Светодиоды, ленты и их питание от ЭТ переменного тока


Что такое светодиод?

Светодиоды образуют неотъемлемую часть в современной электроники, простые показатели для оптических коммуникационных устройств. Светоизлучающие диоды используют свойства р-п перехода и испускают фотоны, когда ток в прямом направлении. Светодиоды специально излучают свет, когда потенциалы приложены к аноду и катоду.
История светодиодов начинается с 1907 года, когда капитан Генри Джозефа наблюдал особенности электро-люминесценции карбида кремния. Первый светодиод был разработан в 1962 году. Он был разработан Холоньяк, работал в General Electric (GE). Это был GaAsP устройства. Первая коммерческая версия светодиодов пришли на рынок в 1960-х годов.

Изготовление светодиодной технологии произвела бум в 1970-е годы с введением арсенида галлия алюминия (GaAlAs). Эти светодиоды высокой яркости и во много раз ярче, чем старая рассеянного типа. Синие и белые светодиоды были введены в 1990 году, в котором используется индия нитрида галлия (InGaN) в качестве полупроводника. Белый светодиод содержит неорганический фосфор. Когда голубой свет внутри светодиода попадает на люминофор, он излучает белый свет.

Что делает светодиод идеальным?

Светодиоды широко используются в электронных схемах из-за его преимущества по сравнению с лампами. Некоторые важные особенностями являются:

  • Светодиоды заключены в пластик, так что они могут выдерживать механические удары.
  • В отличие от ламп, светодиоды не выделяют тепло и потери мощности при нагреве практически отсутствует.
  • Светодиоды требуют очень низкий ток и напряжений обычно 20 мА при 1,8 вольта. Так что это идеально в схемах с батарейками.

На сколько вольт бывают светодиоды

Параметры светодиодов большей частью зависят от материала, из которого изготовлен p-n переход, хотя часть характеристик все же зависит от конструктива. Типовые значения рабочего напряжения и цвет свечения для маломощных элементов при токе 20 мА сведены в таблицу:

МатериалЦвет свеченияДиапазон прямых напряжений, В
GaAs, GaAlAsИнфракрасный1,1 – 1,6
GaAsP, GaP, AlInGaPКрасный1,5 – 2,6
GaAsP, GaP, AlInGaPОранжевый1,7 – 2,8
GaAsP, GaP, AlInGaPЖелтый1,7 – 2,5
GaP, InGaNЗеленый1,7 – 4
ZnSe, InGaNГолубой3,2 – 4,5
ЛюминофорБелый2,7 – 4,3

Мощные осветительные светодиоды работают при больших токах. Так, кристалл популярного LED 5730 предназначен для длительной эксплуатации при токе 150 мА. Но из-за крутой ВАХ, стабилизирующей падение напряжения, его Uраб составляет около 3,2 В, что укладывается в указанное в таблице значение.

Светодиодная технология

Яркость является важным аспектом LED. Глаз человека имеет максимальную чувствительность к свету около 550 нм в области желто — зеленой части видимого спектра. Именно поэтому зеленый светодиод излучается ярче, чем красный светодиод, хотя оба используют тот же ток. Важные параметры светодиодов являются:

  • Световой поток Указывает на энергии света, исходящего от светодиодов. Он измеряется в Люмен (лм) или Милли просвет (MLM)
  • Световая интенсивность светового потока, охватывающий большую площадь является силой света.Он определяется как Кандела (кд) или милли Кандела (MCD) Яркость светодиода напрямую связана с его силой света.
  • Светоотдача Это испускаемых относительной световой энергии к потребляемой мощности.Она измеряется в терминах люмен на ватт (лм Вт).

Прямой ток, прямое напряжение, угол обзора и скорость реагирования это факторы, влияющие на яркость и эффективность светодиодов. Прямой ток (I) является ток, протекающий через светодиод, когда он смещен в прямом направлении и он должен быть ограничен от 10 до 30 миллиампер, если выше то светодиоды будут уничтожены.

Угол обзора составляет от — угол оси, при котором световая интенсивность падения до половины осевого значения. Вот почему индикатор показывает больше яркости в полном объеме состоянии. Высокие яркие светодиоды имеют узкий угол обзора, так что свет фокусируется в пучок. Рабочее напряжение (V) является падение напряжения на светодиоде. Падение напряжения в диапазоне от 1,8 В до 2,6 вольт для обычных светодиодов, но в голубой и белый он будет идти до 5 вольт. Скорость отклика представляет, как быстро светодиод включается и выключается. Это очень важный фактор, если светодиоды используются в системах связи.

Требуется ли балластный резистор?

Светодиоды всегда подключены к источнику питания через резистор. Этот резистор называют «балластный резистор», которая защищает диод от повреждений, вызванных избыточным током. Он регулирует прямой тока на светодиод для безопасного предела и защищает ее от жжения.

Номинал резистора определяет прямой тока и, следовательно, яркость светодиодов. Простое уравнение Vs — Vf — используется для выбора резистора. Vs представляет входное напряжения цепи, Vf прямое падение напряжения светодиода(ов) при допустимом токе через светодиод. Полученное значение будет в Омах. Лучше ограничить ток до безопасного предела 20 мА.

Приведенная ниже таблица показывает прямое падение напряжения на светодиоде.

КрасныйОранжевыйЖелтыйЗеленыйСинийБелый
1,8 В2 V2,1 В2,2 В3,6 В3,6 В

Через типичный светодиод может пройти 30 -40 мА безопасный ток через него .Номинальный ток, чтобы дать достаточную яркость, стандартный красный светодиод 20 мА. Но это может быть 40 мА для синего и белого светодиода. Ограничение тока балластным резистором защищает диод от избыточного тока, протекающего через него. Значение балластного резистора должны быть тщательно отобраны, чтобы предотвратить повреждение светодиодов, а также получить достаточную яркость при токе 20 мА. Следующее уравнение объясняет, как выбирать балластный резистор.

R = V / I

Где R — является значение сопротивления в Ом, V — является входное напряжение в цепи, и I — это допустимый ток через светодиод в амперах. Для типичного красного светодиода, прямое падение напряжения составляет 1,8 вольта. Таким образом, если напряжение питания 12 В (Vs), падение напряжения на светодиод 1,8 В (V) и допустимый ток составляет 20 мА (Если), то значение балластного резистора будет

Vs — Vf / Если = 12 — 1,8 / 20 мА = 10,2 / 0,02 = 510 Ом.

Но если 510 Ом резистор не доступен то можно подобрать ближайший, например 470 Ом резистор может быть использован даже если ток через светодиод слегка увеличивается. Но рекомендуется использовать 1 K резистор для увеличения срока службы светодиодов, хотя там будет небольшое снижение яркости.

Ниже готова арифметические для выбора ограничительного резистора для различных версий светодиодов при различных напряжениях.

НапряжениеКрасныйОранжевыйЖелтыйЗеленыйСинийБелый
12 V470 Ω470 Ω470 Ω470 Ω390 Ω390 Ω
9 V330 Ω330 Ω330 Ω330 Ω270 Ω270 Ω
6 V180 Ω180 Ω180 Ω180 Ω120 Ω120 Ω
5 V180 Ω150 Ω150 Ω150 Ω68 Ω68 Ω
3 V56 Ω47 Ω47 Ω33 Ω

С добавлением других цветов

Светодиод, который может дать разные цвета полезно в некоторых приложениях. Например, светодиоды могут указывать на все системы OK, когда он становится зеленой, и неисправный, когда он становится красной. Светодиоды, которые могут производить два цвета называются Bicolour (Биколор) светодиодов.

Двухцветный светодиодный охватывает два светодиода (обычно красный и зеленый) в общем пакете. Два кристалла установлены на двух клеммах. Двухцветный светодиодный дает красный цвет, если ток проходит в одном направлении и становится зеленым, когда направление тока меняется на противоположное.

Триколор и многоцветные светодиоды , также доступны, которые имеют два или более кристаллов, заключенных в общий корпус. Трехцветный светодиодный имеет два анода для красного и зеленого кристалла и общим катодом. Таким образом, он излучает красный и зеленый цвета в зависимости от анода, в котором имеется ток. Если оба анода подключены, то светодиоды испускают свет и получается желтый цвет. Общий анод и отдельные светодиоды типа катода, также имеются.

Двухцветный индикатор светится разными цветами , начиная от зеленого через желтый, оранжевый и красный основной на ток, протекающий через их аноды, выбрав подходящий резистор для ограничения тока анода. Многоцветные светодиоды содержат более двух чипов, обычно красного, зеленого и синего чипы-в одном корпусе. Мигание разными цветами светодиодов, теперь доступны с двумя выводами. Это дает радугу цвета, которые являются весьма привлекательным.

Как определить напряжение питания светодиодов

Источник питания для светодиодов — основная комплектующая деталь, которая преобразует сетевое напряжение. Как известно светодиоды питаются током, но напряжение, которое подается в данном случае, значения не имеет. Это может быть как 12 В, так и 1000 В. Главное для светодиода — это ток. При его нехватке свет лампочек тускнеет, а при переизбытке они начинают нагреваться, и даже теплоотвод не всегда может справиться. Если простая лампа накаливания «самостоятельно» выбирает для себя ток, то светодиод сам выбирает напряжение. Если светодиод требует напряжение в 5 В, а блок питания подает ему, к примеру, 5 В, то высока вероятность того, что светодиод просто сгорит. Дело в том, что возникает «конфликт» между источником питания и светодиодом. Первый пытается честно выдать 5 В, а второй старается взять только положенные для себя 3 В. Светодиод может «просадить» напряжение до нужного, если блок питания слабенький, но чаще в этой схватке все же побеждает хаос и разрушение и светодиод перегорает.

Чтобы подобных проблем не возникло, необходимо стабилизировать ток. Самый простой вариант — резистор. Он подключается последовательно со светодиодами. Резистор помогает ослабить источник питания и заставить его выдавать светодиоду нужное напряжение. Если речь идет о мощных светодиодах, то слабенькому резистору с ними не справиться. В этой ситуации потребуется полноценный стабилизатор.

Расчет резистора провести довольно просто. Для вычислений необходимо знать напряжение питания, падение напряжения и ток. От значения напряжения питания отнимают падение напряжения, а получившуюся величину делят на ток. Теперь остается только выбрать резистор с ближайшим стандартным сопротивлением. Некоторые предпочитают вообще убирать из формулы падение напряжения, так как его точное значение не всегда известно, но ниже приведены два способа для определения этой величины.

Инфракрасный диод — источник Невидимого света

ИК диоды широко используются в удаленном управлении (пульт ДУ). Инфракрасные диоды на самом деле испускают нормальный свет с определенным цветом, который не чувствителен к человеческим глазом, потому что его длина волны 950 нм, ниже видимого спектра. Многие источники, такие как солнце, лампы, даже человеческое тело испускает инфракрасные лучи. Поэтому необходимо, чтобы модулировать излучение от ИК-диода, чтобы использовать его в электронном приложении, чтобы предотвратить ложное срабатывание. Модуляции делает сигнал от ИК-светодиода значительно выше чем шум. Инфракрасные диоды есть в корпусе, которые являются непрозрачным для видимого света, но прозрачна для инфракрасного. ИК-светодиоды широко используются в системах управления.

Инфракрасные диоды

Монтаж светильников в ПВХ-панели

Монтаж светильников в панели ПВХ займет немного времени, если правильно проведена подготовка. Перед началом стоит распаковать оборудование, осмотреть его и разобраться, как действуют фиксаторы, чтобы потом ничего не испортить. Следуйте простым советам:

  1. После крепления панели надо подключить светильник к выведенному кабелю. Для этого концы проводов, идущие от корпуса зачищаются. Это стоит сделать предварительно, чтобы не заниматься работой под потолком. Удобнее использовать нож электрика или строительный вариант с острым лезвием.
  2. На концы кабеля, подведенного по потолку, закрепить колодку. Чаще всего используется вариант, в котором нужно вставить жилу в отверстие и зажать ее небольшим винтом (для этого понадобится небольшая крестообразная отвертка). Потом присоединить светильник аналогичным способом, удобнее, если кто-то будет придерживать его во время подключения.Соединение с помощью клеммных колодок.
  3. Прижать фиксаторы пальцами, чтобы корпус светильника вошел в вырезанное отверстие. Потом затолкнуть его до упора, пружины отожмут выступы и плотно зафиксируют элемент на потолке. Если лампочки в комплекте не было, нужно вставить ее перед фиксацией светильника.
  4. После окончания монтажа проверить работу светильников. Если все сделано правильно, никаких проблем не возникнет.

Если в светильнике съемное кольцо, вставьте его в панель.

Важно! Если работа проводится в ванной, туалете, на кухне или в другом помещении с перепадами влажности, лучше выбирать светильники класса IP44.

Установить светильники в пластиковые панели не составит труда, если подготовить все необходимое и разобраться в технологии монтажа. Лучше использовать коронку для вырезания отверстия, тогда оно будет иметь идеальную форму. Провода желательно соединять колодками, а не скрутками и изолентой.

Фотодиод — Он может увидеть свет

Фотодиод генерирует ток, когда его р-п перехода получает фотоны видимого или инфракрасного света. Основная работа фотодиода зависит от поглощения фотонов в полупроводниковом материале. Фото-генерируемых носителей разделены электрическим полем, и в результате фототок пропорционален падающему свету. Скорость, с которой носители движутся в области обеднения связана с силой электрического поля по всему региону и подвижность носителей.

Фотон, который поглощается полупроводником в области обеднения приведет к образованию электронно-дырочной проводимости. Дырки и электроны будут транспортироваться под действием электрического поля к краям области обеднения. После носителей покидают область истощения они идут к клеммам фотодиода, чтобы сформировать фото-ток во внешней цепи. Время отклика фотодиода, как правило, 250 наносекунд .

Фотодиоды

Цветовая маркировка световых диодов

Более простое буквенное обозначение принимают за общепринятое (неофициально). Используют в основном для светодиодных лент. Кроме общих характеристик указывают степень защиты элемента от проникновения мусора и влаги – IP и цифры от 0 до 6.

Чтобы выбрать хороший вариант для замены устаревших лампочек, необходимо выяснить, какие бывают светодиоды, и установить параметры подключаемой электрической сети: соответствие напряжения, силы тока, сопротивления.

Ориентироваться на стоимость нельзя – марки дешевых светодиодов часто имеют завышенные параметры, используют неустойчивые материалы.

Лазерные диоды

Лазерный диод похож на обычные прозрачные светодиодные, но производит Laserwith высокой интенсивности. В лазерном луче число атомов вибрируют в такой цикле, что всё испускаемое излучение одной длины волны в фазе друг с другом. Лазерный свет является монохроматическим и проходит в виде узкого пучка. Луч типичных лазерных диодов составляет 4 мм х 0,6 мм, которая расширяется только до 120 мм на расстоянии 15 метров.

Лазерный диод может включаться и выключаться на более высоких частотах даже выше, чем 1 ГГц. Так что это весьма полезно в телекоммуникационных системах.Поскольку лазер генерирует тепло на поражение тканей тела, он используется в хирургии, чтобы исцелить поражения в очень чувствительных частей, как сетчатки, головного мозга и т.д. лазерные диоды являются важными компонентами в проигрывателях компакт-дисков, чтобы получить данные, записанные в компакт-дисках.

Какие виды светодиодов существуют и где они применяются

Светодиоды оптического диапазона применяются в качестве элементов индикации и в качестве осветительных приборов. Для каждой специализации существуют свои требования.

Индикаторные светодиоды

Задача индикаторного светодиода – показать состояние прибора (наличие питания, аварийный сигнал, срабатывание датчика и т.п.). В этой сфере широко применяются LED со свечением p-n перехода. Приборы с люминофором применять не запрещено, но особого смысла нет. Здесь яркость свечения не на первом месте. В приоритете контрастность и широкий угол обзора. На панелях приборов применяют выводные светодиоды (true hole), на платах – выводные и SMD.

Осветительные светодиоды

Для освещения, наоборот, в основном применяют элементы с люминофором. Это позволяет получить достаточный световой поток и цвета, близкие к естественным. Выводные СД из этой области практически выдавлены SMD-элементами. Широкое применение находят COB-светодиоды.

В отдельную категорию можно выделить приборы, предназначенные для передачи сигналов в оптическом или ИК-диапазоне. Например, для пультов дистанционного управления бытовой аппаратурой или для охранных устройств. А элементы УФ-диапазона могут использоваться для компактных источников ультрафиолета (детекторы валют, биологических материалов и т.д.).

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]