Простые схемы блока питания без трансформатора. Бестрансформаторное питание

Небольшие бестрансформаторные блоки питания часто используются для питания маломощных устройств от сети 220 В. Если ток потребляемый нагрузкой составляет порядка нескольких десятков миллиампер, можно легко преобразовать входное напряжение переменного тока в выходное постоянного, без необходимости использования громоздких и дорогих трансформаторов. Бестрансформаторные решения не только легче по весу и размерам, но и дешевле.

В зависимости от типа схемы бестрансформаторные источники питания делятся на две категории: емкостные и резистивные. Далее разберем характеристики каждой из этих схем. А также дадим практические советы о том, как выбрать мощность соответствующих электронных компонентов для этой схемы и какие меры следует предпринять для повышения безопасности такого источника питания.

Емкостный бестрансформаторный источник питания

Схема бестрансформаторного емкостного источника питания представлена на рисунке. Значения, указанные для компонентов, зависят от параметров схемы, формулы для расчета этих значений приведены. L и N представляют собой фазовую линию и ноль сетевого напряжения переменного тока соответственно, а Vout – это выходное напряжение от источника питания. Выходной ток обозначен как Iout.

Пусковой ток, способный повредить компоненты источника питания, ограничивается резистором R1 и реактивным сопротивлением конденсатора C1. Элемент D1 – стабилитрон, обеспечивающий стабилизацию опорного напряжения, а D2 – обычный кремниевый диод, задачей которого является выпрямление переменного напряжения. Напряжение на нагрузке остается постоянным, пока выходной ток Iout меньше или равен входному току Iin, значение которого можно рассчитать как:

Где VZ – напряжение стабилитрона, VRMS – среднеквадратичное значение входного переменного напряжения, а f – его частота. Минимальное значение Iin должно соответствовать потребляемой мощности нагрузки, а максимальное значение используется для выбора соответствующей номинальной мощности для каждого элемента. Выходное напряжение Vout можно рассчитать как:

Где VD – напряжение прямого смещения D2 – падение напряжения на диоде (обычно 0,7 В для кремниевого диода). Что касается R1, рекомендуется выбирать элемент с мощностью, по крайней мере, в 2 раза превышающей значение теоретической мощности рассеиваемой на R1 (PR1), которая определяется формулой:

Конденсатор C1, от которого происходит название схемы этого типа, следует выбирать с напряжением по крайней мере, в 2 раза превышающим напряжение сети переменного тока (400 В минимум). Диод D1 должен иметь мощность как минимум в 2 раза больше теоретического значения, определяемого по следующей формуле:

То же самое относится к мощности диода D2, где только вместо VZ теперь можно использовать постоянное значение падения напряжения, например 0,7 В для типичного кремниевого выпрямительного диода. В случае C2 обычно используется электролитический конденсатор с напряжением в 2 раза превышающим напряжение VZ.

Основными преимуществами емкостного решения перед БП на основе трансформатора являются уменьшенный размер, вес и стоимость. По сравнению с блоком резистивного типа, эта схема обеспечивает более высокий КПД. Недостатком является отсутствие гальванической развязки выходного напряжения от электросети и более высокая стоимость, чем ограничение по сопротивлению.

Эксперимент

В нашем эксперименте мы использовали резисторы с более высоким номиналом, чем указано в расчетах. В качестве нагрузочного резистора использовали резистор сопротивлением 300 Ом (12В / 300 Ом = 40 мА), чтобы проверить нагрузочную способность источника питания.

Выходное напряжение = Vz — Vd = 12 — 0,7 = 11,3 В

Внимание. Следует соблюдать осторожность при тестировании или использовании этой схемы! Не прикасайтесь ни к каким точкам цепи, так как некоторые точки этой цепи находятся под напряжением сети!

Источник

Резистивный бестрансформаторный источник питания

Принципиальная схема типичного бестрансформаторного резистивного источника питания показана на рисунке.

Опять же, выходное напряжение Vout остается постоянным пока ток Iout меньше или равен входному току Iin, с той лишь разницей что ограничение пускового тока теперь реализуется только резистором R1. Выходное напряжение Vout можно рассчитать по той же формуле, что и для емкостного источника питания, а входной ток Iin по следующей формуле:

Как и в предыдущем случае, компоненты должны быть выбраны со значением мощности, по крайней мере вдвое превышающим теоретическое значение, которое можно рассчитать по закону Ома (P = R х I ^ 2 для R1 и P = V х I для диодов D1 и D2). Электролитический конденсатор С2 следует выбирать как для емкостного исполнения.

Преимущество резистивного источника питания в том, что он меньше по размеру и весу по сравнению с трансформаторной схемой и является самым дешевым решением для электропитания. Но и в этом случае нет гальванической развязки от сети переменного тока, и кроме того, КПД ниже чем в емкостном решении.

Безопасность бестрансформаторных БП

Обе электросхемы имеют свои ограничения: они лишены какой-либо изоляции и защиты от сетевого напряжения, что является серьезной проблемой для безопасности. Но благодаря незначительным изменениям, можно адаптировать обе представленные схемы для реального использования и обеспечить соблюдение минимальных стандартов безопасности. Модификации включают:

  1. Добавление предохранителя для защиты от чрезмерного входного тока;
  2. Добавление варистора для защиты от переходных процессов;
  3. Резистор R2 (R3) подключен параллельно C1 (C3) для улучшения электромагнитной устойчивости;
  4. Разделение R1 на два резистора R1 и R2 для обеспечения лучшей защиты от скачков напряжения и предотвращения электрических дуг для резистивной цепи.

Для небольших нагрузок можно снизить напряжение с 220 В переменного тока до нескольких вольт (например 5, 9, 12 или 24), используя только токоограничивающий резистор, как показано на принципиальной схеме. КПД такой схемы чрезвычайно низок (1%), поскольку большая часть энергии теряется в виде тепла через резистор R1. Этот компонент действительно должен проделать большую работу чтобы снизить напряжение с 220 В до 12 В.

В этом примере этот линейный элемент рассеивает в среднем 22 Вт. Следовательно, он должен быть рассчитан не менее чем на 50 Вт. Его мощность рассеяния можно определить по формуле:

Переходные напряжения (за одну секунду) со значениями используемых компонентов показаны на графиках.

График верхний показывает, сколько времени требуется чтобы выходное напряжение достигло 12 В. Это время зависит от постоянной времени схемы, определяемой конденсатором C1. Тут время зарядки конденсатора следующее:

  • C1 = 100 мкФ, T = 25 мс
  • C1 = 470 мкФ, T = 130 мс
  • C1 = 1000 мкФ, T = 290 мс
  • C1 = 4700 мкФ, T = 1,4 сек
  • C1 = 10000 мкФ, T = 3 сек

При постоянном сопротивлении нагрузки пульсации выходного напряжения зависят от емкости конденсатора С1. Чем больше емкость конденсатора, тем меньше пульсации выходного напряжения. При использовании указанных выше конденсаторов уровень пульсаций, измеренный как размах напряжения сигнала, выглядит следующим образом:

  • C1 = 100 мкФ, пульсации = 1,2 Vpp
  • C1 = 470 мкФ, пульсации = 261,7 mVpp
  • C1 = 1000 мкФ, пульсации = 121,5 mVpp
  • C1 = 4700 мкФ, пульсации = 25,3 mVpp
  • C1 = 10 000 мкФ, пульсации = 11,9 mVpp

Но что более важно чем пульсация, на рисунке видно что выходное напряжение от источника питания не достигает желаемого напряжения 12 В, а только около 11,3 В.

Оказывается даже без нагрузки при подключении выходное напряжение всегда ниже 12 В. Это падение напряжения вызвано диодом D2. Помещенный в это место диод Шоттки мог бы уменьшить его, но не до нуля.

Ремонт блока питания светодиодной ленты

Многие блоки питания, рассчитанные на среднюю и большую мощность (30 и более Вт), построены на интегральном драйвере со встроенным силовым ключом, типа KA5l0365, FSDH065RN и т.д. Такие решения применяются и в бытовой технике, например, в блоках питания DVD проигрывателей. Такие микросхемы взаимозаменяемы, стоит только определить цоколевку сгоревшего чипа и установить тот, который вам удалось найти.

Для ремонта блока питания для светодиодной ленты на 12В (и не только), схема почти не изменяется. Нужно совершить подключение подобно тому, что изображено ниже. Разумеется, с учетом распиновки.

Более сложные и надежные блоки построены на ШИМ-контроллерах:

  • TL494;
  • KIA494AP;
  • MB3759;
  • KA7500;

Они аналогичны, ниже схема блока питания для светодиодной ленты с их использованием:

ШИМ-контроллер расположен в нижней части схемы, с помощью P1 (справа на схеме) осуществляется регулировка. Подбирая его величину, можно добиться нужного напряжения на выходе, чем-то похоже на регулировку 431 стабилизатора.

Даже если на вашем блоке нет потенциометра или подстроечника, вы можете его установить самостоятельно, заменив постоянный, аналогично приведенной мной схеме.

При ремонте смотрите на сигнал на выходе ШИМ, силовые ключи Т12 и Т13 подключенные к выводам 8 и 11 TL494.

На картинке ниже более наглядно изображена регулировка, потенциометр подключается к 1 вывод ИМС.

Таким образом вы можете своими руками экспериментальным путем сделать питание для светодиодной ленты из любого БП на 494 ШИМ-контроллере.

Практически все блоки питания можно своими руками перенастроить в узких пределах на необходимое напряжение питания светодиодной ленты. При этом вы обойдетесь минимальными затратами.

Как-то недавно мне в интернете попалась одна схема очень простого блока питания с возможностью регулировки напряжения. Регулировать напряжение можно было от 1 Вольта и до 36 Вольт, в зависимости от выходного напряжения на вторичной обмотке трансформатора.

Внимательно посмотрите на LM317T в самой схеме! Третья нога (3) микросхемы цепляется с конденсатором С1, то есть третяя нога является ВХОДОМ, а вторая нога (2) цепляется с конденсатором С2 и резистором на 200 Ом и является ВЫХОДОМ.

С помощью трансформатора из сетевого напряжения 220 Вольт мы получаем 25 Вольт, не более. Меньше можно, больше нет. Потом все это дело выпрямляем диодным мостом и сглаживаем пульсации с помощью конденсатора С1. Все это подробно описано в статье как получить из переменного напряжения постоянное . И вот наш самый главный козырь в блоке питания – это высокостабильный регулятор напряжения микросхема LM317T. На момент написания статьи цена этой микросхемы была в районе 14 руб. Даже дешевле, чем буханка белого хлеба.

Описание микросхемы

LM317T является регулятором напряжения. Если трансформатор будет выдавать до 27-28 Вольт на вторичной обмотке, то мы спокойно можем регулировать напряжение от 1,2 и до 37 Вольт, но я бы не стал подымать планку более 25 вольт на выходе трансформатора.

Микросхема может быть исполнена в корпусе ТО-220:

или в корпусе D2 Pack

Она может пропускать через себя максимальную силу тока в 1,5 Ампер, что вполне достаточно для питания ваших электронных безделушек без просадки напряжения. То есть мы можем выдать напряжение в 36 Вольт при силе тока в нагрузку до 1,5 Ампера, и при этом наша микросхема все равно будет выдавать также 36 Вольт – это, конечно же, в идеале. В действительности просядут доли вольта, что не очень то и критично. При большом токе в нагрузке целесообразней поставить эту микросхему на радиатор.

Для того, чтобы собрать схему, нам также понадобится переменный резистор на 6,8 Килоом, можно даже и на 10 Килоом, а также постоянный резистор на 200 Ом, желательно от 1 Ватта. Ну и на выходе ставим конденсатор в 100 мкФ. Абсолютно простая схемка!

Сборка в железе

Раньше у меня был очень плохой блок питания еще на транзисторах. Я подумал, почему бы его не переделать? Вот и результат;-)

Здесь мы видим импортный диодный мост GBU606. Он рассчитан на ток до 6 Ампер, что с лихвой хватает нашему блоку питания, так как он будет выдавать максимум 1,5 Ампера в нагрузку. LM-ку я поставил на радиатор с помощью пасты КПТ-8 для улучшения теплообмена. Ну а все остальное, думаю, вам знакомо.

А вот и допотопный трансформатор, который выдает мне напряжение 12 Вольт на вторичной обмотке.

Все это аккуратно упаковываем в корпус и выводим провода.

Ну как вам?

Минимальное напряжение у меня получилось 1,25 Вольт, а максимальное – 15 Вольт.

Ставлю любое напряжение, в данном случае самые распространенные 12 Вольт и 5 Вольт

Все работает на ура!

Очень удобен этот блок питания для регулировки оборотов мини-дрели , которая используется для сверления плат.

Конденсатор улучшает ситуацию

Как видно на схеме, добавление полиэфирного конденсатора последовательно с линией питания повышает эффективность. В этой конфигурации КПД уже составляет до 20%.

Поскольку максимальное напряжение на конденсаторе превышает 320 В, необходимо выбрать компонент, способный работать при напряжении не менее 600 В, как показано на рисунке.

В этой конфигурации R1 рассеивает только 0,5 Вт, но всегда лучше использовать его с номинальной мощностью не менее 2 Вт. Конденсатор C2 действует как резистор и имеет некоторую емкость при 50 Гц. Более конкретно емкость конденсатора на частоте f определяется по следующей формуле:

Из приведенной формулы конденсатор C2 имеет реактивное сопротивление 6772 Ом при 50 Гц, но, в отличие от резистора он не выделяет тепла. Выходное напряжение схемы также составляет 12 В за вычетом падения напряжения на диоде D1.

Для чего может использоваться напряжение 12 или 24 вольт в быту

В бытовых условиях зачастую используются источники электропитания низкого напряжения. От напряжения 12 или 24В постоянного тока DС запитываются переносные/стационарные электротехнические и электронные устройства, а также некоторые осветительные приборы:

  • аккумуляторные электродрели, шуруповерты и электропилы;
  • стационарные насосы для полива огородов;
  • аудио-видеотехника и радиоэлектронная аппаратура;
  • системы видеонаблюдения и сигнализации;
  • батареечные радиоприемники и плееры;
  • ноутбуки (нетбуки) и планшеты;
  • галогенные и LED-лампы, светодиодные ленты;
  • портативные ультрафиолетовые облучатели и портативное медицинское оборудование;
  • паяльные станции и электропаяльники;
  • зарядные устройства мобильных телефонов и повербанков;
  • слаботочные сети электропитания в местах с повышенной влажностью и системы ландшафтного освещения;
  • детские игрушки, елочные гирлянды, помпы аквариумов;
  • различные самодельные радиоэлектронные устройства, в том числе на популярной платформе Arduino.

Большинство устройств работает от батареек и Li-ion аккумуляторов, но использование товарных позиций не всегда оправдано с точки зрения эксплуатационных затрат. Заряжать аккумуляторные батареи можно 300–1500 раз, но гальванические элементы с большой энергоемкостью и низким током саморазряда стоят дорого. Заметно дешевле обойдется приобретение батареек, особенно солевых и щелочных, но такие элементы придётся часто менять. Тем более, что для обеспечения подающего напряжения 12 В понадобится 8 последовательно соединенных пальчиковых батареек (типа АА или ААА) или 1,5-вольтовых «таблеток» в корпусе типа 27А.

Поэтому в местах с доступом к бытовой сети 220 В 50 Гц для питания электроприемников с амперажом больше 0,1 А рациональнее использовать блок питания.

Источник

Рекомендации по проектированию БП

Когда цепь отключена, конденсатор C2 может оставаться заряженным в течение длительного времени. Рекомендуется подключать резистор с высоким сопротивлением параллельно этому элементу, как показано на рисунке. Этот резистор, например сопротивлением 470 кОм, не влияет на нормальную работу схемы. В стандартных условиях он рассеивает около 100 мВт тепла. Полный разряд конденсатора С2 происходит примерно за 1 секунду, но уже через 0,4 секунды значение напряжения на этом элементе станет не опасным для человека.

Следует отметить, что R2 должен быть рассчитан на работу при таком высоком напряжении. Поэтому обычно используются два или более обычных резистора мощностью 1/4 Вт, соединенных последовательно (для увеличения максимального напряжения пробоя).

Что касается последовательного резистора с токоограничивающим конденсатором, резистор нельзя полностью заменить перемычкой, потому что при подключении блока питания к сети можно словить вершину синусоиды и реактивное сопротивление конденсатора будет порядка не килоом, а единиц Ом. Резистор – это защита от такой «удачи». В свою очередь, большой резистор означает большие потери мощности и даже более низкий КПД.

Вот относительно мощный блок питания, сделанный для тока 150 мА 24 В. Помимо токоограничивающих элементов и разрядного резистора (C 2,5 uF, R 51R и 1M), на плате есть диодный мост, стабилитрон 24V и конденсатор фильтра 100 uF.

В общем самые большие преимущества бестрансформаторного источника питания можно увидеть, когда токовые требования составляют до 30 мА, тогда конечно вес, количество элементов, простота эксплуатации сделают разумным выбор такой схемы. Но всегда помните про отсутствие гальванической развязки с сетью 220 В!

Форум по блокам питания

Многие начинающие радиолюбители затрудняются определить тип блока питания, а ведь это не так уж и сложно. Основные способы преобразования напряжения заключаются в использовании одного из двух вариантов схемотехники:

  • Трансформаторные;
  • Бестрансформаторные источники питания.

В свою очередь трансформаторные различаются по типу схемы:

  • Сетевая, с трансформатором, работающим на частоте 50 Гц;
  • Импульсная, с трансформатором, работающим на высоких частотах (десятки тысяч Гц).

Импульсные схемы блоков питания позволяют увеличить общий КПД конечного изделия, за счет избегания статических потерь на линейных стабилизаторах и прочих элементах.

Бестрансформаторные схемы

Если возникает необходимость питания от бытовой электросети 220 В, простейшие приборы можно включить от блоков питания использующих балластные элементы для понижения напряжения. Широко известным примером такого источника питания является схема с балластным конденсатором.

Однако существует ряд драйверов со встроенным ШИМ-контроллером и силовым ключом для построения бестрансформаторного импульсного понижающего преобразователя, такие очень часто встречаются в светодиодных лампочках и другой технике.

В случае питания от источника постоянного тока, например, аккумуляторов или других гальванических элементов питания, используют:

  • Линейный стабилизатор напряжения (интегральный стабилизатор типа КРЕН или L78xx с, или без проходного транзистора, параметрического стабилизатора из стабилитрона и транзистора)
  • Импульсного преобразователя (понижающего – BUCK, повышающего – BOOST, или понижающе-повышающего – BUCK-BOOST)

Преимущество бестрансформаторных блоков питания и преобразователей заключаются в следующем:

  • Нет необходимости мотать трансформатор, преобразование осуществляется за счёт дросселя и ключей;
  • Следствием из предыдущего являются малые габариты источников питания.

Недостатки:

  • Отсутствие гальванический развязки, при неисправностях ключей приводит к появлению напряжения первичного источника питания. Это критично особенно если в его роли выступает сеть 220 В;
  • Опасность поражения электрическим током, как следствие гальванической связи;
  • Большие габариты дросселя на преобразователях высокой мощности ставят под сомнение целесообразность использования этой топологии блоков питания. При сопоставимых массогабаритных показателях можно использовать уже трансформаторный, гальванически развязанный преобразователь.

Основные разновидности импульсных преобразователей напряжения

В отечественной литературе часто встречается сокращение «ИППН», которое расшифровывается как: Импульсный Понижающий (или повышающий, или и то, и другое) Преобразователь Напряжения

В качестве основы можно выделить три базовые схемы.

1. ИППН1 – Понижающий преобразователь, в англоязычной литературе – BUCK DC CONVERTER или Step-down.

2. ИППН2 – Повышающий преобразователь, в англоязычной литературе – BOOST DC CONVERTER или Step-up.

3. ИППН3 – Инвертирующий преобразователь с возможностью как повышения, так и понижения напряжения, BUCK-BOOST DC CONVERTER.

Как работает импульсный понижающий преобразователь?

Начнем с рассмотрения принципа работы первой схемы – ИППН1.

В схеме можно выделить два питающих контура:

1. «+» от источника питания подаётся через закрытый ключ (транзистор любого типа соответствующей проводимости) на Lн (накопительный дроссель), далее ток протекает через нагрузку к «–» источника питания.

2. Второй контур образован из диода Д, дросселя Lн и подключенной нагрузки Rн.

Когда ключ замкнут, ток проходит по первому контуру, через катушку индуктивности протекает ток, и в её магнитном поле накапливается энергия. Когда мы выключаем (размыкаем) ключ, энергия, запасённая в катушке, рассеивается в нагрузку, при этом ток протекает через второй контур.

Напряжение на выходе (нагрузке) такого преобразователя равняется

Uвых=Uвх*Ku

Ku – это коэффициент преобразования, который зависит от коэффициента заполнения управляющих импульсов силового ключа.

Ku=Uвых/Uвх

Коэффициент заполнения «D» – это отношение времени, когда ключ открыт, к периоду ШИМ. «D» может принимать значения от 0 до 1.

ВАЖНО: Для ИППН1 Ku=D. Это значит, что пределы регулирования данного стабилизатора приблизительно равны – 0…Uвых.

Напряжение на выходе такого преобразователя аналогично по полярности с напряжением на входе.

Как работает импульсный повышающий преобразователь напряжения

ИППН2 – способен повышать напряжение от напряжения питания до величины в десятки раз превышающей его. Схематически он состоит из тех же элементов что и предыдущая.

Любой преобразователь подобного типа в своем составе имеет три основных действующих компонента:

  • Управляемый ключ (биполярный, полевой, IGBT, MOSFET транзисторы);
  • Неуправляемый ключ (выпрямительный диод);
  • Накопительная индуктивность.

Ток всегда протекает через индуктивность, изменяется лишь его величина.

Для того, чтобы понять принцип работы этого преобразователя, нужно вспомнить закон коммутации для катушки индуктивности: «Ток через катушку индуктивности не может измениться моментально».

Это вызвано таким явлением как ЭДС самоиндукции или противо-ЭДС. Так как электромагнитное поле индуктивности препятствует скачкообразному изменению тока, катушку можно представить в виде источника питания. Тогда в это схеме, когда ключ замыкается через катушку начинает протекать ток большой величины, но, как уже было сказано резко он возрасти не может.

Противо-ЭДС это явление, когда на концах катушки возникает ЭДС противоположное тому, что приложено. Если представить это на схеме для наглядности, придется представить катушку индуктивности в виде источника ЭДС.

Под цифрой «1» обозначено состояние схемы, когда ключ замкнут. Обратите внимания что источник питания и условное обозначение ЭДС катушки соединены положительными выводами последовательно, т.е. величины их ЭДС вычитаются. В таком случае индуктивность препятствует прохождению электрического тока, а вернее замедляет его рост. По мере роста, через определенный постоянной времени промежуток, величина противо-ЭДС уменьшается, а ток через индуктивность нарастает.

Лирическое отступление:

Величина ЭДС самоиндукции, как и любое другое ЭДС измеряется в Вольтах.

В этот промежуток времени основной ток протекает по контуру: источник питания-индуктивность-замкнутый ключ.

Когда ключ SA размыкается, схема 2. Ток начинает течь по такому контуру: источник питания-индуктивность-диод-нагрузка. Так как сопротивление нагрузки, чаще значительно больше, чем сопротивление канала замкнутого транзистора. При этом снова – ток, протекающий через индуктивность не может измениться скачком, индуктивность всегда стремится поддержать направление и величину тока, поэтому возникает снова противо-ЭДС, но уже в обратной полярности.

Обратите внимание, как на второй схеме подключены полюса Источника питания и замещающего катушку источника ЭДС. Они соединены последовательно противоположными полюсами, а величины этих ЭДС складываются.

Таким образом происходит повышение напряжения.

Во время процесса накопления энергии индуктивности нагрузка питается энергией, которая ранее была запасена в сглаживающем конденсаторе.

Коэффициент преобразования в ИППН2 равен

Ku=1/(1-D)

Как видно из формулы – чем больше D – коэффициент заполнения, тем больше выходное напряжение. Полярность выходного питания, совпадает со входным у данного типа преобразователя.

Как работает инвертирующий преобразователь напряжения

Инвертирующий преобразователь напряжения довольно интересное устройство, ведь он может работать, как в режиме понижения напряжения, так и в режиме повышения. Однако стоит учитывать, что полярность его выходного напряжения противоположна входному, т.е. положительный потенциал оказывается на общем проводе.

Инвертирование также заметно по направлению, в котором включен диод Д. Принцип работы немного похожу на ИППН2. В то время, когда ключ Т замкнут происходит процесс накопления энергии индуктивности, питание от источника не попадает в нагрузку из-за диода Д. Когда ключ закрывается, энергия индуктивности начинает рассеиваться в нагрузке.

Ток продолжает течь через индуктивность, возникает ЭДС самоиндукции, направленная таким образом, что на концах катушки формируется полярность, противоположная первичному источнику питания. Т.е. в узле соединения эмиттера транзистора (сток, если транзистор полевой), катода диода и конца обмотки катушки формируется отрицательный потенциал. На противоположном конце, соответственно, положительный.

Коэффициент преобразования ИППН3 равен:

Ku=D/(1-D)

Путем несложных подстановок коэффициента заполнения в формулу, мы определим, что до величины D в 0.5, этот преобразователь выступает в роли понижающего, а свыше – повышающего.

Как управлять такими преобразователем?

Описывать все варианты построения ШИМ-контроллеров можно бесконечно долго, об этом можно написать несколько томов технической литературы. Я же, хочу ограничиться перечислением нескольких простых вариантов:

1. Собрать схему несимметричного мультивибратора. Вместо VT3 подключается транзистор в схемах ИППН-ов.

2. Чуть более сложный вариант, но более стабильный в плане частоты – это ШИМ на NE555 (для увеличения нажмита на картинку).

На схеме сделать правки, VT1 – это транзистор, изменяем схему так, чтобы на его месте был транзистор ИППН.

3. Вариант использовать микроконтроллер, так вы можете еще и сделать много дополнительных функций, для новичков хорошо подойдут AVR микроконтроллеры. Есть прекрасный видеоурок об этом.

Выводы

Импульсные преобразователи напряжения – это очень важная тема в отрасли блоков питания для радиоэлектронной аппаратуры. Подобные схемы используются повсеместно, а, в последнее время, с ростом «самодельщиков» или как это сейчас модно называть «DIY’щиков» и популярностью сайта aliexpress такие преобразователи стали особенно популярны и востребованы, вы можете заказать готовую плату ставшего уже классическим, преобразователя на LM2596 и подобных всего за пару долларов, при этом вы получите возможность регулировки напряжения или тока, или и того и другого.

Другая популярная плата – это mini-360

Вы можете заметить, что в этих схемах отсутствует транзистор. Дело в том, что он встроен в микросхему, кроме него там находится ШИМ-контроллер, цепи обратной связи для стабилизации выходного напряжения и другое. Тем не менее эти схемы могут усиливаться установкой дополнительного транзистора.

Если вам интересно спроектировать схему под ваши нужды, тогда более подробно с расчётными соотношениями вы можете ознакомится в следующей литературе:

  • «Компоненты для построения источников питания», Михаил Бабурин, Алексей Павленко, Группа
  • «Стабилизированные транзисторные преобразователи» В.С. Моин, Энергоатомиздат, М. 1986.

Ранее ЭлектроВести писали, что Нобелевская премия по химии за 2022 год присуждена Джону Гуденафу, Стэнли Уиттингему и Акире Йошино за развитие литий-ионных батарей. Об этом объявила днем в среду Шведская академия наук.

По материалам: electrik.info.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]