Приветствую всех на нашем сайте. Сегодня мы поговорим об устройстве генератора тока. Попробуем максимально охватить данную тему и рассмотреть устройство генераторов постоянного и переменного токов.
На самом деле, не совсем верно называть это устройство генератором именно переменного или постоянного тока, поскольку, ток возникает только в замкнутом контуре. В общем, в обмотках генератора возникает ЭДС, а не ток. Ток начинает протекать только тогда, когда к обмоткам подключается какой-либо потребитель. Однако, в этой статье мы будем пользоваться устоявшимися понятиями.
Какие бы ни были электрические генераторы основной их принцип – выработка электрической энергии за счёт вращения обмотки в магнитном поле. Это значит, что можно выделить два схематических вида генераторов: либо мы вращаем магнитное поле в неподвижном проводнике, либо вращаем проводник в неподвижном магнитном поле.
Устройство генератора переменного тока
Итак, относительно устройства генератора переменного тока и принципа его действия.
Наибольшее распространение получили генераторы переменного тока с неподвижным проводником. Обусловлено это тем, что ток возбуждения по отношению к току, который получают с генератора, небольшой. Если посмотрите на картинку, то увидите два кольца, по которым протекает ток обмотки возбуждения и это слабое звено любого генератора с обмоткой возбуждения. То есть, либо по кольцам через щётки мы подаем небольшой ток возбуждения, либо через кольца снимаем большой рабочий ток. В электричестве неподвижная часть генераторов или двигателей, на которой находится обмотка, называется статором. Подвижная часть может называться ротором или якорем.
Основные виды генераторов переменного тока
Видов генераторов довольно много. Попробуем классифицировать их по основным направлениям.
- По виду используемой энергии:
- Энергия ветра
- Энергия жидкого топлива
- Энергия тепла
- Энергия воды
Энергия газа
- Однофазный
Трёхфазный
Есть и другие типы, но они менее распространены.
- По типу возбуждения:
- Независимое возбуждение. В этом случае на одном валу с генератором переменного тока находится еще и генератор постоянного тока, который питает только обмотку возбуждения. Возбуждение в таком случае может выполняться и любым другим источником тока, например, аккумулятором.
- Возбуждение с помощью магнитов, которые располагаются на статоре или на якоре, что значительно упрощает устройство генератора, но с помощью такого способа получить мощные генераторы не получится.
Самовозбуждение. В этом случае, напряжение для обмотки возбуждения получают непосредственно с используемого генератора.
Синхронный генератор : схема, устройство, принцип работы
Что значит синхронный по отношению к двигателю или генератору? Если совсем просто, то частота переменного тока жёстко зависит от скорости вращения ротора электрической машины и наоборот. Таким образом, можно относительно легко контролировать частоту переменного тока. Сам по себе синхронный генератор имеет ряд преимуществ, благодаря которым стал наиболее распространенным. Скажу вам по большому секрету, именно синхронные генераторы используются на всех станциях, где производят электричество.
Приводным двигателем (на схеме обозначен как ПД) может выступать любое вращающее устройство: двигатель, турбина, крыльчатка ветряной мельницы или водяного колеса. На одном валу с ПД находится ротор генератора с обмоткой возбуждения. На обмотку подается постоянное напряжение и вокруг обмотки образуется магнитное поле. Когда ротор вращается, в обмотках статора возникает ЭДС, то есть появляется напряжение, только уже переменное, частота которого зависит от скорости вращения ротора n1 и количества пар полюсов p. Частоту ЭДС можно высчитать по формуле.
Асинхронный генератор: схема, устройство, принцип работы
Устройство асинхронного генератора
Асинхронный генератор, это, по сути, асинхронный двигатель. То есть, любой асинхронный двигатель можно перевести в режим генерации энергии и наоборот. Конструктивно, устройство, которое называют генератором, выполнено таким образом, чтобы иметь хорошее охлаждение. Глубоко останавливаться на принципе действия асинхронных машин не будем, но вкратце расскажу, почему их называют асинхронными на примере двигателя.
Когда на обмотки статора подается напряжение, образуется магнитное поле, у трёхфазных двигателей оно круговое, у однофазных эллипсообразное, стремящееся к круговому. Магнитное поле начинает пересекать витки обмотки статора. В короткозамкнутой обмотке ротора возникает ЭДС, то есть напряжение, а поскольку обмотка короткозамкнутая, по ней начинает протекать ток, который тоже создает магнитное поле. Взаимодействие этих магнитных полей приводит ротор в движение. Что будет, если скорость ротора станет равна скорости магнитного поля, создаваемого статором? Правильно, магнитное поле статора перестанет пересекать обмотку ротора. Это можно сравнить с тем, что две машины двигаются на одинаковой скорости. Вроде бы машины двигаются, но при этом по отношению друг к другу они словно стоят на месте, просто земля с большой скоростью проносится под машинами. Так вот, как только скорость ротора и скорость магнитного поля статора станут одинаковыми, в обмотке ротора перестанет вырабатываться ЭДС, прекратится взаимодействие магнитных полей статора и ротора и ротор начнёт останавливаться. Поэтому скорость вращения ротора асинхронного двигателя всегда несколько меньше скорости вращения магнитного поля статора и эта величина называется скольжение.
Так вот, чтобы асинхронный двигатель стал генератором, надо определить скольжение и увеличить скорость вращения ротора на эту величину. Допустим, мы имеем однополюсный трехфазный асинхронный двигатель со скоростью вращения вала 2800 оборотов. Если бы такой двигатель был синхронным, скорость вращения составила бы 3000 оборотов. То есть скольжение составляет 200 оборотов в минуту. Это значит, что если мы начнём вращать ротор со скоростью 3200 оборотов в минуту, то двигатель перейдёт в генераторный режим и будет уже не потреблять, а вырабатывать ЭДС.
Сложность применения таких генераторов в том, что они подвержены провалам. Например, если включить активную нагрузку (лампочку накаливания или нагреватель), пусковой ток будет небольшим. Значительной перегрузки не произойдет, и генератор будет работать стабильно. Если же включить реактивную нагрузку, например, двигатель, то будет большой пусковой ток, превышающий номинальный в 5-20 раз, который «провалит» генератор, то есть вызовет резкое падение напряжения на обмотках генератора. После такого провала асинхронный генератор снова нужно возбуждать. Так что, простота асинхронного генератора перевешивается серьезным недостатком.
Ну и еще нужна конденсаторная установка для возбуждения короткозамкнутой обмотки ротора. Если подобрать неверно ёмкость конденсаторов, то в случае «недобора» от генератора мы получим меньше тока, а в случае «перебора», наш генератор будет сильно перегреваться.
Схемы подключения
Собственно, даже не схемы включения, а варианты. Их, как правило, три:
- Автоматическое включение. В этом случае устанавливается специальный блок аварийного включения. Как только отключают напряжение в сети, блок подаёт команду на запуск генератора и переключает сеть с внешнего источника питания, на генераторную установку.
- Ручное включение. В этом случае, пользователь сам проводит операцию переключения с внешнего источника питания на генераторную установку и вручную запускает генератор.
- Синхронная работа. Такой режим, в основном используется на крупных станциях, генераторы которых объединены в одну сеть. Все генераторы этой сети работают синхронно, с одной частотой, с одной очерёдностью фаз и с одинаковым напряжением на обмотках статора.
Однофазный генератор
Здесь я подробно останавливаться не буду. Такие устройства сейчас можно встретить в любом магазине инструментов. Если однофазный генератор используется как запасной источник электроэнергии, то подключается к домовой сети, как правило, посредством рубильника. То есть, одновременно внешний источник питания и генератор на одну сеть не могут – либо то, либо другое. Во-первых, незачем, во-вторых, это сильно усложнило бы и увеличило стоимость бытовых генераторов. Единственное, на чём могу здесь остановиться, это включение однофазного генератора в трёхфазную сеть.
Включение однофазного генератора в трёхфазную сеть
Однако у такого метода есть свой недостаток. Трёхфазные двигатели в такой сети работать не будут, если же их включить, то очень быстро нагреются и выйдут из строя.
Трехфазный генератор
Трёхфазные генераторы могут быть бытовыми и промышленными. Устройство генератора трёхфазного тока в бытовом варианте практически ничем не отличается от однофазного, как и схема включения. Единственное условие при включении бытового генератора в сеть, если в такой сети имеются трёхфазные двигатели – соблюдать очередность фаз. В случае же, если нагрузка в доме однофазная, то такой предосторожностью можно пренебречь.
Устройство генератора трёхфазного тока в промышленном варианте – это устройство, оснащенное автоматическим пуском и иногда может быть оснащено устройством синхронизации. Подключение таких генераторов лучше доверить специалистам.
Ну а бытовой генератор точно так же, как и однофазный включается в сеть через рубильник. Следовательно, в зависимости от положения рубильника работает либо внешний источник питания, либо генератор.
Генераторы независимого возбуждения
Определение. Генераторами независимого возбуждения называются генераторы постоянного тока, обмотка возбуждения которых питается постоянным током от постороннего источника электрической энергии (сеть постоянного тока, выпрямитель, аккумулятор и др.) или у которых магнитный поток создается постоянными магнитами.
Схема генератора. Схема генератора независимого возбуждения изображена на рис. 1.16. Якорь генератора приводится во вращение от приводного двигателя ПД.
Цепь якоря электрически не соединена с цепью возбуждения, поэтому ток нагрузки I и ток якоря Iя – это один и тот же ток (I = Iя). Цепь возбуждения питается от постороннего источника постоянного тока. В нее включают регулировочный реостат R p , предназначенный для регулирования тока возбуждения Iв, магнитного потока возбуждения и в конечном счете ЭДС и напряжения генератора.
Характеристика холостого хода (рис. 1.17). Характеристика снимается при плавном увеличении тока возбуждения, а затем при его плавном уменьшении при n = nном = const . Вторая ветвь характеристики идет несколько выше первой и при токе Iв = 0 в машине есть некоторая ЭДС E0, называемая остаточной. Вид характеристики холостого хода объясняется тем, что при n = const E = CenФ пропорциональна магнитному потоку Ф, а последний – индукции В, т.е. ее форма такая же, как у кривой гистерезиса. За расчетную обычно принимают характеристику, проходящую между ветвями экспериментальной кривой (штриховая кривая на рис. 1.17). Остаточная ЭДС E0 создается за счет индукции, остающейся в магнитной цепи статора после отключения тока возбуждения. Машина рассчитывается таким образом, чтобы в номинальном режиме рабочая точка (Iв.ном, Еном) находилась на «колене» характеристики холостого хода, этим обеспечивается получение достаточно высокой ЭДС при относительно небольшом токе возбуждения.
Внешняя характеристика. Внешняя характеристика генератора U = f(I) при IB= const и n = nном = const (рис. 1.18) характеризует влияние тока нагрузки генератора на напряжение на его выводах. Напряжение U = E – RЯ I при увеличении нагрузки от нуля до номинальной плавно уменьшается на 5 – 15% по двум причинам: из-за падения напряжения на сопротивлении якоря RЯ I и уменьшения ЭДС Е из-за размагничивающего влияния реакции якоря (кривые 1и 1а). При перегрузке машины ток в якоре становится недопустимо большим и напряжение сильно падает (кривая 1а).
При коротком замыкании ток в якоре Iк примерно в 10 раз больше номинального (он ограничивается только сопротивлением цепи якоря 1к = Е / RЯ) и если быстро не отключить генератор, то его коллектор и обмотка выйдут из строя.
Регулировочная характеристика. Регулировочная характеристика Iв = f(I) при U= const и n = nном = const изображена на рис. 1.19 (кривая 1). Для поддержания постоянства напряжения на выводах якоря в цепь возбуждения включен регулировочный реостат с сопротивлением Rp (рис. 1.16).
Устройство генератора постоянного тока
Чтобы узнать, что такое генератор постоянного тока, устройство и принцип действия вернёмся немного назад. Мы уже выяснили, как работает генератор переменного тока. Давайте подробнее рассмотрим процесс возникновения ЭДС. Поскольку ротор вращается, у нас есть цикл равный одному обороту ротора или 360°. Давайте узнаем, что происходит в этом цикле:
- 0° — ЭДС =0
- 90° — ЭДС достигает максимального значения со знаком «+»
- 180° — ЭДС снова равна 0
- 270° — ЭДС достигает пикового значения со знаком «-»
Как же сделать так, чтобы не менялась полярность напряжения? Великие умы придумали следующее – применить коллектор, то есть, снимать напряжение только нужной полярности. Помните, мы говорили, что в генераторе переменного тока, рабочей является обмотка статора, а на роторе находится обмотка возбуждения. Так вот, в генераторе постоянного тока напряжение снимается только с ротора, который называется якорем.
Схема генератора постоянного тока
Если такой генератор будет иметь только одну пару полюсов, как на картинке, то мы получим пульсирующее постоянное напряжение, где частота будет в два раза больше скорости вращения. То есть, если скорость вращения будет 50 оборотов в секунду, то частота пульсации будет 100 Гц. Чтобы снизить пульсацию напряжения увеличивают количество пар полюсов.
С момента изобретения генератора постоянного тока схематично и по принципу действия он практически не изменился, изменилась лишь технология изготовления и сейчас он выглядит так:
Основные виды генераторов постоянного тока
В настоящее время набирают популярность двигатели постоянного тока без коллектора. Возможен ли вариант бесколлекторного генератора? К сожалению, пока решить эту задачу не удалось. Так что, если вы где-то увидите название «Бесколлекторный генератор постоянного тока», знайте, что это генератор переменного тока с выпрямительным блоком.
По этой причине, генераторы постоянного тока характеризуют только по типу возбуждения:
- Генераторы, возбуждаемые магнитами. Большую мощность такие генераторы развить не могут, поэтому нашли применение только там, где требуются небольшие мощности. Ну и, конечно же, применение магнитов ощутимо удешевляет стоимость таких генераторов.
- Независимое возбуждение. Точно так же, как и у генераторов переменного тока, для возбуждения применяется внешний источник питания, не связанный с генератором.
- Зависимое возбуждение, которое делится на три типа:
- Параллельное возбуждение. Как можно понять из названия, обмотка возбуждения в таком генераторе подключена параллельно обмотке якоря. Иногда такой вид возбуждения называют шунтовый.
- Последовательное возбуждение. Здесь обмотка возбуждения подключается как гирлянда, последовательно обмотке якоря. Такой вид иногда называют сериесным.
- Смешанное возбуждение или компаундное. Обмотка возбуждения таких генераторов состоит из двух частей, первая подключается шунтовым методом, вторая сериесным.
Генераторы с независимым возбуждением: схема, устройство, принцип работы
Схема генератора независимого возбуждения
Принцип работы этого генератора довольно прост. Однако простота генератора является его же недостатком – он требует внешнего независимого источника питания. Якорь генератора разгоняют до необходимой скорости, затем с помощью реостата начинают возбуждать генератор. На обмотках якоря возникает ЭДС и при подключении нагрузки начинает протекать ток.
Нагрузочная способность такого генератора очень хорошая. Как правило, разница между напряжением холостого хода, когда нагрузка не подключена и напряжением при номинальной нагрузке генератора, когда потребитель загружает полностью – составляет всего 5-10%.
Преимущество генератора с независимым возбуждением ещё и в том, что его можно запускать под нагрузкой, то есть, с присоединенными электроприборами.
Генераторы с параллельным возбуждением: схема, устройство, принцип работы
Схема генератора параллельного возбуждения
У генератора с параллельным включением обмотки возбуждения, в принципе, тоже неплохие нагрузочные характеристики, хотя и несколько хуже, чем у схем с независимым возбуждением – 10-30%. У схем с зависимым возбуждением есть одна особенность, для того, чтобы произошло возбуждение, металл генератора должен иметь остаточную намагниченность. Достаточно 2-3% остаточной намагниченности чтобы запустился процесс самовозбуждения. Конечно же, при этом направление обмотки возбуждения должно совпадать с направлением поля остаточной намагниченности.
Якорь генератора раскручивают до номинальных оборотов, за счет остаточного намагничивания происходит самовозбуждение, то есть, в контуре генератор-обмотка возбуждения появляется ЭДС, появляется небольшой ток. Он увеличивает ЭДС, следовательно, ток снова увеличивается и так происходит до тех пор, пока не будет достигнут баланс между падением напряжения в обмотке генератора и падением напряжения в обмотке возбуждения.
В работе генератора есть одна особенность. Если плавно увеличивать нагрузку вплоть до короткого замыкания, то в какой-то момент мощность генератора достигнет пиковых значений, затем пойдет на спад. По сути, если в момент номинальной загрузки генератора устроить короткое замыкание, то ничего страшного не произойдет. Но если это сделать при небольшой нагрузке, то ток короткого замыкания достигает критических значений 8-10 Iн, а значит, такие генераторы крайне настоятельно рекомендуется защищать от короткого замыкания любым доступным способом.
Такие генераторы получили наибольшее распространение, поскольку не требуют внешних источников питания, имеют неплохую нагрузочную способность и позволяют контролировать ток возбуждения.
Генераторы с последовательным возбуждением: схема, устройство, принцип работы
Схема генератора последовательного возбуждения
Поскольку ток обмотки возбуждения в данном случае равен току в цепи, а значит, достигает больших значений, обмотка возбуждения выполняется толстым проводом и имеет меньшее количество витков, чем в предыдущих двух схемах. Принцип работы такой же, как и у предыдущей схемы. Обмотка и поле остаточной намагниченности должны совпадать по направлению. При раскручивании якоря до номинальной частоты возникает ЭДС, поднимается ток и дальше по нарастающей, пока не будет достигнут баланс.
Но здесь есть один небольшой нюанс. Ток обмотки возбуждения изменяется от тока нагрузки, и регулировать ток возбуждения возможности нет. А это приводит к тому, что очень сильно изменяется и напряжение. Здесь мы получаем самый настоящий генератор тока, а не напряжения. Именно поэтому область применения генератора с последовательным возбуждением сильно ограничена.
Генератор параллельного возбуждения
Электрические машины › Электрические машины постоянного тока
Принцип самовозбуждения генератора постоянного тока основан на том, что магнитная система машины, будучи намагниченной, сохраняет длительное время небольшой магнитный поток остаточного магнетизма сердечников полюсов и станины Фост (порядка 2—3% от полного потока). При вращении якоря поток
Рис. 28.5. Принципиальная схема (а) и характеристика х.х. (б) генератора параллельного возбуждения
индуцирует в якорной обмотке ЭДС Еост, под действием которой в обмотке возбуждения возникает небольшой ток Iв.ост.
Если МДС обмотки возбуждения Iв.ост wВ имеет такое же направление, как и поток Фост , то она увеличивает поток главных полюсов. Это, в свою очередь, вызывает увеличение ЭДС генератора, отчего ток возбуждения вновь увеличится. Так будет продолжаться до тех пор, пока напряжение генератора не будет уравновешено падением напряжения в цепи возбуждения, т. е. U0 = IВrВ .
На рис. 28.5, а
показана схема включения генератора параллельного возбуждения, на рис. 28.5,
б
— характеристика х.х. генератора (кривая
1
) и зависимость падения напряжения от тока возбуждения IВrВ = F(IВ) (прямая
2
). Точка пересечения
А
соответствует окончанию процесса самовозбуждения, так как именно в ней U0 = IВrВ .
Угол наклона прямой ОА
к оси абсцисс определяется из треугольника
ОАВ:
, (28.10)
где mi — масштаб тока (по оси абсцисс), А/мм; mu— масштаб напряжения (по оси ординат), В/мм.
Из (28.10) следует, что угол наклона прямой IВrВ = F(IВ) к оси абсцисс прямо пропорционален сопротивлению цепи возбуждения. Однако при некотором значении сопротивления реостата rрг сопротивление rВ, достигает значения, при котором зависимость IВrВ = F(IВ) становится касательной к прямолинейной части характеристики х.х. (прямая 3
)
.
В этих условиях генератор не самовозбуждается. Сопротивление цепи возбуждения, при которой прекращается самовозбуждение генератора, называют
критическим
сопротивлением,
(rВ.крит ).
Следует отметить, что самовозбуждение генератора возможно лишь при частоте вращения, превышающей критическую nкт. Это условие вытекает из характеристики самовозбуждения генератора (рис. 28.6), представляющей собой зависимость напряжения генератора в режиме х.х. от частоты вращения при неизменном сопротивлении цепи возбуждения, т. е. U0 = F(n) при rВ = const.
Рис. 28.6. Характеристика самовозбуждения
Анализ характеристики самовозбуждения показывает, что при n < nкр увеличение частоты вращения якоря генератора сопровождается незначительным увеличением напряжения, так как процесса самовозбуждения нет и появление напряжения на выходе генератора обусловлено лишь остаточным намагничиванием магнитной цепи генератора. Процесс самовозбуждения начинается при n < nкр . В этом случае увеличение частоты вращения сопровождается резким ростом напряжения U0.
Однако при частоте вращения, близкой к номинальной, рост напряжения несколько замедляется, что объясняется магнитным насыщением генератора. Критическая частота вращения зависит от сопротивления цепи возбуждения и с ростом последнего увеличивается.
Таким образом, самовозбуждение генераторов постоянного тока возможно при соблюдении следующих условий: а) магнитная система машины должна обладать остаточным магнетизмом; б) присоединение обмотки возбуждения должно быть таким, чтобы МДС обмотки совпадала по направлению с потоком остаточного магнетизма Фост ; в) сопротивление цепи возбуждения должно быть меньше критического; г) частота вращения якоря должна быть больше критической.
Так как генератор параллельного возбуждения самовозбуждается лишь в одном направлении, то и характеристика х.х. этого генератора может быть снята только для одного квадранта осей координат.
Нагрузочная и регулировочная характеристики генератора параллельного возбуждения практически не отличаются от соответствующих характеристик генератора независимого возбуждения.
Внешняя характеристика генератора параллельного возбуждения 1
(рис. 28.7) менее жесткая, чем у генератора независимого возбуждения. Объясняется это тем, что в генераторе параллельного возбуждения помимо причин, вызывающих уменьшение напряжения в генераторе независимого возбуждения (реакция якоря и падение напряжения в цепи якоря), действует еще и третья причина — уменьшение тока возбуждения, вызванное снижением напряжения от действия первых двух причин. Этим же объясняется и то, что при постепенном уменьшении сопротивления нагрузки rн ток увеличивается лишь до критического значения Iкр, а затем при дальнейшем уменьшении сопротивления нагрузки ток начинает уменьшаться. Наконец, ток нагрузки при коротком замыкании Iк < Iкр. Дело в том, что с увеличением тока усиливается размагничивание генератора (усиление реакции якоря и уменьшение тока возбуждения), машина переходит в
ненасыщенное
состояние, при котором даже небольшое уменьшение сопротивления нагрузки вызывает резкое уменьшение ЭДС машины (см. рис. 28.5,
б
)
.
Так как ток определяется напряжением на выводах генератора U и сопротивлением нагрузки rн, т. е. I = U/rн , то при токах нагрузки I < Iкр, когда напряжение генератора уменьшается медленнее, чем убывает сопротивление нагрузки, происходит рост тока нагрузки. После того как I = Iкр, дальнейшее уменьшение rн сопровождается уменьшением тока нагрузки, так как в этом случае напряжение U убывает быстрее, чем уменьшается сопротивление нагрузки rн.
Рис. 28.7. Внешняя характеристика генератора параллельного возбуждения
Таким образом, короткое замыкание, вызванное медленным уменьшением сопротивления нагрузки, не опасно для генератора параллельного возбуждения. Но при внезапном к.з. магнитная система генератора не успевает размагнититься и ток Iк достигает опасных для машины значений Iк = (8–12)Iном (кривая 2
). При таком резком возрастании тока нагрузки на валу генератора возникает значительный тормозящий момент, а на коллекторе появляется сильное искрение, переходящее в круговой огонь. Поэтому необходимо защищать генератор от перегрузки и к.з. посредством плавких предохранителей или же применением релейной защиты.
Генераторы параллельного возбуждения широко применяют в установках постоянного тока, так как отсутствие возбудителя выгодно отличает эти генераторы от генераторов независимого возбуждения. Номинальное изменение напряжения генератора параллельного возбуждения составляет 10—30%.