Что такое конденсатор 


Что такое конденсатор

Конденсатор или как в народе говорят — «кондер», образуются от латинского «condensatus», что означает как «уплотненный, сгущенный». Он представляет из себя пассивный радиоэлемент, который обладает таким свойством, как сохранение электрического заряда на своих обкладках, если, конечно, перед этим его зарядить каким-нибудь источником питания.
Грубо говоря, конденсатор можно рассматривать как батарейку или аккумулятор электрической энергии. Но вся разница в том, что аккумулятор или батарейка имеют в своем составе источник ЭДС, тогда как конденсатор лишен этого внутреннего источника.

Маркировка конденсаторов

В маркировке конденсатора, независимо от его типа, присутствуют два обязательных параметра – емкость и номинальное напряжение. Наиболее распространена цифровая маркировка, указывающая величину сопротивления. В ней используется три или четыре цифры.

Кратко суть трехфциферной маркировки: первые две цифры, находящиеся слева, указывают значение емкости в пикофарадах. Самая правая цифра показывает, сколько нулей надо прибавить к стоящим слева цифрам. Результат получается в пикофарадах. Пример: 154 = 15х104 пФ. На конденсаторах зарубежного производства пФ обозначаются как mmf.

В кодовом обозначении с четырьмя цифрами емкость в пикофарадах обозначают первые три цифры, а четвертая указывает на количество нулей, которые требуется добавить. Например: 2353=235х103 пФ.

Для обозначения емкости также может применяться буквенно-цифровая маркировка, содержащая букву R, которая указывает место установки десятичной запятой. Например, 0R8=0,8 пФ.

На корпусе значение напряжения указывается числом, после которого ставятся буквы: V, WV (что означает «рабочее напряжение»). Если указание на допустимое напряжение отсутствует, то конденсатор может использоваться только в низковольтных цепях.

Помимо емкости и напряжения, на корпусе могут указываться и другие характеристики детали:

  • Материал диэлектрика. Б – бумага, С – слюда, К – керамика.
  • Степень защиты от внешних воздействий. Г – герметичное исполнение, О – опрессованный корпус.
  • Конструкция. М – монолит, Б – бочонок, Д – диск, С – секционный вариант.
  • Режим по току. И – импульсный, У – универсальный, Ч – только постоянный ток, П – переменный/постоянный.

Из чего состоит конденсатор

Любой конденсатор состоит из двух или более металлических обкладок, которые не соприкасаются друг с другом. Для более полного понимания, как все это устроено в конденсаторе, давайте представим себе блин.

намажем его сгущенкой

и сверху положим точно такой же блин

Должно выполняться условие: эти два блина не должны прикасаться друг с другом. То есть верхний блин должен лежать на сгущенке и не прикасаться с нижним блином. Тут, думаю, все понятно. Перед вами типичный «блинный конденсатор» :-). Вот таким образом устроены все конденсаторы, только вместо блинов используются тонкие металлические пластины, а вместо сгущенки различный диэлектрик. В качестве диэлектрика может быть воздух, бумага, электролит, слюда, керамика, и так далее. К каждой металлической пластине подсоединены проводки — это выводы конденсатора.

Схематически все это выглядит примерно вот так.

Как вы могли заметить, из-за диэлектрика конденсатор не может проводить ток. Но это относиться только к постоянному току. Переменный ток конденсатор пропускает через себя без проблем с небольшим сопротивлением, номинал которого зависит от частоты тока и емкости самого конденсатора.

Где используются конденсаторы

Конденсаторы применяются практически во всех современных устройствах: сабвуферах, электродвигателях, автомобилях, насосах, электроинструменте, кондиционерах, холодильниках, мобильных телефонах и т.п.

В зависимости от выполняемых функций их разделяют на общего назначения и узкоспециальные.

К конденсаторам общего назначения относятся низковольтные накопители, которые используются в большинстве видов электроаппаратуры.

К узкоспециализированным относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические ипусковые конденсаторы.

Емкость конденсатора

Электрические заряды

Как вы знаете, существует два типа зарядов: положительный заряд и отрицательный заряд. Ну и все как обычно, одноименные заряды отталкивается, а разноименные — притягиваются. Физика седьмой класс).

Давайте еще раз рассмотрим простую модель конденсатора.

Если мы соединим наш конденсатор с каким-нибудь источником питания постоянного тока, то мы его зарядим. В этот момент положительные заряды, которые идут от плюса источника питания, осядут на одной пластине, а отрицательные заряды с минуса источника питания — на другой.

Самое интересное то, что количество положительных зарядов будет равняться количеству отрицательных зарядов.

Даже если мы отсоединим источник питания постоянного тока, то у нас конденсатор так и останется заряженным.

Почему так происходит?

Во-первых, заряду некуда течь. Хотя с течением времени он все равно будет разряжаться. Это зависит от материала диэлектрика.

Во-вторых, происходит взаимодействие зарядов. Положительные заряды притягиваются к отрицательным, но они не могут соединиться с друг другом, так как им мешает диэлектрик, который, как вы знаете, не пропускает электрический ток. В это время между обкладками конденсатора возникает электрическое поле, которое как раз и запасает энергию конденсатора.

Когда конденсатор заряжается, электрическое поле между обкладками становится сильнее. Соответственно, когда конденсатор разряжается, электрическое поле слабеет. Но как много заряда мы можем «впихнуть» в конденсатор? Вот здесь и применяется такое понятие, как емкость конденсатора.

Что такое емкость

Емкость конденсатора — это его способность накапливать заряд на своих пластинах в виде электрического поля.

Но ведь емкость может быть не только у конденсатора. Например, емкость бутылки 1 литр, или емкость бензобака — 100 литров и так далее. Мы ведь не можем впихнуть в бутылку емкость в 1 литр больше, чем рассчитана эта бутылка, так ведь? Иначе остатки жидкости просто не влезут в бутылку и будут выливаться из нее. Точно такие же дела и обстоят с конденсатором. Мы не сможем впихнуть в него заряда больше, если он не рассчитан на это. Поэтому, емкость конденсатора выражается формулой:

где

С — это емкость, Фарад

Q — количество заряда на одной из обкладок конденсатора, Кулоны

U — напряжение между пластинами, Вольты

Получается, 1 Фарад — это когда на обкладках конденсатора хранится заряд в 1 Кулон и напряжение между пластинами 1 Вольт. Емкость может принимать только положительные значения.

Значение в 1 Фарад — это слишком много. На практике в основном пользуются значениями микрофарады, нанофарады и пикофарады. Хочу вам напомнить, что приставка «микро» — это 10-6 , «нано» — это 10-9 , пико — это 10-12 .

Где применяются конденсаторы

Работа электронных, радиотехнических и электрических устройств невозможна без конденсаторов.

В электротехнике их используют для сдвига фаз при запуске асинхронных двигателей. Без сдвига фаз трехфазный асинхронный двигатель в переменной однофазной сети не функционирует.

Конденсаторы с ёмкостью в несколько фарад — ионисторы, используются в электромобилях, как источники питания двигателя.

Для понимания, зачем нужен конденсатор, нужно знать, что 10-12% измерительных устройств работают по принципу изменения электрической ёмкости при изменении параметров внешней среды. Реакция ёмкости специальных приборов используется для:

  • регистрации слабых перемещений через увеличение или уменьшение расстояния между обкладками;
  • определения влажности с помощью фиксирования изменений сопротивления диэлектрика;
  • измерения уровня жидкости, которая меняет ёмкость элемента при заполнении.

Трудно представить, как конструируют автоматику и релейную защиту без конденсаторов. Некоторые логики защит учитывают кратность перезаряда прибора.

Ёмкостные элементы используются в схемах устройств мобильной связи, радио и телевизионной техники. Конденсаторы применяют в:

  • усилителях высоких и низких частот;
  • блоках питания;
  • частотных фильтрах;
  • усилителях звука;
  • процессорах и других микросхемах.

Легко найти ответ на вопрос, для чего нужен конденсатор, если посмотреть на электрические схемы электронных устройств.

Плоский конденсатор и его емкость

Плоским конденсатором называют конденсатор, который состоит из двух одинаковых пластин, которые параллельны друг другу. Пластины могут быть разной формы. На практике чаще всего можно встретить квадратные, прямоугольные и круглые пластины. Давайте рассмотрим простой плоский квадратный конденсатор.

плоский конденсатор

где

d — расстояние между пластинами конденсатора, м

S — площадь самой наименьшей пластины, м2

ε — диэлектрическая проницаемость диэлектрика между обкладками конденсатора

Готовая формула для плоского конденсатора будет выглядеть так:

где

С — емкость конденсатора, ф

ε — диэлектрическая проницаемость диэлектрика

ε0 — диэлектрическая постоянная, ф/м

S — площадь самой наименьшей пластины, м2

d — расстояние между пластинами, м

Да, знаю, у вас сразу возникает вопрос: «А что такое диэлектрическая постоянная?» Диэлектрическая постоянная — это постоянная величина, которая нужная для вычислений в некоторых формулах электромагнетизма. Ее значение равняется 8, 854 × 10-12 ф/м.

Диэлектрическая проницаемость — эта величина зависит от типа диэлектрика, который находится между обкладками конденсатора. Например, для воздуха и вакуума это значение равняется 1, для некоторых других веществ можете посмотреть в таблице.

Какой можно сделать вывод из этой формулы? Хотите сделать конденсатор с огромной емкостью, делайте площадь пластин как можно больше, расстояние между пластинами как можно меньше и заправляйте вместо диэлектрика дистиллированную воду.

В настоящее время конденсаторы делают из нескольких пластин в виде слоеного торта. Это примерно выглядит вот так.

многослойный конденсатор

В этом случае формула такого конденсатора примет вид:

формула многослойного конденсатора

где n — это количество пластин

Электроемкость

  • Электроемкость
    характеризует способность проводников или системы из нескольких проводников накапливать электрические заряды, а, следовательно, и электроэнергию, которая в дальнейшем может быть использована, например, при фотосъемке (вспышка) и т.д.
  • Еще в середине XVIII в. считалось, что электричество — это особая жидкость, содержащаяся в любом заряженном теле. Если заряд тела уменьшался, то это объясняли «испарением» этой жидкости. Для уменьшения «испарения» (сохранения заряда) предлагали поместить заряженное тело в какую-нибудь емкость — электроемкость
    .

Различают электроемкость уединенного проводника, системы проводников (в частности, конденсаторов).

Электроемкость уединенного проводника

  • Уединенным
    называется проводник, расположенный вдали от других заряженных и незаряженных тел так, что они не оказывают на этот проводник никакого влияния.
  • Электроемкость уединенного проводника
    — физическая величина, равная отношению электрического заряда уединенного проводника к его потенциалу:

\(~C = \dfrac{q}{\varphi}\) или \(~C = \dfrac{\Delta q}{\Delta \varphi}\).
В СИ единицей электроемкости является фарад

(Ф).

  • 1 Ф — это электроемкость такого проводника, потенциал которого изменяется на 1 В при сообщении ему заряда в 1 Кл.

Поскольку 1 Ф очень большая единица емкости, применяют дольные единицы:

1 пФ (пикофарад) = 10-12 Ф, 1 нФ (нанофарад) = 10-9 Ф, 1 мкФ (микрофарад) = 10-6 Ф и т.д.

Электроемкость проводника не зависит от рода вещества и заряда, но зависит от его формы и размеров, а также от наличия вблизи диэлектрика.

Если уединенным проводником является заряженная сфера, то потенциал поля на ее поверхности

\(~\varphi = \dfrac{q}{4 \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot R} = \dfrac{k \cdot q}{\varepsilon \cdot R}\),

где R

— радиус сферы, ε — диэлектрическая проницаемость среды, в которой находится проводник. Тогда электроемкость уединенного сферического проводника
\(~C = \dfrac{q}{\varphi} = 4 \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot R = \dfrac{\varepsilon \cdot R}{k}.\)

  • Электроемкость сферы размерами с Землю равна всего 709 мкФ. Электроемкость сферы равна 1 Ф, если радиус сферы в 1400 раз больше радиуса Земли, т.е. R
    = 9⋅1012 м.

Электроемкость двух проводников

Обычно на практике имеют дело с двумя и более проводниками. Рассмотрим два проводника произвольной формы, находящиеся в однородном диэлектрике. Сообщим им заряды +q

и –
q
. При этом между проводниками установится некоторая разность потенциалов (напряжение): φ1 – φ2 =
U
.

Эксперимент показывает, что увеличение заряда каждого проводника, например, в 2 раза приводит к увеличению напряжения между ними также в 2 раза, т.е. отношение \(\dfrac{q}{U}\) для данной пары проводника остается постоянным:

\(\dfrac{q_1}{U_1} = \dfrac{q_2}{U_2} = \ldots = const = C.\)

  • Электроемкость двух проводника — физическая величина, равная отношению электрического заряда одного из проводников к разности потенциалов (напряжению) между ними

\(~C = \dfrac{q}{\varphi_1 — \varphi_2} = \dfrac{q}{U}. \)
Электроемкость двух проводников зависит от формы и размеров проводников, от их взаимного расположения и относительной диэлектрической проницаемости среды, заполняющей пространство между ними.

Максимальное рабочее напряжение на конденсаторе

Все конденсаторы имеют какое-то предельное напряжение, которое можно на них подавать. Дело все в том, что может произойти пробой диэлектрика, и конденсатор выйдет из строя. Чаще всего это напряжение пишут на самом корпусе конденсатора. Например, на электролитическом конденсаторе.

В технической документации этот параметр чаще всего обозначается, как WV, что с английского Working Voltage (рабочее напряжение), или DC WV — Direct Current Working Voltage — постоянное рабочее напряжение конденсатора.

Здесь есть один нюанс, о котором часто забывают. Дело в том, что на конденсаторе написано именно на какое постоянное напряжение он рассчитан, а не переменное. Если такой конденсатор, как на рисунке выше, с максимальным рабочим напряжением в 50 Вольт вставите в цепь переменного тока с источником питания, который выдает 50 Вольт переменного тока, то ваш конденсатор взорвется. Так как 50 Вольт переменного тока — это действующее напряжение. Его максимальное значение будет 50 × √2 = 70,7 Вольт, что намного больше, чем 50 Вольт.

Основные параметры конденсаторов

Емкость

Этот показатель характеризует способность конденсатора накапливать электрический заряд. Емкость тем больше, чем больше площадь проводниковых обкладок и чем меньше толщина диэлектрического слоя. Также эта характеристика зависит от материала диэлектрика. На приборе указывается номинальная емкость. Реальная емкость, в зависимости от эксплуатационных условий, может отличаться от номинальной в значительных пределах. Стандартные варианты номинальной емкости – от единиц пикофарад до нескольких тысяч микрофарад. Некоторые модели могут иметь емкость в несколько десятков фарад.

Классические конденсаторы имеют положительную емкость, то есть чем больше приложенное напряжение, тем больше накопленный заряд. Но сегодня в стадии разработки находятся устройства с уникальными свойствами, которые ученые называют «антиконденсаторами». Они обладают отрицательной емкостью, то есть с ростом напряжения их заряд уменьшается, и наоборот. Внедрение таких антиконденсаторов в электронную промышленность позволит ускорить работу компьютеров и снизить риск их перегрева.

Что будет, если поставить накопитель большей/меньшей емкости, по сравнению с требуемой? Если речь идет о сглаживании пульсаций напряжения в блоках питания, то установка конденсатора с емкостью, превышающей нужную величину (в разумных пределах – до 90% от номинала), в большинстве случаев улучшает ситуацию. Монтаж конденсатора с меньшей емкостью может ухудшить работу схемы. В других случаях возможность установки детали с параметрами, отличающимися от заданных, определяют конкретно для каждого случая.

Удельная емкость

Отношение номинальной емкости к объему (или массе) диэлектрика. Чем тоньше диэлектрический слой, тем выше удельная емкость, но тем меньше его напряжение пробоя.

Плотность энергии

Это понятие относится к электролитическим конденсаторам. Максимальная плотность характерна для больших конденсаторов, в которых масса корпуса значительно ниже, чем масса обкладок и электролита.

Номинальное напряжение

Его значение отражается на корпусе и характеризует напряжение, при котором конденсатор работает в течение срока службы с колебанием параметров в заданных пределах. Эксплуатационное напряжение не должно превышать номинальное значение. Для многих конденсаторов с повышением температуры номинальное напряжение снижается.

Полярность

К полярным относятся электролитические конденсаторы, имеющие положительный и отрицательный заряды. На устройствах отечественного производства обычно ставился знак «+» у положительного электрода. На импортных приборах обозначается отрицательный электрод, возле которого стоит знак «-». Такие конденсаторы могут выполнять свои функции только при корректном подключении полярности напряжения. Этот факт объясняется химическими особенностями реакции электролита с диэлектриком.

Что будет, если перепутать полярность конденсатора? Обычно в этом случае приборы выходят из строя. Это происходит из-за химического разрушения диэлектрика, которое вызывает рост силы тока, вскипание электролита и, как следствие, вздутие корпуса и вероятный взрыв.

К группе неполярных конденсаторов относится большинство накопителей заряда. Эти детали обеспечивают корректную работу при любом порядке подключения выводов в цепь.

Ток утечки конденсатора

Дело все в том, что какой бы ни был диэлектрик, конденсатор все равно рано или поздно разрядится, так как через диэлектрик, как ни странно, все равно течет ток. Величина этого тока у разных конденсаторов тоже разная. Электролитические конденсаторы обладают самым большим током утечки.

Также ток утечки зависит от напряжения между обкладками конденсатора. Здесь уже работает закон Ома: I=U/Rдиэлектрика . Поэтому, никогда не стоит подавать напряжение больше, чем максимально рабочее напряжение, прописанное в даташите или на самом конденсаторе.

Паразитные параметры конденсаторов

Конденсаторы, помимо основных характеристик, имеют так называемые «паразитные параметры», которые искажают рабочие свойства колебательного контура. Их необходимо учитывать при проектировании схемы.

К таким параметрам относятся собственное сопротивление и индуктивность, которые разделяются на следующие составляющие:

  • Электрическое сопротивление изоляции (r), которое определяется по формуле: r = U/Iут, в которой U – напряжение источника питания, Iут – ток утечки.
  • Эквивалентное последовательное сопротивление (ЭПС, англ. ESR). Эта величина зависит от электрического сопротивления материала обкладок, выводов, контактов между ними, потерями в диэлектрическом слое. ЭПС возрастает с ростом частоты тока, подаваемого на накопитель. В большинстве случаев эта характеристика не принципиальна. Исключение составляют электролитические накопители, устанавливаемые в фильтрах импульсных блоков питания.
  • Эквивалентная последовательная индуктивность – L. На низких частотах этот параметр, обусловленный собственной индуктивностью обкладок и выводов, не учитывается.

К паразитным параметрам также относится Vloss – незначительная величина, выражаемая в процентах, которая показывает, насколько падает напряжение сразу после прекращения зарядки конденсатора.

Неполярные конденсаторы

К неполярным конденсаторам относят конденсаторы, для которых неважна полярность. Такие конденсаторы обладают симметричностью. Обозначение неполярных конденсаторов на электросхемах выглядит вот так.

обозначение конденсатора на схеме

Конденсаторы переменной емкости

Эти виды конденсаторов имеют воздушный диэлектрик и могут менять свою емкость под действием внешней силы, например, такой как рука человека. Ниже на фото советские типы таких переменных конденсаторов.

переменные конденсаторы

Современные выглядят чуточку красивее

подстроечные конденсаторы

Переменный конденсатор от подстроечного отличается лишь тем, что переменный конденсатор крутят чаще, чем подстроечный. Подстроечный крутят раз в жизни)

На схемах обозначаются так.

Слева -переменный, справа — подстроечный.

Пленочные конденсаторы

Пленочные конденсаторы являются самыми распространенными в большом семействе конденсаторов. Они названы так потому, что вместо диэлектрика здесь используется тонкая пленка, которая может состоять из полиэстера, полипропилена, поликарбоната, тефлона и много еще из чего. Такие конденсаторы идут от номинала 5 пФ и до 100 мкФ. Они могут быть сделаны по принципу бетерброда

А также по принципу рулета

Давайте рассмотрим К73-9 советский пленочный конденсатор.

Что же у него внутри? Смотрим.

Как и ожидалось, рулончик из фольги с диэлектриком-пленкой

Керамические конденсаторы

Керамические конденсаторы — это конденсаторы, которые изготавливают из керамики или фарфора, которые покрывают серебром. Берут диск квадратной или круглой формы, напыляют с с двух сторон серебро, выводят выводы и вуаля! Конденсатор готов! То есть и есть самый простой плоский конденсатор, о котором мы говорили выше в этой статье.

Хотите получишь емкость больше? Не вопрос! Складываем диски в бутерброд и увеличиваем емкость

Выглядеть керамические конденсаторы могут вот так:

керамические конденсаторы

SMD конденсаторы

SMD конденсаторы — это керамические конденсаторы, которые построены по принципу бутерброда.

Они используются в микроэлектронике, так как обладают крошечными размерами и удобны в плане промышленного производства с помощью роботов, которые автоматически расставляют SMD компоненты на плату.Такой тип конденсаторов вы без труда можете найти на платах своих мобильных телефонов, на материнских платах компьютеров, а также в современных гаджетах.

Устройство конденсаторов

Конструкции современных конденсаторов отличаются разнообразием, но можно выделить несколько типичных вариантов:

Пакетная конструкция

Используется в стеклоэмалевых, керамических и стеклокерамических конденсаторах. Пакеты образованы чередующимися слоями обкладок и диэлектрика. Обкладки могут изготавливаться из фольги, а могут представлять собой слои на диэлектрических пластинах – напыленный или нанесенный вжиганием.

Каждый пакетный конденсатор имеет верхнюю и нижнюю обкладки, имеющие контакты с торцов пакета. Выводы изготавливаются из проволоки или ленточных полосок. Пакет опрессовывается, герметизируется, покрывается защитной эмалью.

Трубчатая конструкция

Такую конструкцию могут иметь высокочастотные конденсаторы. Они представляют собой керамическую трубку с толщиной стенки 0,25 мм. На ее наружную и внутреннюю стороны способом вжигания наносится серебряный проводящий слой. Снаружи деталь обрабатывается изоляционным веществом. Внутреннюю обкладку выводят на наружный слой для присоединения к ней гибкого вывода.

Дисковая конструкция

Эта конструкция, как и трубчатая, применяется при изготовлении высокочастотных конденсаторов.

Диэлектриком в дисковых конденсаторах является керамический диск. На него вжигают серебряные обкладки, к которым подсоединены гибкие выводы.

Литая секционированная конструкция

Применяется в монолитных многослойных керамических конденсаторах, используемых в современной аппаратуре, в том числе с интегральными микросхемами. Деталь, имеющая 2 паза, изготавливается литьем керамики. Пазы заполняют серебряной пастой, которую закрепляют методом вживания. К серебряным вставкам припаивают гибкие выводы.

Рулонная конструкция

Характерна для бумажных пленочных низкочастотных конденсаторов с большой емкостью. Бумажная лента и металлическая фольга сворачиваются в рулон. В металлобумажных конденсаторах на бумажную ленту наносят металлический слой толщиной до 1 мкм.

Полярные конденсаторы

Для полярных конденсаторов очень важно не путать выводы местами при монтаже. Плюсовая ножка должны подключаться к плюсу на схеме, а минусовая — к минусу. Обозначается полярные конденсаторы также, как и их собратья. Единственное отличие — это указание полярности такого конденсатора. Выглядеть на схемах они могут вот так.

обозначение полярных конденсаторов на схеме

Электролитические конденсаторы

Электролитические конденсаторы используется в электронике и электротехнике, где требуются большие значения емкости. Также повелось название «электролиты».

Строение электролитических конденсаторов очень похоже на пленочные конденсаторы, которые также собраны по принципу рулета, но с одной только разницей. Вместо диэлектрика здесь используется оксид алюминия.

строение электролитического конденсатора

Давайте разберем один из таких электролитических конденсаторов во благо науки.

Снимаем его корпус и видим тот самый рулетик

Разматываем «рулетик» и видим, что между двумя обкладками металлической фольги у нас находится бумага, пропитанная каким-то раствором.

Некоторые ошибочно полагают, что бумага — это и есть тот самый диэлектрик, хотя это в корне неверно. Как она может быть диэлектриком, если она смочена в растворе, который проводит электрический ток?

На самом же деле диэлектриком в данном случае является тончайший слой оксида алюминия, который производится электрохимическим способом еще на производстве. Все это выглядит приблизительно вот так:

Слой оксида алюминия настолько тонкий, что можно изготавливать конденсаторы бешеной емкости с малыми габаритами. Вы ведь не забыли формулу емкости для плоского конденсатора?

где d — это и есть тот самый слой оксида алюминия. Чем он тоньше, тем больше емкость.

На полярных конденсаторах часто можно увидеть вот такой значок-стрелку, которая указывает на минусовый вывод конденсатора.

То есть в электрических схемах с постоянным током вы должны обязательно соблюдать правило: плюс на плюс, а минус на минус. Если перепутаете, то конденсатор может бахнуть.

Танталовые конденсаторы

Танталовые конденсаторы доступны как в мокром так и в сухом исполнении. Хотя, в сухом исполнении они намного более распространены. Здесь в качестве диэлектрика используется оксид тантала. Оксид тантала обладает более лучшими свойствами, по сравнению с оксидом алюминия. Если самый большой минус электролитических конденсаторов — это их большой ток утечки, то танталовые конденсаторы лишены такого недостатка. Минус танталовых конденсаторов в том, что они рассчитаны на более низкое напряжение, чем их собраться — электролиты. Танталовые конденсаторы также полярные, как и электролитические конденсаторы.

Выглядеть танталовые конденсаторы могут вот так

ну или так

Ионисторы

Есть также особый класс конденсаторов — ионисторы. Иногда их еще называют суперконденсаторами или золотыми конденсаторами. Нет, не потому, что там есть золото. Сам принцип работы ионистора ценее, чем золото. Для того, чтобы получить максимальную емкость мы должны намазать «сгущенку»(диэлектрик) тонким-тонким слоем или увеличить площадь блинов (металлических пластин). Так как без конца увеличивать слой блинов очень затратно, разработчики решили уменьшить слой диэлектрика. Так как диэлектрический слой между обкладками ионистора , то есть «слой сгущенки», составляет 5-10 нанометров, следовательно емкость ионистора достигает впечатляющих значений! Вы только представьте, какой заряд может накопить такой суперконденсатор!

Емкость таких конденсаторов может достигать до десятка фарад. Поверьте, это очень много. Ионисторы выглядят, как обычные таблетки, а также могут выглядеть как цилиндрические конденсаторы. Для того, чтобы различить их от конденсаторов, достаточно взглянуть на емкость, которая на них указана. Если там единицы Фарад, то это однозначно ионистор!

ионистор большой ионистор

В настоящее время ионисторы стали очень широко применяться в электронике и электротехнике. Они заменяют маленькие батарейки с малым напряжением, потому что ионистор конструктивно пока что не могут сделать на напряжение более нескольких Вольт. Но можно соединить их последовательно и набрать нужное напряжение. Но удовольствие это не дешевое :-).

Они также очень быстро заряжаются, так как их сопротивление ограничено только их выводами. А исходя из закона Ома, чем меньше сопротивление проводника, тем большая сила тока течет по нему и следовательно тем быстрее заряжается ионистор. Заряжать и разряжать ионисторы можно почти бесконечно.

Виды и типы конденсаторов

Емкостные элементы классифицируют по типу диэлектрика, применяемого в конструкции.

Бумажные и металлобумажные конденсаторы

Элементы используются в цепях с постоянным или слабо пульсирующим напряжением. Простота конструкции оборачивается пониженной на 10-25% стабильностью характеристик и возросшей величиной потерь.

В бумажных конденсаторах обкладки из алюминиевой фольги разделяет бумага. Сборки скручивают и помещают в корпус в форме цилиндра или прямоугольного параллелепипеда.

Приборы работают при температурах -60…+125°C, с номинальным напряжением у низковольтных приборов до 1600 В, высоковольтных — выше 1600 В и ёмкостью до десятков мкФ.

В металлобумажных приборах вместо фольги на диэлектрическую бумагу наносят тонкий слой металла. Это помогает изготовить элементы меньших размеров. При незначительных пробоях возможно самовосстановление диэлектрика. Металлобумажные элементы уступают бумажным по сопротивлению изоляции.

Электролитические конденсаторы

Конструкция изделий напоминает бумажные. Но при изготовлении электролитических элементов бумагу пропитывают оксидами металлов.

В изделиях с электролитом без бумаги оксид наносится на металлический электрод. У оксидов металлов односторонняя проводимость, что делает прибор полярным.

В некоторых моделях электролитических элементов обкладки изготавливают с канавками, которые увеличивают площадь поверхности электрода. Зазоры в пространстве между пластинами устраняют с помощью заливания электролитом. Это улучшает емкостные свойства изделия.

Большая ёмкость электролитических приборов — сотни мкФ, используется в фильтрах, чтобы сглаживать пульсации напряжения.

Алюминиевые электролитические

В приборах этого типа анодная обкладка делается из алюминиевой фольги. Поверхность покрывают оксидом металла — диэлектриком. Катодная обкладка — твердый или жидкий электролит, который подбирается так, чтобы при работе восстанавливался слой оксида на фольге. Самовосстановление диэлектрика продлевает время работы элемента.

Конденсаторы такой конструкции требуют соблюдения полярности. При обратном включении разорвет корпус.

Приборы, внутри которых располагаются встречно-последовательные полярные сборки, используют в 2 направлениях. Ёмкость алюминиевых электролитических элементов достигает нескольких тысяч мкФ.

Танталовые электролитические

Анодный электрод таких приборов изготовляют из пористой структуры, получаемой при нагреве до +2000°C порошка тантала. Материал внешне напоминает губку. Пористость увеличивает площадь поверхности.

С помощью электрохимического окисления на анод наносят слой пентаоксида тантала толщиной до 100 нанометров. Твердый диэлектрик делают из диоксида марганца. Готовую конструкцию прессуют в компаунд — специальную смолу.

Танталовые изделия используют на частотах тока свыше 100 кГц. Ёмкость создается до сотен мкФ, при рабочем напряжении до 75 В.

Конденсатор в цепи постоянного тока

Итак, берем блок питания постоянного напряжения и выставляем на его крокодилах напряжение 12 Вольт. Лампочку берем тоже на 12 Вольт. Теперь в разрыв цепи вставляем конденсатор.

Нет, лампочка не горит.

А вот если исключить конденсатор из цепи и подключить напрямую к лампочке, то лампа горит.

Отсюда напрашивается вывод: постоянный ток через конденсатор не течет! То есть в цепи постоянного тока идеальный конденсатор оказывает бесконечно большое сопротивление.

Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доыли секунды. Все зависит от емкости конденсатора.

Принцип работы конденсаторов

При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.

В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.

Конденсатор в цепи переменного тока

Для того, чтобы узнать, как ведет себя конденсатор в цепи переменного тока, нам надо собрать простейшую схему, которая представляет из себя делитель напряжения. Смысл опыта такой: с помощью генератора частоты мы будем менять только частоту, а амплитуду оставим неизменной. По сути красная точка нам будет показывать сигнал с генератора частоты, а желтая — сигнал на резисторе. Снимая сигнал с резистора, мы можем косвенно узнать, как ведет себя конденсатор исходя из законов делителя напряжения.

Обозначение конденсаторов на схеме

На чертежах конденсатор с постоянной емкостью обозначают двумя параллельными черточками — обкладками. Их подписывают буквой «C». Рядом с буквой ставят порядковый номер элемента на схеме и значение емкости в пФ или мкФ.

В конденсаторах переменной емкости параллельные черточки перечеркиваются диагональной чертой со стрелкой. Подстроечные модели обозначаются двумя параллельными линиями, перечеркнутыми диагональной чертой с черточкой на конце. На обозначении полярных конденсаторов указывается положительно заряженная обкладка.

Конденсатор постоянной ёмкости
Поляризованный (полярный) конденсатор
Подстроечный конденсатор переменной ёмкости
Варикап

Формула сопротивления конденсатора

С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:

где, ХС — это сопротивление конденсатора, Ом

П — постоянная и равняется приблизительно 3,14

F — частота, измеряется в Герцах

С — емкость, измеряется в Фарадах

Так вот, поставьте в эту формулу частоту в ноль Герц. Частота в ноль Герц — это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.

Формула энергии конденсатора

С емкостью самым тесным образом связана другая величина, известная как энергия заряженного конденсатора. После зарядки любого конденсатора, в нем образуется определенное количество энергии, которое в дальнейшем выделяется в процессе разрядки. С этой потенциальной энергией вступают во взаимодействие обкладки конденсатора. В них образуются разноименные заряды, притягивающиеся друг к другу.

Виды конденсаторов

Конденсаторы различаются по целому ряду параметров: по конфигурации, по типу диэлектрика, по материалу обкладок, по виду изменения емкости (постоянные, переменные, подстрочные), по рабочему напряжению. Ниже на рисунке рассмотрим основные виды электрических устройств различной конфигурации.

Плоский

Плоский вид устройства, – это две пластины, которые располагаются параллельно друг против друга. Они отличаются компактностью, сохраняя при этом большую емкость.

Емкость плоского конденсатора возрастает по мере увеличения площади пластин и при уменьшении расстояния между ними.

Для расчета емкости плоского конденсатора следует пользоваться формулой C = ε0 εS / d

Сферический

Сферический конденсатор представляет собой две концентрично расположенные сферы с находящимся между ними тонким диэлектриком. Наружную поверхность внешней обкладки заземляют для создания электрического поля непосредственно между обкладками. С учетом геометрии обкладок расчет емкости сферического конденсатора производится по формуле

C = 4πεε0 Rr/ R — r, где R — радиус наружной обкладки, r — радиус внутренней.

Цилиндрический

Цилиндрический конденсатор выполнен из двух полых цилиндров с разными радиусами образующих их окружностей с общей осью. Между наружной поверхностью малого цилиндра и внутренней поверхностью большого находится диэлектрик. Для расчета емкости цилиндрического конденсатора можно воспользоваться формулой C = 2πєє0L/ ln (R2/R1),

где L — длина цилиндрических обкладок,

R2 — радиус наружного цилиндра,

R1 — радиус внутреннего цилиндра,

ln — обозначение логарифмического действия.

Последовательное и параллельное соединение конденсаторов

Наиболее популярным типом соединения конденсаторов является параллельное. При этом подключении электроемкость повышается, а напряжение остается исходным.

К одной точке может подключаться несколько конденсаторов.

Так как электрическая емкость конденсаторов равна площади обкладок, общая емкость при таком виде соединения пропорциональна сумме емкостей всех конденсаторов в цепи.

Собщ.= C1+C2.

При последовательном соединении конденсаторов общая емкость снижается, а напряжение работы конденсатора возрастает.

Конденсаторы подключены так, что только первый и последний имеют доступ к источнику ЭДС/тока одной из своих пластин. Заряд одинаковый на всех пластинах, но наружные получают заряд от источника, а внутренние образуются благодаря разделению зарядов ранее нейтрализовавших друг друга. Емкость последовательного соединения двух конденсаторов мы можем вычислить по формуле

Собщ.= С1*С2/ C1+C2.

Как зарядить и разрядить конденсатор

Для зарядки накопителя его подсоединяют к источнику постоянного тока. Зарядка прекращается, когда напряжение источника питания сравнивается по величине с напряжением на обкладках.

Разрядка конденсатора может понадобиться для безопасной разборки бытовых приборов и электронных устройств. Накопители электронных устройств разряжают с помощью обычной диэлектрической отвертки. Для разрядки крупных накопителей, которые устанавливаются в бытовых приборах, необходимо собрать специальное разрядное устройство.

Конструкция конденсатора

Последовательное соединение конденсаторов

Конденсатор представляет собой два проводящих электрода (обкладки), разделенных слоем диэлектрика. Толщина изолятора пренебрежимо мала, по сравнению с его линейными размерами. Емкость увеличивается пропорционально площади обкладок и обратно пропорционально толщине диэлектрика.

В элементах высокой емкости для уменьшения габаритов конструкцию «обкладка – диэлектрик – обкладка» сворачивают в рулон или делают многослойной.

Как выбрать пусковой конденсатор

Чтобы он работал наиболее эффективно, нужно правильно подобрать ёмкость. Для её вычисления используются различные формулы, в зависимости от способа соединения обмоток. Вычисления выполняются следующим образом:

  • Нужно определить рабочие ток и напряжение работы двигателя. При проведении вычислений для них применяются обозначения I и U. Величину тока берут из инструкции по эксплуатации для мотора, а в качестве U берут то, которое обеспечивается питающим напряжением.
  • Ёмкость определяют по формуле C = (K х I) / U.

Если соединение обмоток выполнено треугольником, используется K = 4800, а при соединении звездой должно быть K = 2800. Результат вычислений представляет собой ёмкость, выраженную в микрофарадах.

При расчётах нужно учитывать номинальный ток. Речь идёт о максимально допустимом рабочем токе в условиях, когда работа двигателя происходит в нормальном режиме. Практически его величина зависит от имеющейся нагрузки. Если её нет, то значение будет минимальным.

Это значение называют током холостого хода. Оно фактически является компенсацией потерь, связанных с потерями энергии в обмотках, диэлектриками, трением и другими аналогичными причинами.

Если постепенно увеличивать нагрузку, то ток будет расти. Затем он достигнет номинального значения. При последующем росте ток будет расти по-прежнему, но обороты начнут падать. Длительное пребывание в этом режиме приведёт к повышенному износу оборудования и к вероятной поломке.

Определить номинальный ток можно не только из инструкции по эксплуатации, но и измерить самостоятельно. В последнем случае его величина будет определена более точно. Такое измерение можно провести следующим образом:

  • Отключают конденсаторы.
  • Запускают мотор в рабочем режиме.
  • При помощи токоизмерительных клещей определяют силу тока.

На основе полученного значения определяют требуемую ёмкость. Затем приобретают нужную деталь и устанавливают её. При этом допускается отклонение от расчётной величины не более, чем на 15%.

При подключении однофазного мотора ёмкость рабочего конденсатора определяют следующим образом. Нужно на каждые 100 ватт номинальной мощности взять по 7 микрофарад. Для пускового ёмкость выбирают в 2-3 раза больше. Однофазные асинхронные моторы часто используются в домашней бытовой технике.

Для этой цели обычно выбирают конденсаторы следующих конструкций:

  • металлобумажные, высокочастотные, которые имеют обозначение МБГЧ;
  • термостойкие бумажного типа относящиеся к разновидности БГТ;
  • бумажные в герметичном металлическом корпусе — КБГ-МН.

Если необходимо обеспечить вращение двигателя в обратном направлении, то потребуется изменить подсоединение к конденсатору. Для этого будет достаточно просто поменять местами клеммы. Если речь идёт о замене уже существующей детали, то удобней всего выбрать её с теми же характеристиками, что и раньше.

В качестве рабочего необходимо использовать неполярный конденсатор, предназначенный для использования с переменным током. Это связано с тем, что в процессе работы будет постоянно меняться полярность. Однако в качестве пускового допустимо использования полярного. Для того, чтобы предотвратить изменение знака напряжения, необходимо подключить эту деталь через диод.

Величина и значение потери у конденсатора

Ток утечки конденсатора – критический фактор для использования, особенно если его применяют для силовой электроники. Потеря напрямую завязана со свойствами диэлектрика.

Никакой диэлектрик не способен со 100% гарантией изолировать металлические обкладки.

Через изолятор всегда будет проходить ток, меньший или больший в зависимости от свойств диэлектрика и теряться энергия. Кроме изолирующих способностей диэлектрика на ток утечки оказывают влияние следующие факторы:

  • температура окружающего пространства;
  • срок годности конденсатора без напряжения, температура;
  • величина тока утечки прямо пропорциональна приложенному к обкладкам напряжению.

Восстановить работоспособность конденсатора после длительного хранения можно, приложив к нему рабочее напряжение с выдержкой в течение нескольких минут.

При этом этапе окислительный слой заново накапливается и восстанавливает работоспособность конденсатора.

История

Прототипом первого конденсатора была «лейденская банка», изобретенная в 1745 г. Это была стеклянная банка, в которой обкладками были тонкие листы оловянной фольги, наклеенные на внутренние и внешние стороны стенок. В качестве внешней обкладки могли выступать руки экспериментатора, а в качестве внутренней – жидкость.

Обратите внимание! Первый удар током при разряде конденсатора был получен при испытании лейденской банки с ладонями вместо внешней обкладки.

Формулы для вычисления

Измерения емкости осуществляется по специально выведенной формуле. Электрическая емкость (С) — это отношение сообщенного заряда (Q) к образующему в результате этого потенциалу (U). Формулу, которую используют, чтобы измерить емкость, выглядит следующим образом: C=Q/V . Единицей измерения служит фарада, которая обозначается буквой Ф. Емкость величиной 1 фарада будет хранить заряд q = 1 кулон при напряжении на обкладках U =1 Вольт. Так как конденсаторы имеют разные виды, формулы также используются разные.

Посредством математических выражений

Математическое выражение для определения емкости конденсатора С = q*U в единицах измерения в системе СИ каждой из входящих в формулу физических величин определяет значение 1 фарады.

Как зависит емкость от среды диэлектрика

Влияние изолятора на емкость конденсатора зависит от проводящих свойств вещества внутри этой прокладки. Способность межпластинного проводника на изоляцию называют диэлектрической проницаемостью. С учетом характеристик диэлектрика формула емкости плоского устройства станет: С = є0є S/d, где под буквой є стоит значение диэлектрической проницаемости изолятора, а є0 — постоянная величина равная диэлектрической проницаемости вакуума (воздуха).

На практике применяется коэффициент, обозначающий во сколько раз применяемый диэлектрик уменьшает электрическое поле по сравнению с воздухом.

Таблица:

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]