. Так было предвосхищено открытие явления электромагнитной индукции.

Но мысль ученых должна подтверждаться экспериментом. Сразу после опыта Эрстеда английский физик Майкл Фарадей задался вопросом: «Магнитное и электрическое поле просто влияют друг на друга, или они связаны теснее?» Первым ученый проверил предположение, что если электрическое поле заставляет отклоняться намагниченный предмет, то магнит должен порождать ток.

Схема опыта проста. Сейчас ее может повторить любой школьник. Тонкая металлическая проволока была свернута в форме пружины. Ее концы подключались к прибору, регистрирующему ток. Когда рядом с катушкой двигался магнит — стрелка устройства показывала напряжение электрического поля. Таким образом был выведен закон электромагнитной индукции Фарадея.

Свойства индукции

Во всех научных сферах активно используется индукция, так как она имеет большое значение, когда нужно перейти от эмпирических знаний к теоретическим. Часто проводятся различные эксперименты. Благодаря этому удаётся собрать отдельные факты, которые тщательно анализируются. На этой основе строится индуктивное заключение. Необходимость таких выводов заключается в том, что они гарантируют переход от редких фактов к общим, но максимально развёрнутым положениям. Можно проследить некую связь между стремлением создать точное описание гипотезы и перейти к обобщениям.

В физике отдельное внимание уделяют индукции научного типа, так как она отличается поиском причинных связей между явлением и стремлением выявить существующие признаки объектов, объединённых в класс. Научная индукция делится на 3 категории:

  • Поиск и изучение причинных связей. Учитывается совокупность обстоятельств, которые предшествуют наблюдаемому явлению.
  • Фильтрация случаев. В отличие от базовой индукции, когда учитывается только количество исследуемых ситуаций, тщательный отбор случаев подразумевает то, что будут учтены особенности каждой из анализируемых групп. Такой подход позволяет лучше разобраться во всех параметрах ЭДС.
  • Научная индукция может быть построена не только на основании анализа ряда явлений и объектов. Для достижения желаемого результата должен быть изучен единственный представитель группы. Не учитываются индивидуальные свойства, благодаря которым объект выделяется среди других представителей той же категории.

Эти виды индукции имеют большое значение в научной среде. При правильном подходе можно существенно ускорить поиск правильного ответа, узнать базовые значения и открыть для себя закономерности. Такой подход позволяет не ждать, пока будут подробно исследованы все явления анализируемого класса.

Магнитно-резонансная томография

Стоит упомянуть и о таком применении магнитного поля в медицине, как магнитно-резонансная томография. Она используется для исследования внутренних органов и тканей человека с целью диагностировать различные заболевания. Принцип её действия основан на использовании феномена кратковременного резонирования протонов в электромагнитном поле для визуализации тканей в зависимости от наличия в них воды.

Рисунок 31. Магнитно-резонансная томография

Заключение

Итак, мы можем прийти к выводу, что развитие современной цивилизации трудно представить без широкого использования магнитных материалов и магнитного поля. Значительный эффект использования магнитных полей и материалов достигнут в науке: это использование методов ядерного магнитного резонанса, использование магнитного поля для ускорения элементарных частиц и проч.

Эффективно применяется магнитное поле в медицине — для терапии, диагностики, оздоровления и т.д. А применение в различных технических устройствах и бытовых приборах можно перечислять бесконечно. И это лишь неполный перечень применений магнитного поля. А впереди еще более потрясающие открытия магнитных свойств, новых магнитных материалов и уникальных применений магнитного поля в науке, в промышленности, на транспорте, в медицине и т.д.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]