Вся правда о конденсаторах: волшебные свойства загадочных баночек


В предыдущей статье мы рассказали о том, что такое конденсатор, а сейчас расскажем о различных типах конденсаторов. Ключевым фактором при различении разных типов конденсаторов является диэлектрик, используемый в их конструкции. Самые распространенные типы конденсаторов: керамические, электролитические (в том числе алюминиевые, танталовые и ниобиевые конденсаторы), пленочные, бумажные и слюдяные.

У каждого типа конденсатора есть свои достоинства и недостатки. Характеристики и области применения конденсаторов могут отличаться. Следовательно, при выборе конденсатора необходимо учитывать следующие важные факторы.

  • Размер: важны как физический размер, так и размер (значение) емкости.
  • Рабочее напряжение: это важная характеристика конденсатора. Оно определяет максимальное напряжение, которое может быть приложено к конденсатору.
  • Ток утечки: через диэлектрик будет протекать небольшой ток, поскольку они не являются идеальными изоляторами. Это называется током утечки.
  • Эквивалентное последовательное сопротивление: выводы конденсатора имеют небольшое сопротивление (обычно менее 0,1 Ом). Это сопротивление становится проблемой, когда конденсатор используется на высоких частотах.

Эти факторы определяют, как и в каких схемах можно использовать конкретный тип конденсатора. Например, номинальное напряжение электролитического конденсатора больше по сравнению с керамическим конденсатором в аналогичном диапазоне емкости. Поэтому они обычно используются в цепях питания. Точно так же некоторые конденсаторы имеют очень низкий ток утечки, а другие — очень высокий ток утечки. В зависимости от области применения следует выбирать соответствующий конденсатор.

Диэлектрики в конденсаторах

Конденсаторы постоянной емкости — более распространенные типы конденсаторов. Электронную схему без конденсатора найти сложно. Большинство конденсаторов названы в честь диэлектрика, используемого в конструкции. Вот распространенные диэлектрики, использующиеся в конструкции конденсаторов:

  • Керамические
  • Бумажные
  • Пленочные
  • Слюдяные
  • Стеклянные
  • Алюмооксидные
  • Танталовые
  • Ниобиевые

Последние три используются в электролитических конденсаторах. Несмотря на использование различных видов диэлектриков в конструкции конденсаторов, функциональные возможности конденсатора не меняются: хранение энергии в виде электрического заряда между параллельными пластинами.

Свойства конденсатора

Измеритель емкости конденсаторов

Поскольку в конструкции конденсатора содержится диэлектрик, то при включении его в цепь постоянного напряжения ток идет только в первый момент времени, при зарядке обкладок.

В цепи переменного напряжения происходит циклическая перезарядка, поэтому наблюдается прохождение тока. Его величина определяется реактивным сопротивлением конденсатора, которое равно:

XC=1/(2πfC), где f – частота колебаний.

Таким образом, становится понятным, почему при постоянном напряжении ток отсутствует (частота равняется нулю, а сопротивление стремится к бесконечности).

Конденсаторы переменной емкости

Как и резисторы, конденсаторы бывают постоянного и переменного типа. Переменные конденсаторы — это конденсаторы, емкость которых можно изменять механически или электронно. Такие конденсаторы обычно используются в резонансных цепях (LC-цепях) для радио и согласования импеданса в антеннах. Эти конденсаторы обычно называют настроечными.

Существует еще один тип переменных конденсаторов, называемый подстроечным конденсатором. Они закреплены на печатных платах и ​​используются для калибровки оборудования. Это неполяризованные конденсаторы очень маленького размера. Как правило, они недоступны для использования постоянным покупателем. Емкость переменных конденсаторов очень мала, обычно порядка нескольких пикофарад (обычно менее 500 пФ).

Механические переменные конденсаторы состоят из набора полукруглых металлических пластин, закрепленных на оси ротора. Ротор размещается между металлическими пластинами статора. Общее значение емкости (C) для этого типа конденсаторов определяется в соответствии с положением подвижных металлических пластин по отношению к неподвижным металлическим пластинам. Когда ось поворачивается, область перекрытия между пластинами статора и пластинами ротора будет изменяться, и емкость соответственно тоже.

Когда два набора металлических пластин полностью соединены вместе, значение емкости обычно находится на максимальном значении. Подстроечные конденсаторы высокого напряжения имеют большие воздушные зазоры или промежутки между пластинами с относительно большими пробивными напряжениями порядка киловольт.

В механических переменных конденсаторах в качестве диэлектрика обычно используется воздух или фольгированный пластик. На сегодняшний день, использование вакуумных переменных конденсаторов увеличивается, поскольку они обеспечивают лучший диапазон рабочего напряжения и более высокую способность выдерживать ток. Емкость конденсаторов с механической настройкой можно изменять с помощью винта в верхней части конденсатора.

В случае конденсаторов переменной емкости с электронным управлением используется диод с обратным смещением, в котором толщина обедненного слоя будет изменяться в зависимости от приложенного постоянного напряжения. Такие диоды называются диодами переменной емкости или просто варикапами или варакторами.

Классификация

Основные параметры конденсаторных изделий определяются типом диэлектрика. От материала зависит стабильность ёмкости, тангенс диэлектрических потерь, пьезоэффект и другие. Исходя из этого, классификацию моделей целесообразно осуществлять именно по виду диэлектрика.

По данному признаку различают следующие типы изделий:

  • вакуумные;
  • с воздушным диэлектриком;
  • радиоэлементы, в которых диэлектриком является жидкость;
  • с твёрдым неорганическим диэлектриком (стекло, слюда, керамика). Характеризуются малым током утечки;
  • модели с бумажным диэлектриком и комбинированные, бумажно-плёночные;
  • масляные конденсаторы постоянного тока;
  • электролитические;
  • категория оксидных конденсаторов, к которым относятся оксидно-полупроводниковые и танталовые конденсаторы;
  • твёрдотельные, у которых вместо жидкого электролита используется органический полимер или полимеризованный полупроводник.

В твёрдотельных моделях срок службы больший, чем у жидко-электролитических и составляет около 50 000 часов. У них меньшее внутренне сопротивление, то есть ЭПС почти не зависит от температуры, они не взрываются.

Классифицируют изделия и по другому важному параметру – изменению ёмкости. По данному признаку различают:

  • постоянные конденсаторы, то есть те, которые имеют постоянную емкость;
  • переменные, у которых можно управлять изменением ёмкости механическим способом либо с помощью приложенного напряжения (варикапы и вариконды), а также путём изменения температуры (термоконденсаторы);
  • класс подстроечных конденсаторов, которые используют для подстройки или выравнивания рабочих ёмкостей при настройке контуров, а также с целью периодической подстройки различных схем.

Все существующие конденсаторы можно условно разделить на общие и специальные. К изделиям общего назначения относятся самые распространённые низковольтные конденсаторы (см. рис. 6). К ним не предъявляют особых требований.

Все остальные ёмкостные радиоэлементы принадлежат к классу специального назначения:

  • импульсные;
  • пусковые;
  • высоковольтные (см. рис. 7);
  • помехоподавляющие,
  • дозиметрические и др.;

Керамические конденсаторы

Керамические конденсаторы — наиболее часто используемые конденсаторы в электронной промышленности. Они также являются наиболее производимыми конденсаторами: ежегодно производится более 1000 миллиардов единиц. Название происходит от керамического материала, который является диэлектриком, используемым в его конструкции.

Керамические конденсаторы представляют собой конденсаторы с постоянной емкостью и обычно очень малы (как по физическим размерам, так и по емкости). Емкость керамических конденсаторов обычно находится в диапазоне от пикофарад до нескольких микрофарад (менее 10 мкФ). Это конденсаторы неполяризованного типа, поэтому их можно использовать как в цепях постоянного, так и переменного тока.

Конструкция конденсаторов такого типа очень проста. Небольшой керамический диск с обеих сторон покрыт серебром. Поэтому их также называют дисковыми конденсаторами. Керамика действует как диэлектрик (изолятор), а серебряное покрытие образует электроды.

Читать также: Пьезовоспламенитель

Толщина и состав керамического слоя будут определять электрические свойства конденсатора. Чтобы достичь больших значений емкости, несколько слоев такого диска наложены друг на друга, образуя многослойный керамический чип-конденсатор (MLCC). Современная электроника обычно состоит из таких конденсаторов MLCC.

Емкость керамических конденсаторов велика по сравнению с их размером. Керамические конденсаторы делятся на два класса в зависимости от области применения.

Керамические конденсаторы класса 1

Такие конденсаторы часто используются в резонансных цепях из-за их высокой стабильности и малых потерь. Наиболее распространенный тип керамики, используемый в конденсаторах класса 1, изготавливается из диоксида титана (TiO 2) с небольшим добавлением цинка и магния, используемых в качестве дополнительных соединений. Они добавляются для достижения максимально возможных линейных характеристик.

Конденсаторы класса 1 имеют низкую диэлектрическую проницаемость и, следовательно, относительно невысокий объемный КПД. Следовательно, диапазон емкости конденсаторов класса 1 невелик. Электрические потери конденсаторов класса 1 очень низкие, а коэффициент рассеяния составляет 0,15 процента. Значение емкости не зависит от приложенного напряжения.

У таких конденсаторов есть температурный коэффициент лайнера. Все эти характеристики керамических конденсаторов класса 1 делают их полезными в таких схемах, как фильтры с высокой добротностью и схемы генераторов, такие как системы ФАПЧ. Керамические конденсаторы класса 1 не боятся старения.

Керамические конденсаторы класса 2

Такие конденсаторы часто используются в буферах, схемах связи и байпасных системах из-за их высокой эффективности с точки зрения объема. Такой высокий объемный КПД обусловлен их высокой диэлектрической проницаемостью. Емкость конденсаторов класса 2 зависит от приложенного напряжения и имеет нелинейное изменение при разных диапазонах температур.

Точность и стабильность ниже по сравнению с керамическими конденсаторами класса 1. Керамический диэлектрик для класса 2 конденсаторов выполнен из ферро электрических материалов , таких как титанат бария (BaTiO- 3-), силикаты алюминия или магния и оксида алюминия.

Из-за высокой диэлектрической проницаемости конденсаторов класса 2 возможны высокие значения емкости при меньшем размере, чем у конденсаторов класса 1 с таким же номинальным напряжением. Следовательно, они используются в буферах, фильтрах и схемах связи, где требуется конденсатор для поддержания минимальной емкости. Конденсаторы класса 2 могут со временем стареть.

Также доступен другой класс керамических конденсаторов, называемый классом 3, с более высокой диэлектрической проницаемостью и лучшим объемным КПД. Но электрические характеристики этого класса хуже, а также низкая точность и стабильность.

Как правило, керамические конденсаторы имеют меньшее ESR (эквивалентное последовательное сопротивление) и ток утечки по сравнению с электролитическими конденсаторами. Рабочее напряжение керамических конденсаторов 1-го класса до 1000 В, керамических конденсаторов 2-го класса — до 2000 В.

Основное преимущество керамических конденсаторов заключается в том, что внутри их конструкции отсутствуют катушки, а значит, во время работы схемы отсутствует фактор индуктивности. Следовательно, керамические конденсаторы подходят для высокочастотных устройств.

Керамические конденсаторы доступны в обычных двухвыводных конструкциях со сквозными отверстиями, в многослойном режиме поверхностного монтажа (SMT) и специальных бессвинцовых дисковых конденсаторах, которые разработаны специально для печатных плат. Часто используются как сквозные, так и поверхностные керамические конденсаторы. Керамические конденсаторы обычно имеют 3-значное число, закодированное на их корпусе, чтобы идентифицировать значение емкости, как правило, в пикофарадах (пФ).

При этом первые две цифры используются для обозначения емкости, а третья цифра указывает количество добавляемых нулей. Например, керамический конденсатор с маркировкой 153 будет показывать 15 и 3 нуля в пикофарадах, что эквивалентно 15 000 пФ или 15 нФ.

Паразитные параметры

Отдельные виды параметров являются паразитными, которые стараются снизить при конструировании и изготовлении. Их описание приведено ниже.

Электрическое сопротивление изоляции диэлектрика конденсатора, поверхностные утечки Rd и саморазряд

Данный параметр зависит от свойств диэлектрика и материала корпуса. Он показывает, насколько уменьшается заряд с течением времени у элемента, не включенного во внешнюю цепь. Утечка происходит в результате неидеальности диэлектрика и по его поверхности.

Для некоторых конденсаторов в характеристиках указывается постоянная времени Т, которая показывает время, в течении которого напряжение на обкладках уменьшится в е (2.71) раз. Численно постоянная времени равняется произведению сопротивления утечки на емкость.

Эквивалентное последовательное сопротивление (Rs)

Эквивалентное последовательное сопротивление ЭПС (в англоязычной литературе ERS) слагается из сопротивления материала обкладок и выводов. К нему также может добавляться поверхностная утечка диэлектрика.

По своей сути, ЭПС представляет собой сопротивление, соединенное последовательно с идеальным конденсатором. Такая цепь в некоторых случаях может влиять на фазочастотные характеристики. ЭПС обязательно должно учитываться при проектировании импульсных источников питания и контуров авторегулирования.

Электролитические конденсаторы имеют особенность, когда из-за наличия внутри паров электролита, воздействующих на выводы, величина ЭПС со временем увеличивается.

Эквивалентная последовательная индуктивность (Li)

Поскольку выводы обкладок и сами обкладки металлические, то они имеют некоторую индуктивность. Таким образом, конденсатор представляет собой резонансный контур, что может оказать влияние на работу схемы в определенном диапазоне частот. Наименьшую индуктивность имеют СМД компоненты ввиду отсутствия у них проволочных выводов.

Тангенс угла диэлектрических потерь

Отношение активной мощности, передаваемой через конденсатор, к реактивной, называется тангенсом угла диэлектрических потерь. Данная величина зависит от потерь в диэлектрике и вызывает сдвиг фазы между напряжением на обкладке и током. Тангенс угла потерь важен при работе на высоких частотах.

Температурный коэффициент ёмкости (ТКЕ)

ТКЕ означает изменение емкости при колебаниях температуры. ТКЕ может быть как положительным, так и отрицательным, в зависимости от того, как ведет себя емкость при изменениях температуры.

Для фильтрующих и резонансных цепей для компенсации температурного дрейфа в одной цепи используют элементы с разным ТКЕ, поэтому многие производители группируют выпускаемые элементы по величине и знаку коэффициента.

Диэлектрическая абсорбция

Данный эффект еще называют эффектом памяти. Проявляется он в том, что при разряде конденсатора через низкоомную нагрузку через некоторое время на обкладках возникает небольшое напряжение.

Величина диэлектрической абсорбции зависит от материалов, из которых изготовлен элемент. Она минимальна для тефлона и полистирола и максимальна для танталовых конденсаторов. Важно учитывать эффект при работе с прецизионными устройствами, особенно интегрирующими и дифференцирующими цепями.

Паразитный пьезоэффект

Так называемый «микрофонный эффект» выражается в том, что при воздействии механических нагрузок, в том числе акустических колебаний, керамический диэлектрик в некоторых типах устройств проявляет свойства пьезоэлектрика и начинает генерировать помехи.

Самовосстановление

Свойством самовосстановления после электрического пробоя обладают электролитические бумажные и пленочные конденсаторы. Такие типы конденсаторов и их разновидности нашли применение в цепях, обеспечивающих запуск электродвигателей, в особенности, если трехфазный асинхронный электродвигатель включается в однофазную сеть. Свойство восстановления широко используется в силовой технике.

Пленочный конденсатор

Пленочные конденсаторы являются наиболее часто используемым типом конденсаторов среди всех других типов, которые имеют разницу в своих диэлектрических свойствах. Пленочные конденсаторы — это конденсаторы с изолирующей пластиковой пленкой в ​​качестве диэлектрика, и это неполяризованные конденсаторы.

Диэлектрические материалы для этих конденсаторов сделаны в виде тонкого слоя, снабженного металлическими электродами и намотанного на цилиндрическую обмотку. Оба электрода пленочных конденсаторов могут быть из цинка или металлизированного алюминия.

Основным преимуществом пленочного конденсатора является прямое соединение его внутренней конструкции с электродами на обоих концах обмотки. Этот прямой контакт с электродами приводит к сокращению длины всех путей прохождения тока. Такая конструкция ведет себя как большое количество отдельных конденсаторов, соединенных параллельно. Кроме того, конструкция конденсаторов такого типа обеспечивает низкие омические потери и низкие паразитные индуктивности. Эти пленочные конденсаторы используются в устройствах питания переменного тока, а также в высокочастотных устройствах.

Читать также: Различные типы усилителей и их применение

Некоторыми примерами пленок, которые используются в качестве диэлектрика для пленочных конденсаторов, являются полипропилен, полиэтиленнафталат, полиэфир, полифениленсульфид и политетрафторэтилен. В продаже представлены конденсаторы пленочного типа с диапазоном значений емкости от 5 пФ до 100 мкФ. Пленочные конденсаторы также доступны в различных формах, включая:

  • Тип Wrap & Fill (овальный и круглый): в этом типе, концы конденсатора запаяны эпоксидной смолой, а конденсатор обернут плотной пластиковой лентой.
  • Эпоксидный корпус (прямоугольный и круглый): конденсаторы этого типа заключены в формованный пластиковый корпус, заполненный эпоксидной смолой.
  • Металлический корпус (прямоугольные и круглые): конденсаторы этих типов заключены в металлическую трубку или металлическую банку и запечатаны эпоксидной смолой.

В настоящее время конденсаторы с вышеуказанным корпусом доступны как с радиальными, так и с осевыми выводами. Основное преимущество пленочных конденсаторов заключается в том, что они хорошо работают при высоких температурах по сравнению с бумажными.

Эти конденсаторы обладают малым допуском, высокой надежностью, а также очень длительным сроком службы. Примерами конденсаторов пленочного типа являются: цилиндрический пленочный конденсатор с осевым выводом, прямоугольный пленочный конденсатор и пленочные фольгированные конденсаторы. Они приведены ниже:

  • Тип осевого вывода:

  • Тип радиального вывода:

Эти пленочные конденсаторы требуют гораздо более толстого диэлектрического материала, чтобы избежать пробоя и разрывов диэлектрической пленки. Следовательно, они подходят для схем, требующих малых значений емкости.

Соединение конденсаторов

Существует два способа соединения: параллельное и последовательное. При параллельном соединении общая ёмкость равна сумме ёмкостей отдельных элементов: Собщ. = С1 + С2 + … + Сn.

Для последовательного соединения расчёт ёмкости рассчитывается по формуле: Cобщ. = ( C1* C2 *…* Cm ) / ( C1 + C2+…+Cn )

Чтобы быстро посчитать общую емкость соединенных конденсаторов лучше воспользоваться нашими калькуляторами:

  1. https://www.asutpp.ru/kalkulyator-rascheta-posledovatelnogo-soedineniya-kondensatorov.html
  2. https://www.asutpp.ru/kalkulyator-rascheta-parallelnogo-soedineniya-kondensatorov.html

Пленочные силовые конденсаторы

Конструкционные технологии и материалы, которые используются для больших силовых пленочных конденсаторов, обычно аналогичны таковым для обычных пленочных конденсаторов. Однако эти конденсаторы с высокой номинальной мощностью используются в энергосистемах и электрических установках.

Силовые пленочные конденсаторы используются во множестве устройств. Эти конденсаторы служат демпфирующими конденсаторами при последовательном подключении к ним резистора. Они также используются в схемах фильтров с близкой настройкой или с малой настройкой для фильтрации гармоник, а также в качестве конденсаторов импульсного разряда.

Принцип работы конденсатора

Конструкция

На схемах конденсатор обозначается в виде двух параллельных линий, не связанных между собой:

Это соответствует его простейшей конструкции — двум пластинам (обкладкам), разделенным диэлектриком. Фактическое исполнение этого изделия чаще всего представляет собой завернутые в рулон обкладки с прослойкой диэлектрика или иные причудливые формы, но суть остается той же самой.

Емкость конденсатора

Электрическая ёмкость – способность проводника накапливать электрические заряды. Чем больше заряд вмещает проводник при данной разности потенциалов, тем больше ёмкость. Зависимость между зарядом Q и потенциалом φ выражается формулой:

C=Q/φ

где Q — заряд в кулонах (Кл), φ — потенциал в вольтах (В).

Емкость измеряется в фарадах (Ф), что вы помните еще с уроков физики. На практике чаще встречаются более мелкие единицы: миллифарад (мФ), микрофарад (мкФ), нанофарад (нФ), пикофарад (пФ).

Накопительная способность зависит от геометрических параметров проводника, диэлектрической проницаемости среды, где он находится. Так, для сферы из проводящего материала она будет выражаться формулой:

C=4πεε0R

где ε0—8,854·10^−12 Ф/м, электрическая постоянная, а ε — диэлектрическая проницаемость среды (табличная величина для каждого вещества).

В реальной жизни нам чаще приходится иметь дело не с одним проводником, а с системами таковых. Так, в обычном плоском конденсаторе емкость будет прямо пропорциональна площади пластин и обратно — расстоянию между ними:

C=εε0S/d

ε здесь — диэлектрическая проницаемость прокладки между пластинами.

Емкость параллельных и последовательных систем

Параллельное соединение емкостей представляет собой один большой конденсатор с тем же слоем диэлектрика и суммарной площадью пластин, поэтому общая емкость системы представляет собой сумму таковых у каждого из элементов. Напряжение при параллельном соединении будет одним и тем же, а заряд распределится между элементами схемы.​

C=C1+C2+C3

Последовательное соединение конденсаторов характеризуется общим зарядом и распределенным напряжением между элементами. Поэтому суммируется не емкость, а обратная ей величина:

1/C=1/С1+1/С2+1/С3

Из формулы емкости одиночного конденсатора можно вывести, что при одинаковых элементах, соединенных последовательно, их можно представить в виде одного большого с той же площадью обкладки, но с суммарной толщиной диэлектрика.

Конденсатор полипропиленовый

Полипропиленовый конденсатор — один из множества разновидностей конденсаторов пленочного типа. Полипропиленовые конденсаторы — это конденсаторы, которые имеют полипропиленовую пленку в качестве диэлектрика. Полипропиленовые конденсаторы доступны в диапазоне емкостей от 100 пФ до 10 мкФ.

Основная особенность полипропиленового конденсатора — высокое рабочее напряжение до 3000 В. Эта особенность делает полипропиленовые (pp) конденсаторы полезными в цепях, в которых рабочее напряжение обычно очень высокое, таких как усилители мощности, особенно клапанные усилители, цепи питания и телевизионные схемы.

Полипропиленовые конденсаторы также используются в устройствах связи и накопления из-за их высоких значений сопротивления изоляции. А также они имеют стабильные значения емкости для частот ниже 100 кГц. Эти полипропиленовые конденсаторы используются в устройствах, где необходимо выполнять задачи по подавлению шума, связи, фильтрации по времени, блокировке, обходу и обработке импульсов.

Основные параметры

Главные параметры конденсаторов, которые используются при проектировании и ремонте устройств радиоэлектроники, – это емкость и номинальное напряжение. Кроме этого, существует еще несколько дополнительных параметров, которые могут влиять на элементы схемы. Конденсаторы имеют следующие основные характеристики.

Ёмкость

Это самый основной параметр, который характеризует накопление электрического заряда. Расчет значения производится по различным формулам, в зависимости от конструкционных особенностей: плоский, цилиндрический или круглый конденсатор. На практике большая их часть выпускается как разновидности плоского. Емкость современных устройств варьируется от единиц пикофарад до десятков тысяч микрофарад и даже единиц фарад.

Удельная ёмкость

Этот относительный параметр привязывает габариты к величине емкости. Таким образом, чем выше удельная емкость, тем меньше габариты конструкции, однако при этом может упасть электрическая прочность (рабочее напряжение).

Плотность энергии

Данный параметр важен при использовании конденсаторов в качестве накопителей энергии, определяет величину энергии на единицу массы или объема элемента.

Номинальное напряжение

Значение напряжения, при котором сохраняются рабочие параметры в течение срока службы, называется номинальным. Рабочее напряжение должно быть меньше номинального.

Важно! Превышение номинального напряжения чревато выходом элемента из строя. Электролитический конденсатор при этом может разрушиться со взрывом

Вопреки распространенному мнению, элемент, включенный в цепь с напряжением, в несколько раз меньше номинального, сохраняет все остальные параметры.

Полярность

Такие виды конденсаторов, как электролитические, зачастую требуют включения в цепь с соблюдением полярности. Поскольку такие элементы используются, в основном, как накопители или фильтры, это не составляет затруднений. Несоблюдение полярности приводит к:

  • несоответствию емкости;
  • повреждению.

Маркировка обязательно содержит информацию о полярности подключения.

Опасность разрушения (взрыва)

Разрушение со взрывом характерно для электролитических конденсаторов. Причиной взрыва является нагрев, который возникает из-за:

  • несоблюдения полярности;
  • расположения рядом с источниками тепла;
  • старения (увеличения утечки и повышения эквивалентного сопротивления).

Для уменьшения последствий разрушения на корпусе в торце ставят предохранительный клапан или формируют насечки на крышке. Такая конструкция гарантирует, что при резком увеличении давления внутри корпуса скопившиеся газы и электролит выделяются через клапан или разрушенную по насечкам крышку. Таким образом, предотвращается взрыв, при котором обкладки и электролит разбрасываются по большой площади и вызывают замыкание элементов плат. Охлаждение устройства снижает вероятность разрушения.

Конденсатор из поликарбоната

Конденсаторы из поликарбоната — это конденсаторы, в качестве диэлектрика которых используется поликарбонат. Эти типы конденсаторов доступны в диапазоне емкости от 100 пФ до 10 мкФ и имеют рабочее напряжение до 400 В постоянного тока. Эти поликарбонатные конденсаторы могут работать в диапазоне температур от -55 ° C до + 125 ° C без снижения номинальных значений.

Данные конденсаторы не используются в высокоточных устройствах из-за их высоких уровней допуска от 5% до 10%. Конденсаторы из поликарбоната также используются для переменного тока. Иногда они также встречаются в импульсных блоках питания.

Как проверить конденсатор

Иногда неисправность электролитического конденсатора выявляется без проверки — по вздутию или разрыву верхней крышки. Она намеренно ослаблена крестообразной просечкой и работает как предохранительный клапан, разрываясь при незначительном давлении. Без этого выделяющиеся из электролита газы разрывали бы корпус конденсатора с разбрызгиванием всего содержимого. Hо нарушения могут и не проявляться внешне. Bот какими они бывают: Из-за химических изменений снизилась емкость элемента. Hапример, конденсаторы с жидким электролитом высыхают, особенно при высокой температуре. Из-за этой особенности для них существуют ограничения по температуре эксплуатации (допустимый диапазон указан на корпусе). Произошел обрыв вывода.

Появилась проводимость между обкладками (пробой). Собственно, она существует и в исправном состоянии — это так называемый ток утечки. Hо при пробое эта величина из мизерной превращается в значительную. Снизилось максимально допустимое напряжение (обратимый пробой). Для каждого конденсатора существует критическое напряжение, вызывающее замыкание между обкладками. Оно указывается на корпусе.

Будет интересно➡ Как обозначаются конденсаторы на схеме?

Hа руки при этом желательно одеть резиновые перчатки. Исправный элемент разряжается с образованием искры и характерного треска, нерабочий — вяло и незаметно. У данного способа два недостатка:

  • опасность электротравмы;
  • неопределенность:

Даже при наличии искры невозможно понять, соответствует ли фактическая емкость радиодетали номинальной. Более информативна проверка с применением тестера. Лучше всего использовать специальный — LС-метр. Он предназначен для замера емкости, причем рассчитан на широкий диапазон. Hо многое о состоянии конденсатора расскажет и обычный мультиметр.

Слюдяные конденсаторы с серебряными обкладками

Слюдяные конденсаторы с серебряными обкладками — это конденсаторы, которые изготавливаются путем нанесения тонкого слоя серебра на слюдяной материал в качестве диэлектрика. Причина использования таких слюдяных конденсаторов заключается в их высоких характеристиках по сравнению с любыми другими типами конденсаторов.

Слюдяные конденсаторы с серебряными обкладками могут быть изготовлены с допуском +/- 1%. Это намного лучше, чем любой другой тип конденсатора, доступный в продаже на сегодняшний день. Температурный коэффициент этих конденсаторов намного лучше, чем у конденсаторов других типов.

И это значение положительное, и обычно оно находится в диапазоне от 35 до 75 ppm/C, при среднем значении +50 ppm/C. Значения емкости для слюдяных конденсаторов обычно находятся в диапазоне от нескольких пикофарад до 3300 пикофарад. Слюдяные конденсаторы с серебряными обкладками имеют очень высокий уровень добротности и небольшой коэффициент мощности. Эти конденсаторы имеют диапазон напряжений от 100 В до 1000 В.

Читать также: Выпрямительные диоды и светодиоды

Слюдяные конденсаторы с серебряными обкладками используются в ВЧ-генераторах. Они не используются в устройствах связи из-за их высокой стоимости. Из-за их размера и стоимости, они в настоящее время мало используются.

Классификация и основные характеристики конденсаторов

Воздушные конденсаторы малых холодильных машинах можно клас­сифицировать следующим образом.

По способу циркуляции охлаждающего воздуха различают конден­саторы с естественной циркуляцией (свободное движение) и с прину­дительным движением воздуха.

По условиям движения хладагента в секциях аппарата конденсаторы разделяются на следующие типы: с последовательным, параллельным и последовательно-параллельным движением.

По месту установки конденсаторы классифицируют на встроенные (установленные непосредственно на раме агрегата рядом с компрессо­ром) и выносные (установленные отдельно от компрессора, обычно снаружи здания, сбоку или на крыше машинного отделения).

По виду выполнения теплопередающих поверхностей конденсато­ры могут быть гладкотрубные, ребристо-трубные, листотрубные и па­нельные.

Аппараты с естественной циркуляцией (конвекцией) воздуха ис­пользуют преимущественно в бытовых холодильниках. Такой аппарат имеет односекционную конструкцию с последовательным движением хладагента. Наибольшее распространение имеют два типа конструкции: листотрубная (представляющая собой плоский змеевик из круглой труб­ки, обычно диаметром 6 мм, плотно прижатый к металлическому листу, имеющему просечки различного вида) и ребристо-трубная (представля­ющая собой плоский трубчатый змеевик, аналогичный предыдущей конструкции, но имеющий снаружи оребрение, выполненное из отрезков толстой проволоки диаметром 1,5-2 мм, приваренной к трубкам по вы­соте всего змеевика).

В отдельных случаях конденсатор бытового холодильника может иметь панельную конструкцию, где, как и в испарителе, хладагент про­ходит по каналам внутри двухслойного листа.

Аппараты с принудительным движением воздуха выполняют преиму­щественно ребристо-трубными путем насадки на гладкие трубы плас­тинчатых ребер. Последние могут иметь различную форму (подробно этот вопрос будет рассмотрен ниже). Такие аппараты называют также пластинчато-ребристыми. Широкое распространение такие аппараты получили вследствие сравнительно низкой трудоемкости их изготов­ления.

Оребрение может выполняться также путем навивки на трубу ленты или выдавливанием ребер непосредственно из материала трубы. Иногда оребрение делают не только снаружи, но и внутри путем использования различных вставок-насадок на стороне хладагента. Как будет показано ниже, такие аппараты (имеющие двустороннее оребрение) обладают вы­сокой теплопередающей способностью, но из-за технологических слож­ностей изготовления еще не нашли широкого применения в отечествен­ной и мировой практике.

Воздушный конденсатор малой холодильной машины является од­ним из конструктивных узлов (элементов) холодильного агрегата, поэтому его характеристики и пути их совершенствования тесно свя­заны с развитием и совершенствованием других элементов: компрес­сора, ресивера, рамы и др.

В целях определения основных современных тенденций конструирования и оценки возможности прогнозирования характеристик малых холодильных агре­гатов авторами проведен анализ характеристик агрегатов, выпускаемых де­сятью ведущими фирмами в девяти промышленно-развитых странах мира. Рас­смотрены средне- и низкотемпературные агрегаты холодопроизводительностъю от 200 до 6000 Вт. Анализировались следующие их основные характеристики: хо­лодильный коэффициент е; удельная материалоемкость М; удельный занимае­мый объем V; корректированный уровень звуковой мощности U.

Электролитические конденсаторы

Электролитические конденсаторы обычно используются там, где требуются очень большие значения емкости. Электролитические конденсаторы имеют металлический анод, покрытый окисленным слоем, обычно используемым в качестве его диэлектрика. Другой электрод конденсатора — это нетвердый или твердый электролит.

Большинство электролитических конденсаторов поляризованы. Эти конденсаторы классифицируются в соответствии с их диэлектрическим материалом. В основном они делятся на три класса:

  • Алюминиевые электролитические конденсаторы — алюминий выступает в качестве диэлектрика.
  • Танталовые электролитические конденсаторы — оксид тантала действует как его диэлектрик.
  • Электролитические конденсаторы ниобия — оксид ниобия действует как его диэлектрик.

Обычно диэлектрическая проницаемость оксида тантала почти в три раза больше диэлектрической проницаемости диоксида алюминия, но эта диэлектрическая проницаемость определяет только размеры. Обычно используются три типа электролитов:

  • Не твердые (жидкие): эти конденсаторы имеют проводимость около 10 мс/см, и стоят сущие копейки.
  • Твердый оксид марганца: эти конденсаторы имеют проводимость около 100 мс/см, а также обладают высоким качеством и стабильностью.
  • Твердый проводящий полимер: конденсаторы этого типа имеют проводимость примерно 10000 мс/см, а также значение ESR <10 мОм.

Электролитические конденсаторы обычно используются в цепях постоянного питания. Они также используются в устройствах связи для уменьшения пульсаций напряжения из-за их больших значений емкости и небольшого размера. Одним из основных недостатков электролитических конденсаторов является их низкое напряжение.

Схема электролитического конденсатора

Устройства воздушного охлаждения

Воздушный конденсатор водяного охлаждения состоит из нескольких узлов. В его конструкцию входят:

  • теплообменник;
  • вентилятор;
  • электродвигатель.

Для изготовления теплообменника часто используют металлические трубки диаметром в 6 или 19 мм. Благоприятно воздействует на работу системы их оребрение с шагом в 1,5–3 мм. В качестве основного материала используется медь, которой свойственны высокие показатели теплопроводности. Оребрение же – алюминиевое.

Конструкция ребер может быть разной. Точная модель определяется целевым использованием теплообменника. Жесткий профиль из алюминия с просечкой или выступом будет способствовать повышению движения потока воздуха вблизи самого ребра.

И также свои особенности имеет движение воздуха в теплообменнике. Наиболее распространенный агент фреон поступает в систему сверху, где начинает интенсивно охлаждаться, растекаясь вниз. Заняв 90% полезной площади теплообменника, фреон достигает привычной нормы температур.

Алюминиевые электролитические конденсаторы

Алюминиевые конденсаторы — это конденсаторы, которые сделаны из оксидной пленки на алюминиевой фольге с полосой абсорбирующей бумаги между ними, которая пропитана раствором электролита, и вся эта конструкция закупорена в банке. В основном существует два типа алюминиевых электролитических конденсаторов: с простой фольгой и с вытравленной фольгой.

Электролитические конденсаторы с простой фольгой в основном используются в качестве сглаживающих конденсаторов в цепях питания, в то время как конденсаторы с протравленной фольгой используются в соединительных цепях блокировки по постоянному току и шунтирующих цепях.

Электролитические алюминиевые конденсаторы покрывают диапазон емкости от 1 мкФ до 47000 мкФ с большим допуском в 20%. Диапазон рабочего напряжения составляет до 500 В.

Значение емкости и номинальное напряжение либо напечатаны в мкФ, либо закодированы буквой, за которой следуют три цифры. Эти три цифры представляют собой значение емкости в пФ.

Танталовые конденсаторы — это конденсаторы, которые сделаны из оксида тантала в качестве диэлектрического материала. Танталовые электролитические конденсаторы также являются поляризованными конденсаторами, как и алюминиевые конденсаторы.

Второй вывод танталовых электролитических конденсаторов меньше, чем вывод эквивалентных алюминиевых конденсаторов, и этот вывод сделан из диоксида марганца.

Основное преимущество танталовых электролитических конденсаторов перед алюминиевыми конденсаторами заключается в том, что они более стабильны, легче и меньше. Они имеют диапазон значений емкости от 47 нФ до 470 мкФ и максимальное рабочее напряжение до 50 В. Они дороже алюминиевых электролитов.

Свойства диэлектрика из оксида тантала — низкий ток утечки и лучшая стабильность емкости. Эти свойства диэлектрика из оксида тантала заставляют использовать их в устройствах блокировки, обхода, фильтрации и синхронизации. А также эти свойства намного лучше, чем у диэлектрика из оксида алюминия.

Маркировка конденсаторов

Маркировка отличается у различных производителей. В изделиях, производимых в СССР и постсоветских республиках, в маркировке обязательно присутствуют следующие данные:

  • Буквенно-цифровое обозначение, характеризующее тип и технологию изготовления;
  • Значение емкости и погрешность изготовления;
  • Номинальное напряжение;
  • ТКЕ;
  • Дата изготовления.

Для импортных изделий обязательно только обозначение емкости. Остальные параметры наносятся по усмотрению производителя.

Невозможно в ограниченном объеме подробно описать все существующие виды конденсаторов. Тем более что их конструкция постоянно совершенствуется, приходят новые технологии, которые позволяют снизить стоимость с одновременным улучшением характеристик.

Суперконденсаторы

Суперконденсатор также известен как ультраконденсатор или конденсатор с двойным электрическим слоем. Эти конденсаторы изготовлены с тонким разделителем электролита, который окружен ионами активированного угля. Он отличается от обычного конденсатора тем, что емкость суперконденсатора очень высока и составляет порядка миллифарад при диапазонах напряжения от 2,3 В до 2,75 В.

Суперконденсаторы делятся на три типа в зависимости от конструкции электродов, к которым они относятся.

  • Двухслойные конденсаторы: у этих конденсаторов есть угольные электроды или их производные.
  • Псевдоконденсаторы: эти конденсаторы имеют электроды из оксида металла или проводящего полимера.
  • Гибридные конденсаторы: эти конденсаторы имеют асимметричные электроды.

Суперконденсаторы в основном используются в устройствах, где требуется очень большое количество циклов заряда/разряда, где требуется длительный срок службы, и где требуется большое количество энергии за короткое время. Эти суперконденсаторы обычно используются как временный источник питания, вместо аккумулятора.

С Уважением, МониторБанк

Типы конденсаторов

Выносные воздушные конденсаторы бывают разными. Их разделяют на категории по ряду критериев:

  • уровню шума;
  • используемому хладагенту;
  • производительности установки;
  • типу используемых вентиляторов (центробежные, осевые);
  • количеству вентиляторов в установке;
  • по расположению теплообменника и направлению нагнетания, всасывания воздуха.

По расположению теплообменников устройства бывают четырех типов: горизонтальными, вертикальными, V-образными, комбинированными.

От конструкции зависит нагнетание и всасывание воздуха в системе. Установки бывают классическими (стандартными) по уровню шума, а также малошумными. Последнее поколение выносных воздушных конденсаторов включает также сверхмалошумные модели.

Варианты конденсаторов по применению

Виды конденсаторов названы по типу диэлектрика:

  • бумажные и металлобумажные;
  • электролитические;
  • алюминиевые;
  • танталовые;
  • полимерные;
  • плёночные;
  • керамические;
  • воздушные.

Бумажные и металлобумажные

Диэлектриком является специальная бумага, которая разделяет собой фольгированные обкладки. Данные типы конденсаторов применяют в электронных цепях, как низкой, так и высокой частоты. Детали, где используют вместо фольги бумагу с вакуумным напылением металла, называют металлобумажными.

Электролитические

В отличие от бумажных типов, в ЭК диэлектриком является оксидный слой металла. Применяют в качестве электролита жидкие или сухие составы. Электролитическими конденсаторами называют радиодетали, в которых используют алюминиевые обкладки.

ЭК применяют в низкочастотных схемах, где востребована большая ёмкость. Ими заменяют детали больших размеров, но с той же ёмкостью.

Танталовые

Одна из разновидностей ЭК, в которых тантал исполняет роль металлического электрода. Диэлектриком является его же оксид – Та2О5. Электронный компонент намного меньше предыдущих образцов. Это свойство позволяет формировать компактные печатные платы радиосхем.

Полимерные

Разделительные прокладки выполнены из полимерных материалов. Пластиковые накопители применяют в фильтрах блоков импульсного питания.

Плёночные

Диэлектрик сделан из полимерной плёнки. Электроды крепят к плёночному материалу методом металлического напыления. Радиодетали выдерживают силовые токи больших значений. Используют в цепях резонансного назначения.

Керамические

На керамические пластинки напыляют металл. Потом из них составляют пачки. Электроды формируют методом металлического напыления. Высокая проницаемость позволяет изготавливать керамические радиокомпоненты очень маленьких размеров. Их марки отображают ёмкость в микро,- и пико фарадах.

Воздушные

Воздушные радиодетали представляют собой конденсаторы переменной ёмкости. Воздушная прослойка между подвижными пластинами исполняет роль диэлектрика. Этот тип конденсаторов и область их применения связаны с настройкой частотных характеристик тока.

Подстроечные конденсаторы

Подстроечные конденсаторы используются при разовом или периодическом регулировании емкости, в отличии от «стандартных» переменных конденсаторов, где емкость меняется в «режиме реального времени». Такая настройка предназначена для самих производителей аппаратуры, а не для ее пользователей, и выполняется специальной настроечной отверткой. Обычная стальная отвертка не подходит, так как может повлиять на емкость конденсатора. Емкость подстроечных конденсаторов как правило невелика – до 500 пикоФарад.

Как определить емкость, номинал и напряжение SMD конденсаторов

Выше была изложена подробная информация о том, как правильно определять номинал SMD конденсаторов по маркировке. Основная сложность при выполнении такой операции заключается в том, что символы могут быть настолько малы, что их невозможно идентифицировать невооруженным глазом. В такой ситуации рекомендуется использовать лупу либо любой другой увеличительный прибор с подходящей кратностью, а также установить качественное освещение в месте проведения подобных исследований.

Обратите внимание! Иногда на поверхности радиоэлемента не читаются либо полностью отсутствуют обозначения, поэтому каждому радиолюбителю следует знать, как определить емкость электролитического конденсатора без маркировки. Для выполнения такой работы не обойтись без специального измерительного прибора

Для получения корректных показателей перед началом измерения емкости конденсатора радиоэлемент необходимо полностью разрядить.

Предельное напряжение измеряется на конденсаторе, который устанавливается в электронную схему, где данный элемент может быть безопасно подключен к электрическому напряжению. После отключения источника тока проводят измерение напряжения на контактах радиодетали. Полученное значение в вольтах следует умножить на 1,5 для получения точного значения этого параметра.

Напряжение можно измерить дешевым мультиметром

Конденсаторы SMD являются очень удобными при самостоятельной сборке различных схем, а при автоматическом монтаже благодаря им удается добиться максимальной компактности расположения радиодеталей. Зная принципы расшифровки обозначения таких элементов, можно без каких-либо затруднений проектировать и собирать даже сложные устройства в домашних условиях.

По диапазону напряжений

Диапазон рабочих напряжений — очень важная характеристика конденсатора. В электронных схемах напряжения обычно небольшие. Верхняя граница — около 100 вольт. Но схемы электропитания, различные блоки питания, выпрямители, стабилизаторы приборов требуют установки конденсаторов, которые могли бы выдерживать напряжения до 400–500 вольт — с учетом возможных всплесков, и даже до 1000 вольт.

Но в сетях передачи электроэнергии напряжения бывают гораздо выше. Существуют высоковольтные конденсаторы специального исполнения.

Использование конденсатора вне его диапазона напряжений грозит пробоем. После пробоя устройство становится просто проводником и свои функции выполнять перестает. Особенно это опасно там, где конденсатор устанавливается для развязки схем по току, как отделяющий постоянное напряжение от переменной составляющей. В этом случае пробой грозит той части схемы, куда после этого хлынет постоянное напряжение: могут гореть другие элементы, может быть поражение электрическим током. Для электролитических конденсаторов это явление грозит еще и взрывом.

Высоковольтные конденсаторы

Слева – до 35 кВ, справа – до 4 кВ

Так как для пробоя на высоком напряжении нужен определенный минимум расстояния между проводниками, обычно для высоковольтного исполнения приборы и выполняются значительными по размерам. Или бывают изготовлены из определенных стойких к пробою материалов: керамические и … метало-бумажные. Разумеется, все в соответствующем по свойствам корпусе.

Полимерные твердотельные конденсаторы

Можно сказать, что все устройства этого типа являются полимерными, так как внутри этого устройства используется твердый полимер вместо жидкого электролита. Применение твердого материала в стандартных твердотельных конденсаторах дало такие преимущества:

  • при высоких частотах — низкое эквивалентное сопротивление;
  • высокое значение тока пульсации;
  • срок эксплуатации конденсатора значительно выше;
  • более стабильная работа при высоких температурных режимах.

Если говорить подробнее, то, к примеру, пониженное ESR — это меньшие затраты энергии, а значит, и меньший нагрев конденсатора при тех же нагрузках. Более высокая степень пульсации тока обеспечивает стабильную работу всей платы в целом. Естественно, что именно замена жидкого электролита на твердый и привела к тому, что срок службы значительно вырос.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]