Расчет мощности трехфазного двигателя – советы электрика


Расчет мощности электродвигателя

Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:

Полученный результат можно округлить до ближайшего стандартного значения мощности.

Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.

Расчет мощности двигателя производится по следующей формуле:

  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет номинального тока двигателя производится по следующей формуле:

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Расчет пускового тока электродвигателя производится по формуле:

  • К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).

Расчет коэффициента мощности электродвигателя

Онлайн расчет коэффициента мощности (cosφ) электродвигателя

Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Расчет и выбор пусковой и защитной аппаратуры

При выборе магнитных пускателей рисунок 4, необходимо учитывать режим работы, которой определяется характером коммутируемой нагрузки:

Мнение эксперта

It-Technology, Cпециалист по электроэнергетике и электронике

Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Онлайн расчет характеристик трехфазных электродвигателей Первые разомкнуты при обесточенной катушке управления и замыкаются при срабатывании электромагнитного пускателя, у вторых все происходит наоборот. Спрашивайте, я на связи!

Расчет электрического тока по мощности: формулы, онлайн расчет, выбор автомата

Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока.
Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.

Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети.

Обратите внимание

Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя.

Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:

где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление.

В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.

Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше.

Важно

Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое.

Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки.

Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину.

А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия.

Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) – 60 А;
  • электроплита (10 кВт) – 50 А;
  • варочная панель (8 кВт) – 40 А;
  • электроводонагреватель проточный (6 кВт) – 30 А;
  • посудомоечная машина (2,5 кВт) – 12,5 А;
  • стиральная машина (2,5 кВт) – 12,5 А;
  • джакузи (2,5 кВт) – 12,5 А;
  • кондиционер (2,4 кВт) – 12 А;
  • СВЧ-печь (2,2 кВт) – 11 А;
  • электроводонагреватель накопительный (2 кВт) – 10 А;
  • электрочайник (1,8 кВт) – 9 А;
  • утюг (1,6 кВт) – 8 А;
  • солярий (1,5 кВт) – 7,5 А;
  • пылесос (1,4 кВт) – 7 А;
  • мясорубка (1,1 кВт) – 5,5 А;
  • тостер (1 кВт) – 5 А;
  • кофеварка (1 кВт) – 5 А;
  • фен (1 кВт) – 5 А;
  • настольный компьютер (0,5 кВт) – 2,5 А;
  • холодильник (0,4 кВт) – 2 А.

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А.

И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом.

Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала.

Примеры расчетов

Пример 1. Расчет мощности и тока по заданным напряжению и нагрузке

Индуктивная нагрузка из трех цепей с равными импедансами Z

ph = 5+j3 Ом подключена звездой к трехфазной сети с линейным напряжением 400 В 50 Гц. Рассчитать фазное напряжение
U
ph, фазовый угол
φ
ph, фазный ток
I
ph, линейный ток
I
L, активную
P
, реактивную
Q
, полную |
S
|, и комплексную
S
мощности.

Пример 2. Расчет мощности и тока по заданным напряжению и нагрузке

Индуктивная нагрузка из трех цепей с равными импедансами Z

ph = 15 ∠60° Ом подключена звездой к трехфазной сети с фазным напряжением (между фазой и нейтралью) 110 В 50 Гц. Определить тип нагрузки (емкостная или индуктивная) фазное напряжение
U
ph, фазовый угол
φ
ph, фазный ток
I
ph, линейный ток
I
L, активную
P
, реактивную
Q
, полную |
S
|, и комплексную
S
мощности.

Пример 3. Расчет мощности и тока по заданным напряжению и нагрузке

Индуктивная нагрузка из трех обмоток с равными импедансами и эквивалентной схемой в виде включенных последовательно сопротивления R

ph = 20 Ом и индуктивности
L
ph = 440 мГн подключена звездой к трехфазной сети с фазным напряжением (между фазой и нейтралью) 230 В 50 Гц. Рассчитайте фазное напряжение
U
ph, фазовый угол
φ
ph, фазный ток
I
ph, линейный ток
I
L, активную
P
, реактивную
Q
, полную |
S
|, и комплексную
S
мощности. Найти линейный ток и потребляемую мощность для той же нагрузки, но соединенной треугольником. Совет: Для определения импеданса каждой обмотки воспользуйтесь Калькулятором последовательной RL-цепи.

Пример 4. Расчет мощности и нагрузки по заданным напряжению и току

Симметричный трехфазный генератор подает фазное напряжение 230 В на включенную звездой нагрузку с отстающим (активно-индуктивным) коэффициентом мощности 0,75. Ток в каждой фазе равен 28,5 А. Рассчитать импеданс нагрузки, активное и реактивное сопротивление в каждой фазе. Также рассчитать полную, активную и реактивную мощности. Описать что произойдет, если для той же нагрузки изменить соединение со звезды на треугольник. Совет: используйте режим определения мощности и нагрузки по заданным току и напряжению, а затем для ответа на последний вопрос воспользуйтесь этим же калькулятором в режиме определения мощности и тока по заданным напряжению и нагрузке.

Пример 5. Расчет мощности и тока по заданным напряжению и нагрузке

Нагрузка, состоящая из трех одинаковых обмоток, имеющих сопротивление R

ph = 10 Ом и индуктивность
L
ph = 310 мГн, подключена треугольником к трехфазной сети с напряжением между фазой и нейтралью 120 В, 60 Гц. Рассчитайте линейное напряжение
U
L, фазовый угол
φ
ph, фазный ток
I
ph, линейный ток
I
L, активную
P
, реактивную
Q
, полную |
S
|, и комплексную
S
мощности. Как изменятся ток и мощность, если эту же нагрузку подключить звездой? Совет: воспользуйтесь нашим Калькулятором импеданса последовательной RL-цепи для определения импеданса каждой катушки, а затем введите данные в этот калькулятор.

Пример 6. Расчет мощности и тока по заданным напряжению и нагрузке

Нагрузка из трех цепей с равными импедансами Z

ph = 7 – j5 Ом подключена треугольником к трехфазной сети с линейным напряжением (между двумя фазами) 208 В 60 Гц. Определить тип нагрузки (резистивно-емкостная или резистивно-индуктивная) фазное напряжение
U
ph, фазовый угол
φ
ph, фазный ток
I
ph, линейный ток
I
L, активную
P
, реактивную
Q
, полную |
S
|, и комплексную
S
мощности.

Расчет мощности по току и напряжению, схема и таблицы

Чтобы обезопасить себя при работе с бытовыми электроприборами, необходимо в первую очередь правильно вычислить сечение кабеля и проводки. Потому-что если будет неправильно выбран кабель, это может привести к короткому замыканию, из за чего может произойти возгорание в здание, последствия могут быть катастрофическими.

Это правило относиться и к выбору кабеля для электродвигателей.

Расчёт мощности по току и напряжению

Данный расчет происходит по факту мощности, проделывать его необходимо еще до начала проектирование своего жилища (дома, квартиры).

  • Из этого значение зависят кабеля питающие приборы которые подключены к электросети.
  • По формуле можно вычислить силу тока, для этого понадобиться взять точное напряжение сети и нагрузку питающихся приборов. Ее величина дает нам понять площадь сечение жил.

Если вам известны все электроприборы, которые в будущем должны питаться от сети, тогда можно легко сделать расчеты для схемы электроснабжение. Эти же расчеты можно выполнять и для производственных целей.

Однофазная сеть напряжением 220 вольт

Формула силы тока I (A — амперы):

I=P/U

Где P — это электрическая полная нагрузка (ее обозначение обязательно указывается в техническом паспорте данного устройства), Вт — ватт;

U — напряжение электросети, В (вольт).

В таблице представлены стандартные нагрузки электроприборов и потребляемый ими ток (220 В).

На рисунке вы можете видет схему устройства электроснабжение дома при однофазном подключении к сети 220 вольт.

Схема приборов при однофазном напряжении

Как и показано на рисунке, все потребители должны быть подключены к соответствующим автоматам и счетчику, далее к общему автомату который будет выдерживать общею нагрузку дома. Кабель который будет доводит ток, должен выдерживать нагрузку всех подключенных бытовых приборов.

Совет

В таблице ниже показана скрытая проводка при однофазной схеме подключение жилища для подбора кабеля при напряжении 220 вольт.

Как и показано в таблице, сечение жил зависит и от материала из которого изготовлен.

Трёхфазная сеть напряжением 380 В

В трехфазном электроснабжении сила тока рассчитывается по следующей формуле:

I = P /1,73 U

P — потребляемая мощность в ватах;

U — напряжение сети в вольтах.

В техфазной схеме элетропитания 380 В, формула имеет следующий вид:

I = P /657, 4

Если к дому будет проводиться трехфазная сеть 380 В, то схема подключения будет иметь следующий вид.

В таблице ниже представлена схема сечения жил в питающем кабеле при различной нагрузке при трехфазном напряжении 380 В для скрытой проводки.

Для дальнейшего расчета питания в цепях нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

  • электродвигатели;
  • индукционные печи;
  • дроссели приборов освещения;
  • сварочные трансформаторы.

Это явление в обязательном порядке необходимо учитывать при дальнейших расчетах. В более мощных электроприборах нагрузка идет гораздо больше, поэтому в расчетах коэффициент мощности принимают 0,8.

При подсчете нагрузки на бытовые приборы запас мощности нужно брать 5%. Для электросети этот процент становит 20%.

Источник: https://DomStrouSam.ru/raschet-moshhnosti-po-toku-i-napryazheniyu-shema-i-tablitsyi/

Пример возможности пуска электродвигателя 380 В

В момент пуска двигателя 4А250М2 У3 работает подключенный к шинам двигатель 4А250S2 У3 мощностью 75 кВт с напряжением на зажимах 365 В. Напряжение на шинах 0,4 кВ при пуске двигателя равно Uш = 380 В.

1. Определяем длительно допустимый ток двигателя Д1:

где: Kпуск = 7,5 – кратность пускового тока, согласно паспорта на двигатель;

3. Определяем величину активного и индуктивного сопротивления для алюминиевого кабеля марки ААБ сечением 3х70 мм2 на напряжение 6 кВ от шин подстанции 2РП-1 до трансформатора типа ТМ 320 кВА, значения сопротивлений берем из таблицы 2.5 [Л2.с 48].

Получаем значения сопротивлений Rв = 0,447 Ом/км и Хв = 0,08 Ом/км.

Эти сопротивления необходимо привести к стороне низшего напряжения трансформатора, так как двигатель подключен к сети низшего напряжения. Из таблицы 8 [Л1, с 93] для номинального коэффициента трансформации 6/0,4 кВ и ответвления 0% находим значение n=15.

4. Определяем активное и индуктивное сопротивление кабеля по отношению к сети низшего напряжения по формуле [Л1, с 13]:

5. Определяем сопротивление кабеля длиной 850 м от подстанции 2РП-1 до трансформатора 6/0,4 кВ:

6. Определяем сопротивление трансформатора мощностью 320 кВА, 6/0,4 кВ по таблице 7 [Л1, с 92,93].

7. Определяем сопротивления линии от шин подстанции 2РП-1 до шин низшего напряжения подстанции:

8. Определяем сопротивление кабеля длиной 80 м марки ААБ 3х95 мм2 от шин низшего напряжения до зажимов двигателя:

Расчет тока электродвигателя

Рассмотренные варианты подключения промышленных двигателей в бытовую сеть не представляют большой сложности при их реализации. Важно только внимательно отнестись к некоторым нюансам и оборудование, хоть и с небольшой потерей мощности, прослужит долго и принесет пользу.

Мнение эксперта

It-Technology, Cпециалист по электроэнергетике и электронике

Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Выбор автоматических выключателей для электродвигателей Стандартные значения мощностей электродвигателей 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т. Спрашивайте, я на связи!

Расчет однофазного и трехфазного тока

Добрый день! Из этой статьи вы узнаете по каким формулам рассчитывается однофазный и трехфазный ток, какие параметры нужно знать чтобы выполнить расчет и где их найти. Ну и конечно же я приведу пример по расчету однофазного и трехфазного токов.

где P – мощность электроприемника, Вт

U – напряжение питающей сети, В

cosφ – коэффициент мощности

где P – мощность электроприемника, Вт

U – напряжение питающей сети, В

cosφ – коэффициент мощности

Для электродвигателей имеет смысл учитывать коэффициент полезного действия (КПД), поэтому формулы приобретают следующий вид:

где P – мощность электроприемника, Вт

U – напряжение питающей сети, В

cosφ – коэффициент мощности

ɳ – КПД

Можно заметить, что формулы для расчета однофазного и трехфазного токов не сложные, осталось только разобраться где брать составляющие для их расчета.

Мощность электроприемника (P, Вт) можно узнать из паспорта, который к нему прилагается или по табличке на корпусе устройства. Если же такой информации нет, то в интернете вы без труда найдете мощность нужного электроприемника, но для этого нужно знать точное название.

Напряжение питающей сети (U,B) при расчетах однофазных электроприемников принимается 220В, а при расчете трехфазных электроприемников 380В. На практике эти значения обычно отличаются, так как напряжение на вводе немного завышено с целью предотвращения потерь напряжения. Бывают так же случаи когда напряжение на вводе ниже номинального из за большой удаленности потребителя и т.д.

Коэффициент мощности cosφ (отношение активной и полной мощности) при расчетах берется из паспорта к электроприемнику, а если такая информация там отсутствует то берется из справочников.

В подавляющем большинстве случаев значение cosφ неизвестно, но известны средние значения для того или иного типа потребителей, подставив которые можно выполнить расчет. Идеальный случай – это когда cosφ=1, но таким значением могут похвастаться лишь ТЭНы, обогреватели, лампы накаливания (0,99-1).

У электродвигателей значения коэффициентов мощности варьируются в пределах 0,7-0,9, у люминесцентных и светодиодных светильников коэффициент мощности варьируется в пределах (0,85-0,96), у компьютеров 0,6-0,8.

Обратите внимание

Все вышеприведенные параметры можно замерить опытным путем, тем самым проверить правильность расчетов.

КПД указывается в паспорте к электродвигателю.

Ну а теперь я приведу несколько примеров по расчету токов.

Пример 1. Возьмем электрический чайник, мощностью 2кВт. Мы знаем, что он подключается к электросети 220В, а так же знаем коэффициент мощности (0,99-1), которым в данном случае мы можем пренебречь. Далее берем формулу для однофазного тока, и получаем:

Пусковой конденсатор

Ознакомьтесь также с этими статьями

  • Бесплатные доски объявлений в интернете – современное решение
  • Преимущественные особенности современных мультитулов
  • Что такое уайт-спирит и для чего он необходим
  • Особенности аренды контейнеров на складе индивидуального хранения груза

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Как рассчитать мощность электродвигателя

Как выполнить расчёт потребляемой мощности асинхронного электродвигателя из сети, если по шильдикам можно узнать только номинальную мощность? Для этого необходимо:

  • обратить внимание на остальные показатели – это η и cosφ (КПД и коэффициент мощности);
  • учесть связь динамических характеристик вала и КПД.

По имеющимся данным, можно рассчитать затраченную мощность электроэнергии:

Pз=Р/η.

Расчёты основных параметров асинхронного электродвигателя

Активная мощность тратится на выполнение полезной работы и создание тепла. Обозначается буквой «P», измеряется в W и вычисляется:

P=I*U*cosφ.

Реактивная мощность создаётся колебаниями энергии электрического поля. Она обуславливает способность деталей реактивной машины сохранять и излучать электромагнитную энергию. Речь идёт о токе, который заряжает конденсатор или создает магнитное поле вокруг витков обмотки катушки. Обозначается буквой «Q», измеряется в Var и рассчитывается:

Q=I*U*sinφ.

Полная мощность «S» представляется математической комбинацией по формуле теоремы Пифагора: S*S = Q*Q + P*P. Она измеряется в V*A и вычисляется:

Важно

S = P / cosφ = √(P2 + Q2)=I*U.

Реактивную мощность трехфазного асинхронного двигателя можно представить суммой двух составляющих: индуктивной и емкостной.

Лучшее представление данной величины может быть получено в виде векторной диаграммы, индуктивная составляющая – это положительная координата на оси Y, емкостная – отрицательная.

Очевидно, что эти два значения несколько компенсируют друг друга, составляя координату вектора, которая будет либо положительной, либо отрицательной.

Чем меньше угол между ними, тем полная мощность становится ближе к активной.

Коэффициент мощности cosφ для трёхфазного асинхронного двигателя равен 0,8–0,9. Если его необходимо увеличить, то довольно часто добавляют конденсаторы в цепи двигателя. Функция этих конденсаторов заключается в том, чтобы обеспечить намагничивающий ток, снижающий амплитуду реактивной составляющей. Чем выше cosφ, тем меньше электромашина потребляет энергии.

Как определить мощность электродвигателя?

Для того чтобы выполнить расчёт понадобятся измерительные инструменты и справочная информация. Итак, существуют варианты определения мощности электродвигателя:

  • по току. Подаём питание на асинхронный электродвигатель. Поочередно делаем замеры тока в каждой обвивке амперметром. В итоге среднее значение тока умножается на напряжение и получается потребляемая мощность электродвигателя;
  • по размерам. Замеряем диаметр и длину сердечника статора. Узнаем частоту оборотов вала. Далее, производим приближённый расчёт «постоянной» по формуле:

3,14•D•n/(120•f).

На основе расчёта находим в справочнике константу. Вычисляем

P = C•D²•l•n•10^(-6);

  • по тяговой силе. Измеряем скорость оборотов вала с помощью тахометра, радиус вала обычной линейкой, тяговое усилие движка динамометром. Для расчёта все найденные значения перемножаем

P =Mw= F•2•3,14•nr.

На основе этих математических выражений можно сделать вывод, что асинхронные двигатели могут иметь одинаковую мощность, но различаться по частоте вращения вала, что существенно влияет на его габариты. Рассмотрим также смысл использования регуляторов мощности.

Какие бывают виды регуляторов?

Существует два вида регуляторов, доступных на сегодняшнем рынке:

  • на переменном резисторе,
  • электронный (шаговый и подвижный).

Все они обладают разными способами управления скоростью вращения и, посему, эффективность (потребление электроэнергии) у каждого вида отличается. С этой точки зрения, классический регулятор – самый дешевый, но неэффективный. Давайте рассмотрим все три типа.

Регулятор на переменном резисторе

На самом деле этот реостат имеет внутри огромную катушку. Выбирая низкие параметры скорости, мы, по сути, выбираем более высокое сопротивление цепи. Это приводит к снижению потребляемого тока (так как напряжение является фиксированной величиной). Аппараты громоздкие по размеру и недорогие по цене.

Электронный регулятор

Электронные – это новейшие типы из доступных регуляторов на рынке. Они намного меньше по размерам, чем другие. Для понижения напряжения в них используются вместо резисторов конденсаторы, которые регулируя скорость вращения, управляют сигналом электропитания. В отличие от реостатов не нагреваются и, значит, экономят электроэнергию, когда мотор работает на малых скоростях.

Регуляторы способны сэкономить до 40% на «1» скорости и около 30% на «2-й» скорости по сравнению со своими резисторными аналогами. Существуют электронные разновидности регуляторов:

  1. подвижные с плавным регулированием.
  1. шаговые с пронумерованной скоростью действия (обычно от 1 до 5).

Эти устройства обеспечивают низкий уровень искажений движения мотора и, следовательно, меньше нагреваются. Вариант с лучшей технологией и экономией электричества.

Заключение

Мощность асинхронного двигателя – основная техническая характеристика этого устройства, которая влияет на сферу применения и выполняемые задачи.

Для регулирования соотношения физических величин используются регуляторы.

Формулы, выражающие связь физических показателей асинхронных двигателей необязательно помнить все, их можно легко выводить самим из тех, что знакомы по школьной программе физики.

Источник: https://ElectricDoma.ru/elektrodvigateli/kak-rasschitat-moshhnost-elektrodvigatelya/

Для чего необходимо знать мощность двигателя

Из всех технических характеристик электродвигателя (КПД, номинальный рабочий ток, частота вращения и т.д.) самая значимая – мощность. Зная главные данные, вы сможете:

  • Подобрать подходящие по номиналам тепловое реле и автомат.
  • Определить пропускную способность и сечение электрических кабелей для подключения агрегата.
  • Эксплуатировать двигатель согласно его параметрам, не допуская перегрузок.

Мы описали, как замерить мощность электродвигателя разными способами. Используйте тот, который в вашем случае будет оптимальным. Применяя любой из методов, вы подберете агрегат, который будет лучшим образом отвечать вашим требованиям. Но самый эффективный вариант, экономящий ваше время и избавляющий вас от необходимости искать информацию и проводить замеры и расчеты – это сохранить технический паспорт в надежном месте и следить за тем, чтобы шильдик с данными не потерялся.

Подключение двигателя прямого пуска, выбор всех компонентов

Практически в каждом объекте присутствуют двигатели, которые необходимо подключить. Основную массу электродвигательного оборудования составляют вентиляторы и насосы. Я думаю вы обратили внимание, что у меня в шапке блога показано как раз такое подключение. В этой заметке мы произведем подключение электрического двигателя.

1 Рассчитываем потребляемый ток двигателя.

Потребляемый ток зависит от мощности, напряжения, коэффициента мощности и коэффициента полезного действия. В некоторых каталогах, например насосы Wilo, кроме мощности в характеристиках можно найти и потребляемый ток.

Для расчета тока двигателя можно воспользоваться моей программкой. Там все очень просто. Подставляем данные и получаем расчетный ток двигателя. Скачать мою программу для расчета тока двигателя можно по .

2 Определяем каким образом у нас будет включаться двигатель.

Как правило, для управления двигателем используют электромагнитный пускатель. Электромагнитный пускатель позволяет управлять двигателем при необходимости с двух и более мест. Например, общая вентсистема на два этажа.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]