Расчет и схемотехника повышающих DC/DC-преобразователей напряжения высокой мощности

Преобразователь напряжения с 12 на 220 В используют там, где есть необходимость подключения электрических устройств, потребляющих стандартный сетевой ток, к источнику переменного напряжения. Во многих случаях эта сеть бывает недоступна. Применение автономного бензинового генератора требует соблюдения правил его обслуживания: постоянный контроль за уровнем рабочего топлива, обеспечение вентиляции. Применение преобразователей в комплекте с автомобильными аккумуляторными батареями позволяет решить задачу оптимальным способом.

Назначение и принцип работы

Что такое преобразователь напряжения. Так называют электронный прибор, изменяющий величину входного сигнала. Он может использоваться в качестве устройства, повышающего или понижающего его значение. Входное напряжение после преобразования может изменить как свою величину, так и частоту. Такие устройства, изменяющие постоянное напряжение (преобразовывающие его) в выходной сигнал переменного тока, получили название инверторов.

Преобразователи напряжения находят применение как в виде автономного устройства, питающего потребителей энергией переменного тока, так и могут входить в состав других изделий: систем и источников бесперебойного питания, устройств повышения постоянного напряжения до необходимой величины.

Инверторы представляют собой генераторы напряжения гармонических колебаний. Источнику постоянного тока с помощью специальной схемы управления создается режим периодического переключения полярности. В результате на выходных контактах устройства, к которым подключена нагрузка, формируется сигнал переменного напряжения. Его величину (амплитуду) и частоту определяют элементы схемы преобразователя.

Управляющее устройство (контроллер) задает частоту переключения источника и форму выходного сигнала, а его амплитуду определяют элементы выходного каскада схемы. Они рассчитаны на максимальную мощность, которую потребляет нагрузка в цепи переменного тока.

Контроллер используется и для регулирования величины выходного сигнала, которое достигается управлением длительностью импульсов (увеличение или уменьшение их ширины). Информация об изменениях величины выходного сигнала на нагрузке поступает в контроллер по цепи обратной связи, на основании которой в нем формируется управляющий сигнал на сохранение необходимых параметров. Этот метод называется ШИМ (широтно-импульсной модуляцией) сигналов.

В схемах силовых выходных ключей преобразователя напряжения 12В могут использоваться мощные составные биполярные транзисторы, полупроводниковые тиристоры, полевые транзисторы. Схемы контроллеров выполняются на микросхемах, представляющих собой уже готовые к работе устройства с необходимыми функциями (микроконтроллеры), специально разработанных для таких преобразователей.

Схема управления обеспечивает последовательность работы ключей для обеспечения на выходе инвертора сигнала, необходимого для нормальной работы устройств потребителя. Кроме того, управляющая схема должна обеспечивать симметрию полуволн выходного напряжения. Это особенно важно для схем, в которых на выходе используются повышающие импульсные трансформаторы. Для них недопустимо появление постоянной составляющей напряжения, которая может появиться при нарушении симметрии.

Пример

Давайте рассмотрим преобразователь, который дает 24 В при 6 А в непрерывном режиме при входном напряжении в диапазоне от 8 до 18 В.

Начнем с выбора дросселя для одной фазы и эффективности преобразования не меньше чем 95%. Средний ток индуктивности при минимальном входном напряжении 8 В Vin_min будет 19 А, если же добавить ток пульсаций, то пиковый ток уже будет 25 А. Для снижения тока в два раза мы выберем двухфазный режим работы и частоту преобразования 250 кГц. Средний ток I_Lav

уже будет 9,5 А. В качестве индуктивности из серии PB2020 дросселей фирмы Pulse выберем PB2020.153. Для этого дросселя пиковый ток составляет 10,5 А, что ниже тока насыщения с хорошим запасом.

Рис. 3. Двухфазный повышающий преобразователь, V0 24 В на 6 А, Vin от 8 до 18 В

Средний и максимальный ток дросселя будут определять выбор ключевого транзистора. Максимальное значение напряжения на транзисторе 25 В. В качестве ключа мы выберем НАТ2169Н с напряжением 40 Ви LTC3862 (фирмы Linear Technology) в качестве контроллера, который имеет встроенные MOSFET-драйверы. Потери транзистора каждой фазы оценим на уровне 1,6 Вт при минимальном входном напряжении. В качестве выпрямительного диода на 10 А, 40 В выбираем диод Шоттки PDS1040. Мощность рассеивания на диодах каждой фазы оценим как 1,5 Вт. Оба ключевых элемента — транзистор и диод — потребуют дополнительного пространства на печатной плате для отвода тепла. Электрическая схема двухфазного повышающего преобразователя представлена на рис. 3, а временные диаграммы — на рис. 2. В дальнейшем эта схема может быть использована как основа для моделирования и улучшения, если это потребуется.

Рис. 4. Двухфазный синхронный повышающий преобразователь, Vo 24 В на 8,5 А, Vin от 8 до 18 В

Разновидности преобразователей с 12 на 220 вольт

Простые преобразователи с 12 на 220 рассчитаны на небольшую мощность потребителей. Требования к качеству выходного питающего напряжения и к форме сигнала невысоки. Классические их схемы не используют микроконтроллеры ШИМ. Мультивибратор, собранный на логических элементах И-НЕ, формирует электрические импульсы частотой следования 100 Гц. Для создания противофазного сигнала используется D-триггер. Он делит частоту задающего генератора на 2. Противофазный сигнал в виде прямоугольных импульсов образуется на прямом и инверсном выходах триггера.

Этот сигнал через буферные элементы на логических элементах НЕ управляет выходной схемой преобразователя, построенной на ключевых транзисторах. Их мощность определяет выходную мощность инверторов.

Транзисторы могут быть составными биполярными и полевыми. В стоковые или коллекторные цепи включены половины первичной обмотки трансформатора. Его вторичная обмотка рассчитана на выходное напряжение 220 В. Так как триггер разделил частоту 100 Гц мультивибратора на 2, то частота выходного сигнала окажется 50 Гц. Такое ее значение необходимо для питания подавляющего количества бытового электро- и радиооборудования.

Двухтактные ИБП

style=»display:inline-block;width:728px;height:90px» data-ad-client=»ca-pub-5076466341839286″

data-ad-slot=»2660907582″>

♥ Наибольшее распространение получили двухтактные источники вторичного электропитания, хотя и имеют более сложную электрическую схему по сравнению с однотактными. Они позволяют получать на выходе значительно большую выходную мощность при высоком КПД.

Схемы двухтактных преобразователей-инверторов имеют три вида включения ключевых транзисторов и первичной обмотки выходного трансформатора: полумостовая, мостовая и с первичной обмоткой имеющей отвод от середины.

Полумостоваясхема построения ключевого каскада. Ее особенностью является включение первичной обмотки выходного трансформатора в среднюю точку емкостного делителя С1 — С2.

♥ Амплитуда импульсов напряжения на переходах транзисторов эмиттер-коллектор Т1 и Т2 не превышает Uпит величины питающего напряжения. Это позволяет использовать транзисторы с максимальным напряжением Uэк до 400 вольт.

В то же время напряжение на первичной обмотке трансформатора Т2 не превышает значения Uпит/2, потому, что снимается с делителя С1 — С2 (Uпит/2).Управляющее напряжение противоположной полярности подается на базы ключевых транзисторов Т1 и Т2 через трансформатор Тр1.

♥ В мостовом преобразователе емкостной делитель (С1 и С2) заменен транзисторами Т3 и Т4. Транзисторы в каждом полупериоде открываются попарно по диагонали (Т1, Т4) и (Т2, Т3).

Напряжение на переходах Uэк закрытых транзисторов не превышает напряжения питания Uпит. Но напряжение на первичной обмотке трансформатора Тр3 увеличится и будет равно величине Uпит, что повышает КПД преобразователя. Ток же через первичную обмотку трансформатора Тр3 при той же мощности, по сравнению с полумостовой схемой, будет меньше. Из за сложности в наладке цепей управления транзисторов Т1 – Т4, мостовая схема включения применяется редко.

♥ Схема инвертора с так называемым пушпульным выходом наиболее предпочтительна в мощных преобразователях-инверторах. Отличительной особенностью в данной схеме является то, что первичная обмотка выходного трансформатора Тр2 имеет вывод от середины. За каждый полупериод напряжения поочередно работает один транзистор и одна полуобмотка трансформатора.♥ Данная схема отличается наибольшим КПД, низким уровнем пульсаций и слабым излучением помех.

Достигается это за счет уменьшения тока в первичной обмотке и уменьшения рассеиваемой мощности в ключевых транзисторах.Амплитуда напряжения импульсов в половине первичной обмотки Тр2 возрастает до значения Uпит, а напряжение Uэк на каждом транзисторе достигает значения 2 Uпит (ЭДС самоиндукции + Uпит).Необходимо использовать транзисторы с высоким значением Uкэmах, равным 600 – 700 вольт.

Средний ток через каждый транзистор равен половине тока потребления от питающей сети.

Обратная связь по току или по напряжению.

♥ Особенностью двухтактных схем с самовозбуждением является наличие обратной связи (ОС) с выхода на вход, по току или по напряжению.

♥ В схеме обратной связи по току обмотка связи w3 трансформатора Тр1 включена последовательно с первичной обмоткой w1 выходного трансформатора Тр2. Чем больше нагрузка на выходе инвертора, тем больше ток в первичной обмотке Тр2, тем больше обратная связь и больше базовый ток транзисторов Т1 и Т2.Если нагрузка меньше минимально допустимой, ток обратной связи в обмотке w3 трансформатора Тр1 недостаточен для управления транзисторами и генерация переменного напряжения срывается.

Иными словами, при пропадании нагрузки — генератор не работает.

♥ В схеме обратной связи по напряжению обмотка обратной связи w3 трансформатора Тр2 соединена через резистор R с обмоткой связи w3 трансформатора Тр1. По этой цепи осуществляется обратная связь с выходного трансформатора на вход управляющего трансформатора Тр1 и далее в базовые цепи транзисторов Т1 и Т2.♥ Обратная связь по напряжению слабо зависит от нагрузки.

Если же на выходе будет очень большая нагрузка (короткое замыкание), напряжение на обмотке w3 трансформатора Тр2 снижается и может наступить такой момент, когда напряжение на базовых обмотках w1 и w2 трансформатора Тр1 будет недостаточно для управления транзисторами. Генератор перестанет работать .При определенных обстоятельствах это явление может быть использовано как защита от короткого замыкания на выходе.

♥ На практике широко применяются обе схемы с обратной связью ОС как по току, так и по напряжению.

Двухтактная схема инвертора с ОС по напряжению

♥ Для примера, рассмотрим работу наиболее распространенной схемы преобразователя-инвертора – полумостовой схемы. Схема состоит из нескольких независимых блоков:

  • — выпрямительный блок – преобразует переменное напряжение 220 вольт 50 Гц в постоянное напряжение 310 вольт;
  • — устройство запускающих импульсов – вырабатывает короткие импульсы напряжения для запуска автогенератора;
  • — генератор переменного напряжения – преобразует постоянное напряжение 310 вольт в переменное напряжение прямоугольной формы высокой частоты 20 – 100 КГц;
  • — выпрямитель – преобразует переменное напряжение 20 -100 КГц в постоянное напряжение.

Выбор напряжения

Оптимальным, как правило, будет либо напряжение в 12 В, либо в 24 В – если автономное энергоснабжение используется только в летнее время и вы не намерены увеличивать число электрогенераторов, то 12 В достаточно. В противном случае стоит выбрать 24 В напряжение и ориентироваться в поисках оборудования для автономного электроснабжения именно на него. В примере расчетов остановимся на 12 вольтах.

Требуемое количество электроэнергии за 24 часа (в сутки). Делим полученное ранее потребление за сутки на выбранное напряжение 9428÷12 и получаем 786 А•ч. Поскольку КПД инвертора не может быть 100% — часть энергии прибор потратит на себя – нужно ввести эти потери в расчеты. Умножаем 786 А•ч на «инверторный» коэффициент 1,2, результат с округлением – 944 А•ч.

Трех- и четырехфазные повышающие преобразователи

Несмотря на то, что сейчас на рынке господствуют двухфазные преобразователи, современные контроллеры позволяют создавать блочный дизайн многофазных контроллеров, где две фазы повышения представляют один блок. Электрическая схема четырехфаз-ного преобразователя показана на рис. 5, а временная диаграмма — на рис. 6. Эта схема позволяет получать 48 В при 8 А от входа при входном напряжении в диапазоне 12-24 В и способна поддерживать выходное напряжение 48 В при падении входного напряжения до 6 В, с соответствующим снижением выходного тока.

Рис. 5. Четырехфазный синхронный повышающий преобразователь, V0 48 В на 8 А, Vin от 5 до 24 В

Рис. 6. Временная диаграмма четырехфазного повышающего преобразователя. Ch1–Ch4 напряжения на истоках Q1–Q4 соответственно (50 В/Div)

В этой схеме двухфазные контроллеры соединены для управления четырехфазным преобразователем. Контроллер U1 работает в качестве ведущего, а U2 — в качестве ведомого. U1 генерирует, а U2 принимает тактовый сигнал. Контроллер U1 создает разницу между фазой 1 и фазой 3 в 90 градусов, однако разница между фазой 1 и фазой 2, а также фазой 3 и фазой 4 остается 180 градусов. Четырехфазное повышение легко приводится к трехфазному путем отключения четвертой фазы на L4 и Q4, а ножка Phasemode контроллера U1 подключается к выходу 3V8 контроллера. В этом случае все три фазы будут отличаться друг от друга на 120°.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]