Простейшие схемы источников питания для различной аппаратуры

Генератор тока

и
генератор напряжения
. В чём разница? Что такое Генератор тока и каковы области его применения.

***

По работе нужно было найти какое либо внятное описание того, что собой представляет генератор тока (стабилизатор тока, источник тока)

, его области применения и примеры расчёта. Ничего приемлемого найти не удалось.

Пришлось самому приступить к написанию статьи отвечающей на эти вопросы.

И ещё, пришлось заменить общепринятые обозначения «дельта» и «бесконечность» на слова. К сожалению, вместо них при попытке считать текст отображаются вопросительные знаки.

28.02.2012г.

***

Первое, что нам необходимо понять — это то в чём различия генератора тока и стабилизатора напряжения.

Что такое источники тока

Источники тока – это элементы электрической цепи, который поддерживают энергию с заданными параметрами. При этом, энергоснабжение цепи не зависит от характеристик элементов, входящих в её состав, в частности, сопротивления.

Различают идеальные и реальные устройства для выработки тока:

  • Идеальные определяются только благодаря гипотезам и теоретическим выкладкам. Так, учёные нередко определяют ряд условий, при которых ток имеет максимальные значения, приближенные к идеалу. То есть, осуществляется имитация идеального источника.
  • Реальные условия поддерживают заданные параметры выходного тока и напряжения. Любой прибор обеспечивает свою работу, при условии, что это позволяют сделать его технические характеристики.

Важно! Таким образом, максимальное значение тока и напряжения дают возможность определить, какой именно вариант источника будет использован в цепи – идеальный или реальный.

Стабилизатор напряжения.

Другие названия:

— источник напряжения;

— генератор напряжения;

— источник опорного напряжения (в схемах его обычно обозначают как ИОН).

Основное требование:

Uвых. = const.

Ток в нагрузке

подключенной к выходу стабилизатора напряжения
изменяется
в зависимости от величины Rнагр.

Идеальный режим работы стабилизатора напряжения соответствует Rнагр. = бесконечности.

Идеальный генератор напряжения

создаёт на сопротивлении нагрузки
напряжение
стабильной величины. При этом его внутреннее сопротивление равно нулю (Ru = 0). Ток в нагрузке определяется по формуле:

Iнагр. = U / Rнагр.

Из этого можно сделать вывод:

— так как напряжение стабильно, то при изменении Rнагр. будет изменяться ток, протекающий через нагрузку, Рис. 1.

Идеальный источник напряжения при уменьшении Rнагр. до нуля способен создавать ток бесконечно большой величины.

Но в жизни ничего идеального не существует, все источники напряжения имеют некоторое внутреннее сопротивление — Ru.

Это приводит к тому, что напряжение источника делится между внутренним сопротивлением Ru и сопротивлением нагрузки Rнагр, Рис. 2

Поэтому ток в нагрузке вычисляется по формуле:

Iнагр. = U / (Ru + Rнагр.)

Максимальный ток возникает при Rнагр. = 0.

Из формулы видно — ток в нагрузке зависит от напряжения развиваемого источником, а также от величины суммы сопротивлений Rнагр. и Ru.

Как правило, внутреннее сопротивление источника напряжения (Ru) выбирается как минимум в 100 раз меньше минимально возможного

значения сопротивления нагрузки (Rнагр. min). В этом случае напряжение на выходе источника при изменении сопротивления нагрузки от бесконечности до Rнагр. min будет изменяться не более чем на 1%.

Т.е. желательно, чтобы соблюдалось условие:

Rнагр. min => 100*Ru

В данном случае мы не рассматриваем вопрос о мощности источника напряжения. Мощность зависит от принципа построения источника, реализуемой схемы и применяемых компонентов.

Теперь посмотрим, что собой представляет генератор тока

Виды источников

Существует несколько видов устройств для выработки тока, каждый из которых имеет свои основные показатели, характеристики и особенности, приведённые в следующей таблице:

Вид источникаХарактеристики источника тока
МеханическийСпециальное устройство (генератор) обеспечивает трансформацию механической энергии в электрическую. В настоящее время большое количество тока производится именно с помощью механических источников.
ТепловойВ основу работы агрегатов заложен принцип переработки тепловой энергии в электрическую. Такое преобразование происходит благодаря разности температур контактирующих между собой полупроводников. В настоящее время разработаны источники тока, тепловая энергия в которых вырабатывается благодаря распаду радиоактивных элементов.
ХимическийХимические варианты можно условно разделить на 3 группы – гальванические, аккумуляторы и тепловые. · Гальванический элемент работает посредством взаимодействия 2-х разных металлов, помещенных в электролит. · Аккумуляторы – устройства, которые можно несколько раз заряжать и разряжать. Существует несколько видов аккумуляторов с различными типами элементов, входящих в их состав. · Химически-тепловые используются только для кратковременной работы. Применяются, в основном, в сфере ракетостроения.
СветовойВ конце XX века достаточно популярными стали солнечные батареи, которые «собирают» световые частицы, преобразуемые впоследствии в электрическую энергию. Это происходит за счет выдачи напряжения и благодаря воздействию на световые частицы.

Вам это будет интересно Как воздействует электрический ток на организм человека
Важно! Каждый вид имеет свои преимущества и недостатки, которые определяются принципом использования, а также исходными показателями вырабатываемой энергии.

Механические источники

Механические агрегаты являются самыми простыми по принципу их использования и обустройства. Характеристика таких генераторов очень проста для понимания. В специальных устройствах вырабатывается энергия, которая впоследствии преобразуется в электричество. Такие приборы используются на тепловых электростанциях и гидроэлектростанциях.

Тепловые источники

Тепловые варианты источников обеспечивают уникальный принцип работы. Энергия вырабатывается благодаря образованию термопары, которая. Это означает, что на концах проводников обеспечивается расчётная разность температур, элементы взаимодействуют между собой, создавая электрическое поле.

Обратите внимание! Радиоактивные термопары используют в космической промышленности. Эффективность такого использования возможна благодаря долгому сроку службы и эффективным показателям вырабатываемой мощности.

В результате подобного движения заряженных частиц от горячей части проводника к холодной возникает электроток. При этом, чем больше разница температур, тем выше показатель результативной энергии. На практике термопары нередко входят в состав измерительных приборов.

Световые источники

Световые устройства ля выработки электроэнергии считаются самыми экологичными, эффективными и относительно дешевыми. Специальная панель из полупроводников поглощает световые частицы, которые при таком взаимодействии выдают определенное напряжение.

При этом, световые панели имеют небольшой показатель КПД – 15 %. Панели такого типа нашли широкое применение – от бытовых приборов до инновационных разработок в космической отрасли.

Важно! Световые источники начали использоваться вместо литиевых батарей из-за высокой стоимости последних. Несмотря на то, что многие объекты промышленности требуют значительного переоснащения для перехода на световые источники, конечная экономия возникает уже на первичных этапах эксплуатации.

Химические источники

В данную группу входит 3 основных устройства, отличающиеся строением и принципом работы:

  • Гальванический элемент – это вариант для выработки электроэнергии, который может быть использован один раз. То есть, после полной разрядки, повторное накопление заряда на внутреннем веществе невозможно. В состав таких приборов входят солевые, литиевые или щелочные батарейки.
  • Аккумуляторы – подразделяются на несколько типов: свинцово-кислотные, литий-ионные, никель-кадмиевые.
  • Тепловые элементы – используются в космической и инновационной промышленности для производства кратковременного тока с высокими показателями. Практическое применение агрегатов основано на потребностях в резервных источниках питания.

Вам это будет интересно Особенности SMD маркировки

Важно! Химико-тепловые устройства требуют первоначального нагрева до 500–600 °С, чтобы активизировать твердый электролит.

В каждой сфере промышленности используется собственный вариант с конкретными параметрами. В бытовых условиях применяются, в основном, батарейки; в производственной – аккумуляторы.

Схема аналогового источника постоянного тока

Поскольку это источник постоянного тока, то есть своеобразная электронная нагрузка, он адаптирован для работы со слаботочным независимым блоком питания 12 В. Силовая часть схемы — это доступный мощный полевой МОП-транзистор IRF3205, рассматриваемый как переменный резистор. Обратите внимание, что силовой полевой транзистор можно также использовать в линейном (а не переключающем) режиме, и тогда он обычно рассматривается как переменный резистор.

Следующим ключевым элементом в этой схеме является трехконтактный программируемый диод шунтирующего стабилизатора TL431A. Также есть микросхема маломощного двойного операционного усилителя — LM358.

Обозначение источников тока

Чтобы при выборе не возникало вопроса относительно того, какой тип источника тока представлен, используются специальные обозначения. В физике существуют точные графические изображения, которые позволяют идентифицировать тип применяемого источника:

На каждой схеме условных обозначений можно увидеть следующие параметры:

  • Общее обозначение источника тока и движущей силы ЭДС;
  • Графическое изображение без ЭДС;
  • Химический тип;
  • Батарея;
  • Постоянное напряжение;
  • Переменное напряжение;
  • Генератор.

Благодаря графическим идентификаторам на схеме электрической цепи всегда можно определить, какой именно тип используется в конкретной ситуации, и как правильно его обозначать. Существуют также международные обозначения, которые встречаются немного реже, обычно при реализации интернациональных проектов.

Химические источники напряжения.

Следующим по значимости методом получения электрической энергии является применение химических батарей. Составной частью батарей являются два электрода, изготовленные из разнородных металлов (к примеру меди и цинка) и погруженные в электролит (раствор кислоты, щелочи или соли). Они создают контакт между цепью и электролитом. Из медного электрода с помощью электролита извлекаются свободные электроны, а цинковый электрод эти электроны притягивает. Таким образом, медный электрод имеет положительный заряд, а цинковый отрицательный. Несколько таких элементов, соединяясь вместе, образуют батарею. Некоторые образцы химических источников напряжения представлены на рисунке 3.4.

Рисунок 3.4. Химические источники напряжения

На рисунке 3.5 показаны условно-графические обозначения химического элемента и батареи химических элементов.

Рисунок 3.5.УГО а)химического элемента; б) батерии.

Принцип действия

Каждая маркировка источников тока определяет принцип его действия. В стандартной ситуации выработка энергии производится посредством взаимодействия составляющих частей, а именно:

  • Механический тип. В результате взаимодействия деталей механизма, возникает трение. Благодаря такому явлению, возникает статическое электричество, преобразуемое в ток.
  • Механические конструкции работают посредством образования последовательно движущихся заряженных частиц. Явление возникает благодаря взаимодействию химического элемента с электролитом. Заряженные частицы покидают структуру кристаллической решётки металла, входя в состав проводящей жидкости.
  • Солнечные батареи (световые источники) работают за счет выбивания заряженных частиц из диэлектрической (кремниевой) основы под воздействием светового потока. Благодаря этому возникает постоянное напряжение.
  • Тепловые. Как правило, это 2 последовательно соединенных металлических основания. Одна часть нагревается, а вторая остается охлажденной. При изменении температурного режима возникает разница температур, в результате чего происходит движение заряженных частиц.

Вам это будет интересно Особенности расчета мощности по току и напряжению

Важно! Любое изменение в строении вещества может привести к необратимым последствиям, которые проявятся при работе устройства.

Конструкция

Конструкция элемента влияет на принцип его работы. Каждый источник, который выдает электрический ток, имеет определенную конструкцию:

  • Самый простой бытовой аккумулятор включает в себя металлический корпус, внутри которого используется щелочная среда. Дополнительными элементами являются свинцовые пластины, на которых накапливаются катоды и аноды.

  • Обычная бытовая батарейка с входящим в её состав сухим элементом имеет металлический корпус, в который помещен стержень-накопитель катодов. Всё прочее пространство заполнено солевым электролитом.

  • Генератор переменного тока – это устройство, состоящее из трещоток или металлической рамки.

  • Тепловой источник тока, который уже включен в цепь. Это обычная рамка, установленная на подставке из диэлектрика. Обычно, конструкция подключена к измерительному прибору, типа амперметра. Источник тепла – это пламя или внешний электрический импульс.

Обозначения в графических схемах. Часть 2

Для удобства воспользуйтесь поиском, это комбинация клавиш Ctr+F

Таблица 6 (г):

НаименованиеОбозначение
1. Постоянный ток, основное обозначение
Примечание. Если невозможно использовать основное обозначение, то используют следующее обозначение
2. Полярность постоянного тока: а) положительная
б) отрицательная
3. m проводная линия постоянного тока напряжением U, например:
а) двухпроводная линия постоянного тока напряжением 110 В
б) трёхпроводжная линия постоянного тока, включая средний провод, напряжением 110 В между каждым внешним проводником и средним проводом 220 В — между внешними проводниками
4. Переменный ток, основное обозначение
Примечание. Допускается справа от обозначения переменного тока указывать величину частоты, например переменного тока частотой 10 кГц
5. Переменный ток с числом фаз m, частотой f, например переменный трёхфазный ток частотой 50 Гц
6. Переменный ток числом фаз m, частотой f, напряжением U, например:
а) переменный ток, трёхфазный, частотой 50 Гц, напряжением 220 В
б) переменный ток, трёхфазный, четырёхпроводная линия (три провода, нейтраль) частотой 50 Гц,напряжением 220/380 В
в)переменный ток, трёхфазный, пятипроводная линия (три провода фаз, нейтраль, один провод защитный с заземлением) частотой 50 Гц, напряжением 220/380 В
г) переменный ток, трёхфазный, четырёхпроводная линия (три провода фаз, один защитный провод с заземлением, выполняющий функцию нейтрали) частотой 50 Гц, напряжением 220/380 В
7. Частоты переменного тока (основные обозначения): а) промышленные
б) звуковые
в) ультразвуковые и радиочастоты
г) сверхвысокие
8. Постоянный и переменный ток
9. Пульсирующий ток

Таблица 6 (д)

НаименованиеОбозначение
1. Однофазная обмотка с двумя выводами
2. Однофазная обмотка с выводом от средней точки
3. Две однофазные обмотки, каждая из которых с двумя выводами
4. Три однофазные обмотки, каждая из которых с двумя выводами
5. m однофазных обмоток, каждая из которых с двумя выводами
6. Двухфазная обмотка с раздельными фазами
7. Трёхфазная обмотка с раздельными фазами
8. Многофазная обмотка n с числом раздельных фаз m. Примечание. к пп. 6-8. Обозначения применяются для обмоток с раздельными фазами, для которых допускаются различные способы внешних соединений
9. Двухфазная трёхпроводная обмотка
10. Двухфазная четырёхпроводная обмотка
11. Двух-трёхфазная обмотка Т-образного соединения (обмотка Скотта)
12. Трёхфазная обмотка V-образного соединения двух фаз в открытый треугольник
Примечание. Допускается указывать угол, под которым включены обмотки, например под углами 60 и 120 градусов
13. Трёхфазная обмотка, соединённая в звезду
14. Трёхфазная обмотка, соединённая в звезду, с выведенной нейтралью
15. Трёхфазная обмотка, соединённая в звезду, с выведенной заземлённой нейтралью
16. Трёхфазная обмотка, соединённая в треугольник
17. Трёхфазная обмотка, соединённая в разомкнутый треугольник
18. Трёхфазная обмотка, соединённая в зигзаг
19. Трёхфазная обмотка, соединённая в зигзаг, с выведенной нейтралью
20. Четырёхфазная обмотка
21. Четырёхфазная обмотка с выводом от средней точки
22. Шестифазная обмотка , соединённая в звезду
23. Шестифазная обмотка , соединённая в звезду, с выводом от средней точки
24. Шестифазная обмотка , соединённая в двойную звезду
25. Шестифазная обмотка , соединённая в две обратные звезды
26. Шестифазная обмотка , соединённая в две обратные звезды, с раздельными выводами от средних точек
27. Шестифазная обмотка , соединённая в два треугольника
28. Шестифазная обмотка , соединённая в шестиугольник
29. Шестифазная обмотка , соединённая в двойной зигзаг
30. Шестифазная обмотка , соединённая в двойной зигзаг, с выводом от средней точки

Таблица 6 (е)

НаименованиеОбозначение
1. Прямоугольный импульс: а) положительный
б) отрицательный
2. Трапецеидальный импульс
3. Импульс с кутым спадом
4. Импульс с крутым фронтом
5. Двуполярный импульс
6. Остроугольный импульс: а) положительный
б) отрицательный
7. Остроугольный импульс с экспоненциальным спадом
8. Пилообразный импульс: а) с линейным нарастанием
б) с линейным спадом
9. Гармонический импульс
10. Ступенчатый импульс
11. Импульс высокой частоты (радиоимпульс)
12. Импульс переменного тока
13. Искажённый импульс Примечание. Квалифицирующие символы являются упрощённым воспроизведением форм осцилограмм соответствующих импульсов.

Таблица 6 (ж)

НаименованиеОбозначение
1. Аналоговый сигнал
2. Цифровой сигнал
3. Положительный перепад уровня сигнала
4. Отрицательный перепад уровня сигнала
5. Высокий уровень сигнала
6. Низкий уровень сигнала

Таблица 6 (з)

НаименованиеОбозначение
1. Амплитудная модуляция
2. Частотная модуляция
3. Фазовая модуляция
4. Импульсная модуляция:
а) фазово-импульсная
б) частотно-импульсная
в) амплитудно-импульсная
г) время-импульсная
д) широтно-импульсная
е) кодово-импульсная
Примечание. Допускается вместо символа # указывать характеристику соответствующего кода, напрмер: двоично пятиразрядного кода
кода три из семи

Таблица 6 (и)

НаименованиеОбозначение
1. Срабатывание, когда действительное значение выше номинального
2. Срабатывание, когда действительное значение ниже номинального
3. Срабатывание, когда действительное значение ниже или выше номинального
4. Срабатывание, когда действительное значение равно номинальному
5. Срабатывание, когда действительное равно нулю
6. Срабатывание, когда действительное значение приближённо к нулю
7. Срабатывание при максимальном токе
8. Срабатывание при минимальном токе
9. Срабатывание при превышении определённого значения тока
10. Срабатывание при обратном токе
11. Срабатывание при максимальном напряжении
12. Срабатывание при минимальном напряжении
13. Срабатывание при превышении определённого значения напряжения
14. Срабатывание при максимальной температуре
7. Срабатывание при минимальной температуре

Таблица 6 (к)

НаименованиеОбозначение
Вещество (среда) 1. Твёрдое
2. Жидкое
3. Газовое
4. Газовое (защитное)
5. Вакуумное Примечание к пп. 3-5. Прямоугольное обрамление допускается не выполнять, если это не приведёт к неправильному пониманию схемы
6. Полупроводниковое
7. Изолирующее
8. Электрет

Таблица 6 (л)

НаименованиеОбозначение
1. Термическое воздействие
2. Электромагнитное воздействие
3. Электродинамическое воздействие
4. Магнитострикционное воздействие
5. Магнитное воздействие
6. Пьезоэлектрическое воздействие
7. Воздействие от сопротивления
8. Воздействие от индуктивности
9. Электростатическое воздействие, ёмкостной эффект
10. Гальваномагнитный эффект (эффект Холла)
11. Воздействие ультразвука
12. Воздействие замедления
13. Температурная зависимость

Таблица 6 (м)

НаименованиеОбозначение
1. Неионизирующее электромагнитное излучение, фотоэлектрический эффект
2. Неионнизирующее излучение, например когерентный свет
3. Ионизирующее излучение
4. Световое излучение, оптоэлектрический эффект
5. Связь оптическая
6. Излучение ламп накаливания
Примечание. Для указания вида излучения допускается применять следующие буквы: а) для излучений по пп. 1 и 6: инфракрасное
ультрафиолетовое
для излучений по п. 3: альфа-частицы
бета-частицы
гамма-лучи
кси-частицы
лямбда-частицы
мю-мезон
нейтрино
пи-мезон
сигма-частицы
дейтрон
k-мезон
нейтрон
протон
тритон
рентгеновские лучи
электрон

Таблица 6 (н)

НаименованиеОбозначение
1. Усиление
2. Суммирование
3. Сопротивление а) активное
б) реактивное
в) полное
г) индуктивно реактивное
е) ёмкостное реактивное
4. Магнит постоянный
Примечание. При необходимости указания полярности магнита применять для обозначения северного полюса букву N
5. Подогреватель
6. Идеальный источник тока
7. Идеальный источник напряжения
8. Идеальный гиратор

Таблица 7

НаименованиеОбозначение
1. Поток электромагнитной энергии, сигнал электрический в одном направлении (напрмер влево)
2. Поток газа (воздуха): а) в одном направлении (например вправо)
б) в обоих направлениях
3. Движение прямолинейное: а) одностороннее
б) возвратное
в) одностороннее с выстоем
4. Движение вращательное: а) односторонее
б) одностороннее с выстоем
5. Регулирование линейное. Общее обозначение
6. Регулирование ручкой, выведенной наружу
Примечание к пп. 3-6. Размеры стрелки должны быть в пределах l=3…5, a угол должен быть 15…30 градусов
7. Линия механической связи в гидравлических и пневматических системах
8. Линия механической связи со ступенчатым движением
9. Линия механической связи, имеющей выдержку времени
10. Механизм с защёлкой, препядствующий передвижению в обе стороны
11. Механизм свободного расцепления
12. Муфта: а) выключенная
б) включенная
13. Тромоз
14. Исключён (Изм. №1).
15. Толкатель
16. Ролик
17. Ролик, срабатывающий в одном направлении
18. Кулачок
19 Линейка (рейка)
20. Привод ручной: а) общее обозначение
б) приводимый в движение ключом
в) приводимый в движение несъёмной рукояткой
г) приводимый в движение съёмной рукояткой
д) приводимый в движение маховичком
е) приводимый в движение нажатием кнопки
ж) приводимый в движение нажатием кнопки с ограниченным доступом
з) приводимый в движение рычагом
21. Привод ножной
22. Другие приводы: а) общее обозначение
б) электромагнитный
в) пневматический или гидравлический
г) электромашинный
д) тепловой (двигатель тепловой)
е) мембранный
ж) поплавковый
з) центробежный
и) с помощью биметалла
к) струйный
л) пиропатрон Примечание к пп. 1-20. Все геометрические элементы условных графических обозначений следует выполнять линиями той же толщины, что и линии связей.

ПРИЛОЖЕНИЕ 1: Термины, применяемые в стандарте, и их пояснения

ТерминПояснение
Электрическая связьПроводящая среда, электрически соединяющая группу точек электрического соединения (электрических контактов)
Линия электрической связиУсловное графическое обозначение электрической связи, показывающее путь прохождения тока. Примечание. Линия электрической связи не даёт информации о проводах (кабелях, шинах), осуществляющих данную электрическую связь
Ответвление линии электрической связиУсловное изображение электрического узла, в котором происходит сложение и вычитание токов. Примечание. Ответвления линий электрической связи не дают информации о реальных электрических контактах, соединённых данной электрической связью
Линия групповой связиЛиния, условно изображающая группу линий электрической связи (проводов, кабелей, шин), следующих на схеме в одном направлении.
Графическое слияние линий электрической связи (проводов, кабелей, шин)Упрощённое изображение нескольких электрически не соедиинённых линий связи ( проводов, кабелей, шин), использующих линию групповой связи.

ПРИЛОЖЕНИЕ 2: Размеры (в модульной сетке) основных условных графических обозначений

НаименованиеОбозначение
Прибор, устройство
Баллон электровакуумного и ионного прибора, корпус полупроводникового прибора
Заземление, общее обозначение
Электрическое соединение с корпусом
Эквипотенциальность
Группа линий электрической связи, имеющих общее функциональное назначение, осуществляемая многожильным кабелем, например семижильным
Коаксиальный кабель
Твёрдое вещество

Условия работы источников тока

Любой источник тока работает при определенных условиях. В отсутствие химической реакции внутри элементов не смогут образовываться заряженные частицы. Если будет отсутствовать анод и катод, то движения частиц не возникнет даже при наличии реакции.

В аккумуляторах происходит похожий процесс, но толчком для возникновения химической реакции является замыкание во внешней электрической цепи. Заряженные элементы начинают двигаться от анода к катоду и наоборот, создавая постоянный поток.

Световые типы не могут работать без наличия источника света. КПД зависит от типа используемого диэлектрического элемента. Дополнительно необходимо иметь в наличии приспособление ля преобразования полученной энергии.

Тепловой вариант не будет работать, если в его основу входит 1 тип металла. Если будет отсутствовать источник тепла, то ни о каком возникновение движущихся частиц не может быть и речи.

Для выработки электрической энергии требуется выбрать источник тока, соответствующий потребностям в конкретной сфере применения. Существует несколько вариантов таких приспособлений, каждый из которых имеет определенное строение, принцип работы и индивидуальные технические показатели.

Источник стабильного тока от 5 мкА до 20 мА

Сопротивление резистора R1 некритично, нужно только, чтобы ток базы транзистора Т1 полностью открывал его. Коэффициент передачи тока транзистора BC559C — около 500, верхний предел регулировки тока у источника — 20 мА, значит, 200 мкА через базу — более чем достаточно. Резистор в 10 кОм обеспечит около 1 мА при 10 В, в принципе, можно увеличить его даже до 50 кОм.

Транзисторы Т1 и Т2 должны быть одинаковыми, но при больших токах параметры Т1 всё равно будут немного «уплывать» из-за небольшого нагрева.

Ток, подаваемый устройством во внешнюю цепь, определяется суммарным сопротивлением резисторов R3 — R5. Их функции: R3 — ограничение тока в случае, если оба переменных резистора вывернуты «в нуль», R4 — точная регулировка тока, R5 — грубая. Ток рассчитывается по формуле I=0.7/(R3+R4+R5), поэтому, например, если резистор R3 взять сопротивлением в 27 Ом, верхний предел регулировки тока составит 0.7/27=25,9мА. На практике получилось 21,6 мА, поскольку падение напряжения на транзисторе Т2 оказалось меньше — около 0,6 В.

Полная схема устройства:

«Крона» питает источник стабильного тока, два элемента ААА — четырёхразрядный микроамперметр. Поэтому выключатель питания взят с двумя нормально разомкнутыми группами контактов. Переключатель S1 позволяет отключить верхнюю клемму и замкнуть источник тока накоротко, чтобы настроить его заранее, до подключения к отлаживаемой схеме.

Параметры на практике получились следующими: максимальный ток — 21,6 мА, максимальный ток при «грубом» регуляторе, вывернутом «в нуль» — 0,3 мА, минимальный — 4,7 мкА. Правда, встроенный микроамперметр меньше 10 мкА не показывает, поэтому внешний иногда может и потребоваться. Выставленный ток остаётся практически неизменным при изменении напряжения на внешней цепи от 0 до 8 В.

Микроамперметр сделан из мультиметра с автоматическим переключением пределов JT-033A фирмы SHENZHEN JINGTENGWEI INDUSTRY CO.,LTD: переключатель режимов удалён, вместо него впаяны перемычки, заставляющие его всегда работать в режиме измерения тока.

Расположение компонентов в корпусе следующее:

Jim сделал симуляцию схемы в Falstad, автор её немного переработал для отображения большего количества параметров, получилось:
$ 1 0.000005 7.619785657297057 65 5 50 t 224 240 176 240 0 -1 0.6771607865907852 -0.5873050244463638 500 t 256 272 304 272 0 -1 1.8738439949380101 -0.6771607865907852 500 r 176 304 176 400 0 10000 v 80 288 80 192 0 0 40 9 0 0 0.5 w 176 304 176 272 3 w 176 272 176 256 0 w 176 224 176 32 1 w 0 w 80 32 80 192 0 w 80 288 80 400 0 w 80 400 176 400 3 w 176 400 304 400 0 w 304 336 304 288 3 w 304 240 224 240 1 174 304 128 352 48 0 5000 0.9950000000000001 Resistance w 176 32 304 32 2 w 304 256 304 240 0 w 304 240 304 208 2 w 304 128 336 128 0 w 352 80 352 128 0 w 352 128 336 128 0 w 256 272 176 272 1 w 304 128 304 208 1 r 304 336 304 400 0 250 Результат симуляции: А вот результат симуляции при сопротивлении резистора R1 в 100 кОм:

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]