U = E – IRвн
Если нет требований к высокой точности измерения ЭДС, то для уменьшения тока можно воспользоваться вольтметром с большим внутренним сопротивлением, например электронным. В этом случае можно считать, что измеренное напряжение U ~ Е. Более точные методы измерения ЭДС связаны с использованием компенсационных схем (рис. 2).
Рис. 2. Схемы измерения ЭДС
В них напряжение, измеряемое вольтметром PV, снимаемое с переменного резистора R, сравнивается с напряжением на источнике ЭДС.
Изменяя напряжение на выходе переменного резистора (потенциометра), можно добиться такого условия, когда измерительный прибор Р покажет отсутствие тока через источник ЭДС. В этом случае показания вольтметра будут точно соответствовать величине ЭДС источника, т. е. U = Е .
Измерение тока
Можно производить измерение тока непосредственно амперметром, включенным в разрыв измеряемой цепи (рис. 3, а).
Рис. 3. Схемы измерения силы тока
При необходимости расширить пределы измерения амперметра необходимо параллельно амперметру включить резистор (рис. 3, б), который чаще всего называют шунтом. Тогда через амперметр будет проходить только часть тока, а остальная — через шунт. Так как сопротивление амперметров обычно небольшое, то для существенного расширения пределов измерения сопротивление шунта должно быть очень небольшим. Существуют формулы для расчета сопротивления шунта, но обычно на практике приходится вручную подгонять его сопротивление, контролируя ток эталонным амперметром.
Для измерения больших переменных токов часто используют измерительные трансформаторы токов (рис. 3, в). У них первичная обмотка, включаемая в разрыв измеряемой цепи, имеет число витков W1 меньшее, чем число витков W2 вторичной обмотки, т. е. трансформатор является повышающим по напряжению, но по току он понижающий. Амперметр подключается к выходу вторичной обмотки трансформатора тока. Часто лабораторные трансформаторы тока вообще не имеют изготовленной заранее первичной обмотки, а в их корпусе имеется широкое сквозное отверстие, через которое сам экспериментатор наматывает необходимое число витков (рис. 3, г). Зная число витков вторичной обмотки (оно обычно указано на корпусе трансформатора тока), можно выбрать коэффициент трансформации n = W1/W2 и определить измеряемый ток Iх по показаниям амперметра Iпр по следующей формуле:
Iх = Iпр/n
Совершенно по-иному производят измерение токов в электронных схемах, которые обычно спаяны, изготовлены на печатных платах; произвести какой-либо разрыв в них практически невозможно. Для измерения токов в этих случаях используют вольтметры (обычно электронные с большим внутренним сопротивлением для устранения влияния прибора на работу электронной схемы), подключая их к резисторам схемы, величины которых либо известны, либо могут быть предварительно измерены. Воспользовавшись законом Ома, можно определить силу тока:
I = U/R
Измерение сопротивлений
Часто при работе с электрическими установками или при наладке электронных схем необходимо производить измерение различных сопротивлений. Простейший способ измерения сопротивлений заключается в использовании двух измерительных приборов: амперметра и вольтметра. С их помощью измеряют напряжение и ток в сопротивлении R, подключенном к источнику питания, и по закону Ома находят величину искомого сопротивления:
R = U/I
Однако этот способ измерения сопротивлений не позволяет получить результаты измерения с высокой точностью, так как на результаты измерения оказывают влияние собственные внутренние сопротивления амперметра и вольтметра. Так, на изображенной на рис. 4, а схеме амперметр измеряет не только ток, проходящий через сопротивление, но и ток, проходящий через вольтметр, чем вносится методическая погрешность измерений.
Рис. 4. Схема для измерения сопротивлений методом амперметра и вольтметра (а) и схема омметра (б)
Этим способом производят измерение обычно в тех случаях, когда нет специальных приборов — омметров. Одна из возможных схем омметра (рис. 4, б) — последовательная. Она состоит из автономного источника питания Е, переменного резистора R и миллиамперметра магнитоэлектрического типа РА. В качестве источника питания обычно используют сухие элементы или батареи напряжением 1,4…4,5 В. Если к выводам прибора подключить сопротивление Rx, величину которого необходимо определить, то по цепи пойдет ток, величина которого будет зависеть от величины сопротивления. Так как миллиамперметр измеряет этот ток, то его шкала может быть непосредственно отградуирована в омах. Шкала у такого омметра обратная, т. е. нуль находится в правой части шкалы, так как при сопротивлении на входе, равном нулю (режим короткого замыкания), через амперметр будет протекать максимальный ток. Если внешняя цепь разорвана, что соответствует бесконечно большому сопротивлению на входе, то стрелка миллиамперметра будет находиться в самой левой части шкалы, где стоит знак х . Шкала такого омметра резко нелинейная, что в какой-то мере затрудняет считывание результатов. Переменный резистор омметра служит для установки прибора на нуль перед началом работы с ним. Для этого замыкают выводы омметра накоротко и, вращая ручку переменного резистора, добиваются нулевых показаний прибора. Так как ЭДС элемента питания с течением времени за счет разряда уменьшается, такую установку нуля необходимо периодически контролировать. С помощью подобных омметров можно измерять сопротивления от нескольких омов до сотен килоомов.
Рис. 5. Схемы мегометра (а) и электрического моста (б)
Измерение больших сопротивлений до 100 МОм обычно производят с помощью мегометров (рис. 5, а). В своем классическом виде он представляет собой комбинацию автономного источника питания и измерительного прибора — логометра. Логометр — разновидность магнитоэлектрического прибора, у которого вместо одной рамки имеются две, соединенные жестко между собой под некоторым утлом. Так же, как и в обычном магнитоэлектрическом приборе, с ними связана стрелка прибора и находятся они в магнитном поле постоянного магнита. При пропускании тока через обмотки рамок они создают вращающие моменты противоположных знаков, в результате чего положение стрелки будет зависеть от отношения токов в рамках. В цепь одной из рамок включен резистор R, а в цепь другой — сопротивление Rx, величина которого должна быть определена. Применение логометра объясняется тем, что его показания определяются только отношением токов в рамках и не зависят от изменения питающего напряжения Uпит. В качестве источника напряжения для мегометра используют либо индуктор, приводимый во вращение рукой оператора, либо аккумуляторную батарею с электронным преобразователем напряжения. Такая система питания определяется тем, что для работы прибора требуются большие напряжения — порядка 500 В, так как при меньших напряжениях токи в обмотках прибора были бы слишком малыми для его нормальной работы. Использование автономного источника питания диктуется тем, что мегометром часто измеряют сопротивление изоляции кабелей; при этом, естественно, напряжение в них бывает отключенным. Кроме того, с его помощью часто проводят измерения вне помещений, где нет электрической сети.
Измерение малых сопротивлений (меньше 1 Ом), а также измерения других сопротивлений в широком диапазоне значений с высокой точностью могут проводиться с помощью электрических мостов.
Электрический мост (рис. 5, б) представляет собой четыре сопротивления (одно из них — Rx подлежит измерению), включенные по кольцевой схеме. Каждое из сопротивлений образует плечо моста. В одну диагональ моста подают постоянное напряжение питания Uпит , а к другой подключают измерительный прибор — гальванометр Р. Он представляет собой высокочувствительный магнитоэлектрический прибор с нулем посередине шкалы. Его назначение — фиксировать момент, когда ток будет отсутствовать. Приборы подобного типа часто называются нуль-индикаторами. Одно или два сопротивления в плечах моста делаются переменными, и именно ими добиваются нулевых показаний прибора. Мост при этом считается сбалансированным. Как показывает теория электрических мостов, условие баланса достигается при равенстве произведения сопротивлений противоположных плеч, т. е. при условии R1Rx = R2R3. Следовательно, после балансировки моста можно, зная величины всех сопротивлений, определить значение неизвестного сопротивления
где N = R2/R1 — множитель.
Точность измерения с помощью мостов постоянного тока может быть очень велика. Результирующие значения сопротивлений могут иметь более пяти значащих цифр. В то же время мост не позволяет оперативно производить измерения, так как процесс балансировки требует определенного времени и навыка оператора.
Внешнее строение и функции
В последнее время специалисты и радиолюбители в основном пользуются электронными моделями мультиметров. Это не значит, что стрелочные совсем не используются. Они незаменимы когда из-за сильных помех электронные просто не работают. Но в большинстве случаев дело имеем именно с цифровыми моделями.
Есть разные модификации этих измерительных приборов с разной точностью измерений, разным функционалом. Есть автоматические мультиметры, в которых переключатель имеет всего несколько положений — им выбирают характер измерения (напряжение, сопротивление, сила тока) а пределы измерения прибор выбирает сам. Есть модели, которые могут быть связаны с компьютером. Данные измерений они передают сразу на компьютер, где их можно сохранить.
Автоматические мультиметры на шкале имеют только виды измерений
Но большинство домашних мастеров пользуются недорогими моделями среднего класса точности (с разрядностью 3,5, которая обеспечивает точность показаний в 1%). Это распространенные мультиметры dt 830, 831, 832, 833. 834 и т.д. Последняя цифра показывает «свежесть» модификации. Более поздние модели имеют более широкий функционал, но для домашнего применения эти новые возможности некритичны. Работа со всеми этими моделями мало чем отличается, так что будем говорить в общем о приемах и порядке действий.
Строение электронного мультиметра
Перед тем как пользоваться мультиметром, изучим его строение. Электронные модели имеют небольшой жидкокристаллический экран, на котором отображаются результаты измерений. Ниже экрана имеется переключатель диапазонов. Он вращается вокруг своей оси. Той частью, на которой нанесена красная точка или стрелка, он указывает на текущий тип и диапазон измерений. Вокруг переключателя нанесены метки, по которым выставляется тип измерений и их диапазон.
Общее устройство мультиметра
Ниже на корпусе имеются гнезда для подключения щупов. В зависимости от модели гнезд бывает два или три, щупов всегда два. Один положительный (красного цвета), второй отрицательный — черного. Черный щуп всегда подключается к разъему, подписанному «COM» или COMMON или который имеет обозначение как «земля». Красный — в одно из свободных гнезд. Если разъемов всегда два, проблем не возникает, если гнезд три, надо в инструкции прочесть, при каких измерениях в какое гнездо вставлять «плюсовой» щуп. В большинстве случаев красный щуп подключают в среднее гнездо. Так проводится большая часть измерений. Верхний разъем необходим, если измерять собрались ток до 10 А (если больше, то тоже в среднее гнездо).
Куда подключать щупы мультиметра
Есть модели тестеров, в которых гнезда расположены не справа, а внизу (например, мультиметр Ресанта DT 181 или Hama 00081700 EM393 на фото). Разницы при подключении в этом случае нет: черный на гнездо с надписью «COM», а красный по ситуации — при измерении токов до от 200 мА до 10 А — в крайнее правое гнездо, во всех других ситуациях — в среднее.
Гнезда для подключения щупов на мультиметрах могут располагаться снизу
Есть модели с четырьмя разъемами. В этом случае два гнезда для измерения тока — одно для микротоков (менее 200 мА), второе для силы тока от 200 мА до 10 А. Уяснив что и для чего имеется в приборе, можно начинать разбираться как пользоваться мультиметром.
Положение переключателя
Режим измерений зависит от того, в каком положении находится переключатель. На одном из его концов есть точка, она обычно подкрашена белым или красным цветом. Вот этот конец и указывает на текущий режим работы. В некоторых моделях переключатель сделан в виде усеченного конуса или имеет один край заостренный. Этот острый край тоже является указателем. Чтобы работать было проще, можно на этот указывающий край нанести яркую краску. Это может быть лак для ногтей или какая-то стойкая к истиранию краска.
Положение переключателя диапазонов измерений на мультиметре
Поворотом этого переключателя вы изменяете режим работы прибора. Если он стоит вертикально вверх, прибор выключен. Кроме этого есть следующие положения:
- V с волнистой чертой или ACV (справа от положения «выключено»)- режим измерения переменного напряжения;
- A с прямой чертой — измерение постоянного тока;
- A с волнистой чертой — определение переменного тока (этот режим есть не на всех мультиметрах, на представленных выше фото его нет);
- V с прямой чертой или надпись DCV (слева от положения выключено) — для измерения постоянного напряжения;
- Ω — измерение сопротивлений.
Также есть положения для определения коэффициента усиления транзисторов и определения полярности диодов. Могут быть и другие, но их назначение надо искать в инструкции к конкретному прибору.
Измерение емкостей
Определение емкости конденсатора или других устройств емкостного характера также может осуществляться различными способами. Простейший из них — метод амперметра-вольтметра (рис. 6, а).
Рис. 6. Схемы измерения емкости
Он во многом аналогичен такому же методу измерения сопротивлений, с той только разницей, что схема питается переменным синусоидальным напряжением от генератора низкой или высокой частоты (или от сети). Емкостное сопротивление конденсатора определяется по следующей формуле:
где f — частота переменного напряжения.
Емкостное сопротивление находится по закону Ома по показаниям приборов
Измерение малых по величине емкостей удобнее производить методом резонанса (рис. 6, б). Измеряемый конденсатор Сх подключается к известной индуктивности L, образуя колебательный контур. На контур подается синусоидальное напряжение от генератора. С помощью электронного вольтметра измеряют напряжение на контуре. При резонансе оно достигает максимума.
Известно, что резонансная частота контура может быть выражена следующей формулой:
Следовательно, при известной величине индуктивности в контуре и определенной по максимальным показаниям вольтметра частоте резонанса можно найти искомое значение емкости Сх.
Измерение больших емкостей (например, электролитических конденсаторов) проще всего производить путем разряда конденсатора на известное сопротивление R. Известно, что за время, равное постоянной времени цепи разряда конденсатора, его напряжение уменьшается в е раз, где е = 2,71… — основание натурального логарифма. Постоянная времени цепи разряда конденсатора на резистор определяется соотношением
Схема измерения емкости этим методом (рис. 6, в) состоит из источника постоянного напряжения питания, известного по величине сопротивления резистора R, электронного вольтметра PV, переключателя S и клемм для подключения конденсатора. С помощью переключателя S конденсатор Сх заряжается до напряжения источника питания, а после переключения конденсатора на разряд с помощью секундомера измеряют время t, по истечении которого конденсатор разрядится до напряжения Uпит/е. Емкость конденсатора определяется по формуле
Емкости конденсаторов можно измерять также с помощью мостов переменного тока.
Измерение индуктивностей
Измерение индуктивностей несколько сложнее. Это связано с тем, что любая катушка (обмотка трансформатора и т. п.) имеет кроме индуктивности еще и резистивное сопротивление. Поэтому во многих случаях измеряют предварительно полное сопротивление катушки индуктивности:
Оно может быть определено методом амперметра и вольтметра путем измерения напряжения и тока измерительными приборами схемы на переменном напряжении (рис. 7, a) z = U/I. При подаче на схему постоянного напряжения (рис. 7, б), как уже рассматривалось выше, можно определить резистивное сопротивление катушки R.
Рис. 7. Схемы измерения индуктивностей
Тогда
В свою очередь, индуктивное сопротивление
При известном значении частоты / напряжения питания легко найти величину искомого значения индуктивности
При малых значениях индуктивности (например, контурных катушек радиоэлектронных устройств) можно воспользоваться резонансной схемой, аналогичной схеме определения емкости резонансным методом.
Для измерения индуктивности можно использовать также мосты переменного тока, специальные измерительные приборы — ку- метры, позволяющие определять не только величину индуктивности, но и такую характеристику, как добротность катушки, характеризующие качество работы катушки в электронных схемах.
Как измерить силу постоянного тока мультиметром
Измерение постоянного тока выполняется по такой же методике, как и при замерах батареек. Просто в данном случае мультиметр используется еще и для проверок более мощных устройств. В первую очередь это аккумуляторные батареи или выпрямители, применяемые в промышленности и в быту.
Для замеров с помощью мультиметра выбираются две любые точки, между которыми последовательно подключается измерительный прибор. Подключение должно быть выполнено с обязательным соблюдением полярности. Если мультиметр подключен неправильно, то на дисплее высветится значение со знаком «минус».
В том случае когда значение предполагаемой силы тока больше самого верхнего предела измерений, необходимо выставить переключатель в положение «10А». Одновременно из гнезда «V ΩmA» измерительный щуп перемещается в гнездо «10А».