Транзисторные ключи: схема, принцип работы и особенности


Что такое электронный ключ?

Ключ – это, если упростить, обыкновенный выключатель. С его помощью замыкается и размыкается электрическая цепь. У биполярного транзистора имеется три вывода:

  1. Коллектор.
  2. Эмиттер.
  3. База.

На биполярных полупроводниках строятся электронные ключи – конструкция простая, не требует наличия большого количества элементов. При помощи переключателя осуществляется замыкание и размыкание участка цепи. Происходит это с помощью сигнала управления (который вырабатывает микроконтроллер), подаваемого на базу транзистора.

Достоинства и недостатки биполярных транзисторов

К достоинствам биполярных транзисторов в сравнении с аналогами относятся:

  • управление электрическими зарядами;
  • надежность в работе;
  • устойчивость к частотным помехам;
  • малые шумовые характеристики;

К недостаткам можно отнести:

  • обладает малым значением входного сопротивления, из-за которого ухудшаются характеристики по усилению сигналов;
  • резкая чувствительность к статике зарядов;
  • схема включения предполагает присутствие 2-х питаний;
  • при высоких значениях температуры возможно повреждение транзистора.

Коммутация нагрузки

Простыми схемами на транзисторных ключах можно производить коммутацию токов в интервале 0,15… 14 А, напряжений 50… 500 В. Все зависит от конкретного типа транзистора. Ключ может производить коммутацию нагрузки 5-7 кВт при помощи управляющего сигнала, мощность которого не превышает сотни милливатт.

Можно применять вместо транзисторных ключей простые электромагнитные реле. У них имеется достоинство – при работе не происходит нагрев. Но вот частота циклов включения и отключения ограничена, поэтому использовать в инверторах или импульсных блоках питания для создания синусоиды их нельзя. Но в общем принцип действия ключа на полупроводниковом транзисторе и электромагнитного реле одинаков.

Электромагнитное реле

Реле – это электромагнит, которым производится управление группой контактов. Можно провести аналогию с обычным кнопочным выключателем. Только в случае с реле усилие берется не от руки, а от магнитного поля, которое находится вокруг катушки возбуждения. Контактами можно коммутировать очень большую нагрузку – все зависит от типа электромагнитного реле. Очень большое распространение эти устройства получили в автомобильной технике – с их помощью производится включение всех мощных потребителей электроэнергии.

Это позволяет разделить все электрооборудование автомобиля на силовую часть и управляющую. Ток потребления у обмотки возбуждения реле очень маленький. А силовые контакты имеют напыление из драгоценных или полудрагоценных металлов, что исключает вероятность появления дуги. Схемы транзисторных ключей на 12 вольт можно применять вместо реле. При этом улучшается функциональность устройства – включение бесшумное, контакты не щелкают.

Выводы электромагнитного реле

Обычно в электромагнитных реле имеется 5 выводов:

  1. Два контакта, предназначенных для управления. К ним подключается обмотка возбуждения.
  2. Три контакта, предназначенных для коммутации. Один общий контакт, который нормально замкнут и нормально разомкнут с остальными.

В зависимости от того, какая схема коммутации применяется, используются группы контактов. Полевой транзисторный ключ имеет 3-4 контакта, но функционирование происходит таким же примерно образом.

Как работает электромагнитное реле

Принцип работы электромагнитного реле довольно простой:

  1. Обмотка через кнопку соединяется с питанием.
  2. В разрыв цепи питания потребителя включаются силовые контакты реле.
  3. При нажатии на кнопку подается питание на обмотку, происходит притягивание пластины и замыкание группы контактов.
  4. Подается ток на потребителя.

Примерно по такой же схеме транзисторные ключи работают – нет только группы контактов. Их функции выполняет кристалл полупроводника.

Проводимость транзисторов

Один из режимов работы транзистора – ключевой. По сути, он выполняет функции выключателя. Затрагивать схемы усилительных каскадов нет смысла, они не относятся к этому режиму работы. Полупроводниковые триоды применяются во всех типах устройств – в автомобильной технике, в быту, в промышленности. Все биполярные транзисторы могут иметь такой тип проводимости:

  1. P-N-P.
  2. N-P-N.

К первому типу относятся полупроводники, изготовленные на основе германия. Эти элементы получили широкое распространение более полувека назад. Чуть позже в качестве активного элемента начали использовать кремний, у которого проводимость обратная – n-p-n.

Принцип работы у приборов одинаков, отличаются они только лишь полярностью питающего напряжения, а также отдельными параметрами. Популярность у кремниевых полупроводников на данный момент выше, они почти полностью вытеснили германиевые. И большая часть устройств, включая транзисторные ключи, изготавливаются на биполярных кремниевых элементах с проводимостью n-p-n.

Конструкция прибора

Конструктивная схема транзистора PNP-типа состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.

Стрелка определяет эмиттер и общепринятое направление его тока (“внутрь” для транзистора PNP).

PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.

Обозначение транзистора PNP

Обозначение транзистора PNP Где, E = излучатель, B = база, C = коллектор

Средний уровень (N-тип) называется терминалом B-Base. Левосторонний слой P-типа работает как вывод E-Emitter, а правый слой P-типа, известный как вывод C-Collector. PNP транзистор

При формировании транзистора NPN один полупроводниковый материал P-типа помещается между двумя полупроводниками N-типа, как описано в статье (Транзистор Link NPN). В то время как в транзисторе PNP один полупроводник N-типа помещается между двумя полупроводниковыми материалами P-типа.

В транзисторе PNP используются диоды двух типов. Это соответственно диоды PN и NP. Эти диоды с PN-переходом называются переходом коллектор-база или CB-переходом и переходом база-эмиттер или BE-переходом.

В полупроводниковом материале P-типа носителями заряда в первую очередь являются дырки. Таким образом, в этом транзисторе формирование тока происходит только за счет движения отверстий.

Области эмиттера и коллектора (P-типа) сравнительно легированы больше, чем база N-типа. Области Эмиттерной и Коллекторной областей шире по сравнению с базой.

Обычно в полупроводнике N-типа доступно больше свободных электронов. Но ширина среднего слоя в этом случае уже и слегка легирована. Подключение транзистора, кредит изображения – С. Бланк, PNP транзистор, CC BY-SA 4.0

Транзистор в режиме ключа

Транзистор в режиме ключа выполняет те же функции, что и электромагнитное реле или выключатель. Ток управления протекает следующим образом:

  1. От микроконтроллера через переход «база — эмиттер».
  2. При этом канал «коллектор — эмиттер» открывается.
  3. Через канал «коллектор — эмиттер» можно пропустить ток, величина которого в сотни раз больше, нежели базового.

Особенность транзисторных переключателей в том, что частота коммутации намного выше, нежели у реле. Кристалл полупроводника способен за одну секунду совершить тысячи переходов из открытого состояния в закрытое и обратно. Так, скорость переключения у самых простых биполярных транзисторов — около 1 млн раз в секунду. По этой причине транзисторы используют в инверторах для создания синусоиды.

Типы биполярных транзисторов

Биполярные транзисторы классифицируются по следующим типам: 1. По исходному материалу — германий или кремний. 2. По технологии производства — сплавные, эпитаксиально-планарные, конверсионные и пр. 3. По механизму движения носителей зарядов — дрейфовые и диффузионные. 4. По рассеиваемой мощности — маломощные (до 0,3 Вт), средней мощности (от 0,3 до 3 Вт) и мощные (больше 3 Вт). 5. По диапазону рабочих частот — низкой частоты (до 3 МГц), средней (от 3 до 30 МГц), высокой (от 30 до 300 МГЦ), сверх высокой частоты (более 300 МГц).

Принцип работы транзистора

Элемент работает точно так же, как и в режиме усилителя мощности. По сути, к входу подается небольшой ток управления, который усиливается в несколько сотен раз за счет того, что изменяется сопротивление между эмиттером и коллектором. Причем это сопротивление зависит от величины тока, протекающего между эмиттером и базой.

В зависимости от типа транзистора меняется цоколевка. Поэтому, если вам нужно определить выводы элемента, нужно обратиться к справочнику или даташиту. Если нет возможности обратиться к литературе, можно воспользоваться справочниками для определения выводов. Еще есть особенность у транзисторов – они могут не полностью открываться. Реле, например, могут находиться в двух состояниях – замкнутом и разомкнутом. А вот у транзистора сопротивление канала «эмиттер — коллектор» может меняться в больших пределах.

Измерение коэффициента передачи биполярного транзистора по току

Если в тестере имеется возможность измерения коэффициента передачи по току, то проверить работоспособность транзистора можно, установив выводы транзистора в соответствующие гнезда.

Советуем к прочтению: Варистор: принцип работы, основные характеристики, обозначение на схеме

Коэффициент передачи по току – это отношение тока коллектора к току базы.

Чем больше коэффициент передачи, тем большим током коллектора может управлять ток базы при прочих равных условиях.

Цоколевку (наименование выводов) и другие данные можно взять из data sheets (справочных данных) на соответствующий транзистор. Data sheets можно найти в Интернете через поисковые системы.

Коэффициент передачи тока маломощных транзисторов может достигать нескольких сотен.

У мощных транзисторов он существенно меньше – несколько единиц или десятков.

Однако существуют мощные транзисторы с коэффициентом передачи в несколько сотен или тысяч. Это так называемые пары Дарлингтона.

Пара Дарлингтона представляет собой два транзистора. Выходной ток первого транзистора является входным током для второго.

Общий коэффициент передачи тока – это произведение коэффициентов первого и второго транзисторов.

Пара Дарлингтона делается в общем корпусе, но ее можно сделать и из двух отдельных транзисторов.

Пример работы транзистора в режиме ключа

Коэффициент усиления – это одна из основных характеристик транзистора. Именно этот параметр показывает, во сколько раз ток, протекающий по каналу «эмиттер — коллектор», выше базового. Допустим, коэффициент равен 100 (обозначается этот параметр h21Э). Значит, если в цепь управления подается ток 1 мА (ток базы), то на переходе «коллектор — эмиттер» он будет 100 мА. Следовательно, произошло усиление входящего тока (сигнала).

При работе транзистор нагревается, поэтому он нуждается в пассивном или активном охлаждении – радиаторах и кулерах. Но нагрев происходит только в том случае, когда проход «коллектор — эмиттер» открывается не полностью. В этом случае большая мощность рассеивается – ее нужно куда-то девать, приходится «жертвовать» КПД и выпускать ее в виде тепла. Нагрев будет минимальным только в тех случаях, когда транзистор закрыт или открыт полностью.

Устройство биполярного транзистора

Согласно типовых схем, буквой «Б» называется «База» — внутренний слой аппарата, его фундамент, который приводит преобразование или изменение токового сигнала. Стрелка в кругу показывает движение токовых зарядов в «Э».

«Э» — «Эмиттер» — внутренняя основная составляющая транзистора, предназначенный для переноса заряженных элементарных частиц в «Б».

«К» — «Коллектор» — вторая составляющая транзисторного устройства, которая производит сбор тех же зарядов, которые проходят через «Б».

Пласт «Базы» конструктивно выполняют очень тоненьким в связи с рекомбинированием заряженных частиц, которые идут через базовый слой, с составными частицами данного пласта. В то же время пласт «Коллектора» конструируют как можно шире для качественного сбора зарядов.

Режим насыщения

У всех транзисторов имеется определенный порог входного значения тока. Как только произойдет достижение этого значения, коэффициент усиления перестает играть большую роль. При этом выходной ток не изменяется вообще. Напряжение на контактах «база — эмиттер» может быть выше, нежели между коллектором и эмиттером. Это состояние насыщения, транзистор открывается полностью. Режим ключа говорит о том, что транзистор работает в двух режимах – либо он полностью открыт, либо же закрыт. Когда полностью перекрывается подача тока управления, транзистор закрывается и перестает пропускать ток.

Транзисторный ключ

С развитием электронной импульсной техники транзисторный ключ в том или ином виде применяются практически в любом электронном устройстве. Более того, преимущественно количество микросхем состоят из десятков, сотен и миллионов транзисторных ключей. А в цифровой технике вообще не обходятся без них. В обще современный мир электроники не мыслим без рассмотренного в данной статье устройства.

Здесь мы научимся выполнять расчет транзисторного ключа на биполярном транзисторе (БТ). Одно из распространённых их применений – согласование микроконтроллера с относительно мощной нагрузкой: мощными светодиодами, семисегментными индикаторами, шаговыми двигателями и т.п.

Основная задача любого транзисторного ключа состоит в коммутации мощной нагрузки по команде маломощного сигнала.

Электронные ключи глубоко проникли и укоренились в области автоматики, вытеснив механические электромагнитные реле. В отличие от электромагнитного реле транзисторный ключ лишен подвижных механических элементов, что значительно увеличивает ресурс, быстродействие и надежность устройства. Скорость включения и отключения, то есть частота работы несравнимо выше с реле.

Однако и электромагнитные реле обладают полезными свойствами. Падение напряжения на замкнутых контактах реле значительно меньше, чем на полупроводниковых элементах, находящихся в открытом состоянии. Кроме того реле имеет гальваническую развязку высоковольтных цепей с низковольтными.

Как работает транзисторный ключ

В данной статье мы рассмотрим, как работает транзисторный ключ на биполярном транзисторе. Такие полупроводниковые элементы производятся двух типов – n-p-n и p-n-p структуры, которые различаются типом применяемого полупроводника (в p-полупроводнике преобладают положительные заряды – «дырки»; в n-полупроводнике – отрицательные заряды – электроны).

Выводы БТ называются база, коллектор и эмиттер, которые имеет графическое обозначение на чертежах электрических схем, как показано на рисунке.

С целью понимания принципа работы и отдельных процессов, протекающих в биполярных транзисторах, их изображают в виде двух последовательно и встречно соединенных диодов.

Наиболее распространенная схема БТ, работающего в ключевом режиме, приведена ниже.

Чтобы открыть транзисторный ключ нужно подвести потенциалы определенного знака к обеим pn-переходам. Переход коллектор-база должен быть смещен в обратном направлении, а переход база-эмиттер – в прямом. Для этого электроды источника питания UКЭ подсоединяют к выводам базы и коллектора через нагрузочный резистор . Обратите внимание, положительный потенциал UКЭ посредством подается на коллектор, а отрицательный потенциал – на эмиттер. Для полупроводника p-n-p структуры полярность подключения источника питания UКЭ изменяется на противоположную.

Резистор в цепи коллектора служит нагрузкой, которая одновременно защищает биполярный транзистор от короткого замыкания.

Команда на открытие БТ подается управляющим напряжением UБЭ, которое подается на выводы базы и эмиттера через токоограничивающий резистор . Величина UБЭ должна быть не меньше 0,6 В, иначе эмиттерный переход полностью не откроется, что вызовет дополнительные потери энергии в полупроводниковом элементе.

Чтобы не спутать полярность подключения напряжения питания UКЭ и управляющего сигнала UБЭ БТ разной полупроводниковой структуры, обратите внимание на направление эмиттерной стрелки. Стрелка обращена в сторону протекания электрического тока. Ориентируясь на направление стрелки достаточно просто расположить правильным образом источники напряжения.

Входная статическая характеристика

Биполярный транзистор может работать в двух принципиально разных режимах – в режиме усилителя и в режиме ключа. Работа БТ в усилительном режиме уже подробно рассмотрена с примерами расчетов в нескольких статьях. Очень рекомендую ознакомиться с ними. Ключевой режим работы БТ рассматривается в данной статье.

Как и электрический ключ, транзисторный ключ может (и должен) находится только в одном из двух состояний – включенном (открытом) и выключенном (закрытом), что отображено на участках нагрузочной прямой, расположенной на входной статической характеристике биполярного транзистора. На участке 3-4 БТ закрыт, а на его выводах потенциалы UКЭ. Коллекторный ток близок к нулю. При этом ток в цепи базы IК также отсутствует, собственно по этой причине БТ и закрыт. Область на входной статической характеристике, отвечающая закрытому состоянию называется областью отсечки.

Второе состояние – БТ полностью открыт, что показано на участке 1-2. Как видно из характеристики, ток имеет некое значение, которое зависит от величин UКЭ и . В цепи база-эмиттер также протекает ток , величина которого достаточна для полного открытия биполярного транзистора.

Падение напряжения на pn-переходе коллектор-эмиттер в зависимости от серии транзистора и его мощности находится в пределах от сотых до десятых вольта. Такая рабочая область БТ, в которой он полностью открыт, называется областью насыщения.

В третьей области полупроводниковый ключ занимает среднее положение между открыто-закрыто, то есть он приоткрыт или призакрыт. Такая область, используется для транзистора, работающего усилителем, называется активной областью.

Расчет транзисторного ключа

Расчет транзисторного ключа на биполярном транзисторе выполним на примере подключения светодиода к источнику питания 9 В, то есть к кроне. В качестве управляющего сигнала подойдет обычная батарейка 1,5 В. Для примера, возьмем БТ n-p-n структуры серии 2222A. Хотя подойдет любой другой, например 2N2222, PN2222, BC547 или советский МП111Б и т.п.

Рассматриваемую схему транзисторного ключа довольно просто собрать на макетной плате и произвести соответствующие измерения с помощью мультиметра, тем самым оценить точность наших расчетов.

Далее все расчеты сводятся к определению сопротивлений резистора коллектора и базы . Хотя более логично, особенно при подключении мощной нагрузки, сначала подобрать транзистор по току и напряжению, а затем рассчитывать параметры резисторов. Однако в нашем и большинстве других случаев ток нагрузки относительно не большей и U источника питания невысокое, поэтому подходит практически любой маломощный БТ.

Все исходные данные сведены в таблицу.

Порядок расчета

Расчет начнем с определения сопротивления резистора , который предназначен для ограничения величины тока , протекающего через светодиод VD. находится по закону Ома:

Величина равна IVD = 0,01 А. Найдем падение напряжения на резисторе:

Значение UКЭ нам известно, оно равно 9 В, ΔUVD также известно и равно 2 В. А падение напряжения на переходе коллектор-эмиттер для большинства современных маломощных БТ составляет до 0,1 В. Поэтому примем с запасом ΔUКЭ = 0,1 В. Теперь подставим все значения в выше представленную формулу:

Находим сопротивление :

Ближайший стандартный номинал резистора 680 Ом и 750 Ом. Выбираем резистор большего номинала RК = 750 Ом. При этом ток, протекающий через светодиод IVD в цепи коллектора, несколько снизится. Пересчитаем его величину:

Теперь осталось определить сопротивление резистора в цепи базы :

Формула содержит сразу две неизвестны – ΔURб и . Найдем сначала падение напряжения на резисторе ΔURб:

UБЭ нам известно – 1,5 В. А падение напряжения на переходе база-эмиттер в среднем принимают 0,6 В, отсюда:

Для определения тока базы необходимо знать IК, который мы ранее пересчитали (IК = 0,0092 А), и коэффициент усиления биполярного транзистора по току, обозначаемы буквой β (бэта). Коэффициент β всегда приводится в справочниках или даташитах, но гораздо удобнее и точнее определить его с помощью мультиметра. Используемый нами 2222A имеет β = 231 единицу.

Из таблицы стандартных номиналов резисторов выбираем ближайший меньший номинал (для гарантированного открытия БТ) 22 кОм.

Для более точного выбора параметров вместо постоянных резисторов в цепи включают переменные резисторы, включенные по схеме, приведенной ниже.

Таким образом, мы выполнили расчет транзисторного ключа, то есть определили и по заданным исходным данным. Более полный расчет включает определение мощности рассеивания указанных резисторов, но ввиду незначительной нагрузки в нашем примере, подойдут резисторы с минимальной мощность рассеивания.

Еще статьи по данной теме

  • Замена электролитического конденсатора
  • Характеристики конденсаторов
  • Емкостной делитель напряжения
  • Что такое ШИМ – Широтно-Импульсная Модуляция?

Практические конструкции

Практических схем использования транзисторов в режиме ключа очень много. Нередко их используют для включения и отключения светодиодов с целью создания спецэффектов. Принцип работы транзисторных ключей позволяет не только делать «игрушки», но и реализовывать сложные схемы управления. Но обязательно в конструкциях необходимо использовать резисторы для ограничения тока (они устанавливаются между источником управляющего сигнала и базой транзистора). А вот источником сигнала может быть что угодно – датчик, кнопочный выключатель, микроконтроллер и т. д.

3.1. Остаточные параметры закрытого транзистора

а) При изменении величины запирающего напряжения на эмиттерном переходе, то есть при изменении глубины отсечки () ток базы не изменяется и остается равным . Это равенство называется токовым критерием отсечки.

б) Как в режиме глубокой отсечки, так и на границе отсечки , ток эмиттера .

Эквивалентную схему ключа в режиме отсечки можно представить в виде:

Рис. 2.1.а: Эквивалентная схема ключа в режиме отсечки

Выходное напряжение ключа

в) Из схемы видно, что напряжение, приложенное к эмиттерному, управляющему переходу, зависит от остаточного тока базы ;

.

В свою очередь .

Для сохранения режима отсечки при изменениях от и сопротивлений инеобходимо выполнить условие:

.

В противном случае, несмотря на отрицательную полярность управляющего сигнала, транзистор перейдет в активный режим.

г) В транзисторных ключах необходимо использовать транзисторы с малыми обратными токами переходов.

Примечание:

В интегральных схемах не используется отрицательная полярность управляющих сигналов для запирания транзисторов, поскольку цифровые микросхемы имеют однополярное питание. Разомкнутое состояние ключа соответствует не режиму отсечки, а активному режиму при малом токе коллектора. Это благоприятно сказывается на уменьшении длительности переходных процессов.

Порог запирания транзистора — величина условная. Чем больше в открытом состоянии, тем больше может быть выбран. Обычно принимают.

Работа с микроконтроллерами

При расчете транзисторного ключа нужно учитывать все особенности работы элемента. Для того чтобы работала система управления на микроконтроллере, используются усилительные каскады на транзисторах. Проблема в том, что выходной сигнал у контроллера очень слабый, его не хватит для того, чтобы включить питание на обмотку электромагнитного реле (или же открыть переход очень мощного силового ключа). Лучше применить биполярный транзисторный ключ, которым произвести управление MOSFET-элементом.

Применяются несложные конструкции, состоящие из таких элементов:

  1. Биполярный транзистор.
  2. Резистор для ограничения входного тока.
  3. Полупроводниковый диод.
  4. Электромагнитное реле.
  5. Источник питания 12 вольт.

Диод устанавливается параллельно обмотке реле, он необходим для того, чтобы предотвратить пробой транзистора импульсом с высоким ЭДС, который появляется в момент отключения обмотки.

Сигнал управления вырабатывается микроконтроллером, поступает на базу транзистора и усиливается. При этом происходит подача питания на обмотку электромагнитного реле – канал «коллектор — эмиттер» открывается. При замыкании силовых контактов происходит включение нагрузки. Управление транзисторным ключом происходит в полностью автоматическом режиме – участие человека практически не требуется. Главное – правильно запрограммировать микроконтроллер и подключить к нему датчики, кнопки, исполнительные устройства.

Пошаговая инструкция проверки мультимером

Перед началом проверки, прежде всего определяется структура триодного устройства, которая обозначается стрелкой эмиттерного перехода. Когда направление стрелки указывает на базу, то это вариант PNP, направление в сторону, противоположную базе, обозначает NPN проводимость.

Проверка мультимером PNP транзистора состоит из таких последовательных операций:

  1. Проверяем обратное сопротивление, для этого присоединяем «плюсовой» щуп прибора к его базе.
  2. Тестируется эмиттерный переход, для этого «минусовой» щуп подключаем к эмиттеру.
  3. Для проверки коллектора перемещаем на него «минусовой» щуп.

Результаты этих измерений должны показать сопротивление в пределах значения «1».

Для проверки прямого сопротивления меняем щупы местами:

  1. «Минусовой» щуп прибора присоединяем к базе.
  2. «Плюсовой» щуп поочередно перемещаем от эмиттера к коллектору.
  3. На экране мультиметра показатели сопротивления должны составить от 500 до 1200 Ом.

Данные показания свидетельствуют о том, что переходы не нарушены, транзистор технически исправен.

Многие любители имеют сложности с определением базы, и соответственно коллектора или эмиттера. Некоторые советуют начинать определение базы независимо от типа структуры таким способом: попеременно подключая черный щуп мультиметра к первому электроду, а красный – поочередно ко второму и третьему.

База обнаружится тогда, когда на приборе начнет падать напряжение. Это означает, что найдена одна из пар транзистора – «база – эмиттер» или «база – коллектор». Далее необходимо определить расположение второй пары таким же образом. Общий электрод у этих пар и будет база.

Будет интересно➡ Что такое выключатель нагрузки и как он используется?

Способы проверки

Любой ремонт электроники и электрооборудования начинается с внешнего осмотра, а потом переходят к измерениям. Такой подход позволяет локализовать большую часть неисправностей. Чтобы найти варистор на плате посмотрите на рисунок ниже — так выглядят варисторы. Иногда их можно перепутать с конденсаторами, но можно отличить по маркировке.

Если элемент сгорел и маркировку прочесть невозможно — посмотрите эту информацию на схеме устройства. На плате и в схеме он может обозначаться буквами RU. Условное графическое обозначение выглядит так.

Есть три способа проверить варистор быстро и просто:

  1. Визуальный осмотр.
  2. Прозвонить. Это можно сделать муьтиметром или любым другим прибором, где есть функция прозвонки цепи.
  3. Измерением сопротивления. Это можно сделать омметром с большим пределом измерений, мультиметром или мегомметром.

Варистор выходит из строя, когда через него проходит большой или длительный ток. Тогда энергия рассеивается в виде тепла, и если её количество больше определённого конструкцией — элемент сгорает. Корпус этих компонентов выполняется из твердого диэлектрического материала, типа керамики или эпоксидного покрытия. Поэтому при выходе из строя чаще всего повреждается целостность наружного покрытия.

Можно визуально проверить варистор на работоспособность — на нем не должно быть трещин, как на фото:

Следующий способ — проверка варистора тестером в режиме прозвонки. Сделать это в схеме нельзя, потому что прозвонка может сработать через параллельно подключенные элементы. Поэтому нужно выпаять хотя бы одну его ножку из платы.

Важно: не стоит проверять элементы на исправность не выпаивая из платы – это может дать ложные показания измерительных приборов. Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое — он не должен прозваниваться. Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра

Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра

Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое — он не должен прозваниваться. Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра.

На большинстве мультиметров режим прозвонки совмещен с режимом проверки диодов. Его можно найти по значку диода на шкале селектора режимов. Если рядом с ним есть знак звуковой индикации — в нем наверняка есть и прозвонка.

Другой способ проверки варистора на пробой мультиметром является измерение сопротивления. Нужно установить прибор на максимальный предел измерения, в большинстве приборов это 2 МОма (мегаомы, обозначается как 2М или 2000К). Сопротивление должно быть равным бесконечности. На практике оно может быть ниже, в пределах 1-2 МОм.

Интересно! То же самое можно сделать мегаомметром, но он есть далеко не у каждого. Стоит отметить, что напряжение на выводах мегаомметра не должно превышать классификационное напряжение проверяемого компонента.

На этом заканчиваются доступные способы проверки варистора. В этот раз мультиметр поможет радиолюбителю найти неисправный элемент, как и в большом количестве других случаев. Хотя на практике мультиметр в этом деле не всегда нужен, потому что дело редко заходит дальше визуального осмотра. Заменяйте сгоревший элемент новым, рассчитанным на напряжение и диаметром не меньше чем был сгоревший, иначе он сгорит еще быстрее предыдущего.

Использование транзисторов в конструкциях

Нужно изучать все требования к полупроводникам, которые собираетесь использовать в конструкции. Если планируете проводить управление обмоткой электромагнитного реле, то нужно обращать внимание на его мощность. Если она высокая, то использовать миниатюрные транзисторы типа КТ315 вряд ли получится: они не смогут обеспечить ток, необходимый для питания обмотки. Поэтому рекомендуется в силовой технике применять мощные полевые транзисторы или сборки. Ток на входе у них очень маленький, зато коэффициент усиления большой.

Не стоит применять для коммутации слабых нагрузок мощные реле: это неразумно. Обязательно используйте качественные источники питания, старайтесь напряжение выбирать таким, чтобы реле работало в нормальном режиме. Если напряжение окажется слишком низким, то контакты не притянутся и не произойдет включение: величина магнитного поля окажется маленькой. Но если применить источник с большим напряжением, обмотка начнет греться, а может и вовсе выйти из строя.

Обязательно используйте в качестве буферов транзисторы малой и средней мощности при работе с микроконтроллерами, если необходимо включать мощные нагрузки. В качестве силовых устройств лучше применять MOSFET-элементы. Схема подключения к микроконтроллеру такая же, как и у биполярного элемента, но имеются небольшие отличия. Работа транзисторного ключа с использованием MOSFET-транзисторов происходит так же, как и на биполярных: сопротивление перехода может изменяться плавно, переводя элемент из открытого состояния в закрытое и обратно.

Схемы включения биполярного транзистора

У биполярного транзистора есть три вывода: эмиттер, коллектор и база. На два из них приходит сигнал, а с двух других он снимается, т.к. один из них общий для входа и выхода. Так вот, какой электрод включен на общую шину, такова и cхема включения: с общим эмиттером (ОЭ), общей базой (ОБ) или общим коллектором (ОК).

а)Схема включения биполярного транзистора с ОЭ на практике применяется наиболее часто. В приведенной схеме входной сигнал подается между базой и эмиттером через разделительный конденсатор Ср, чтобы отсечь постоянное напряжение от предыдущего каскада и не влиять по питанию на следующий каскад. Усиленное переменное напряжение снимается с коллектора и общего вывода. Эта схема включения дает усиление как по току, так и по напряжению. Такое включение будет иметь большое выходное сопротивление (до десятков килоОм и зависит от значения Rк), но малое входное (500-1000 Ом).

б) На следующей схеме показано включение с ОК. Биполярный транзистор в этом случае работает как усилитель тока и величина напряжения на входе и выходе почти не отличаются друг от друга. Особенностью такого включения является большое входное сопротивление (от 10 кОм до 500 кОм), что дает хорошее согласование с каскадом источника сигнала. Также фаза выходного напряжения совпадает с фазой входного (нет «перевертывания» выходного сигнала, как в схеме с ОЭ). Поэтому такое включение называют эмиттерным повторителем. А вот выходное сопротивление его мало, которое очень зависит от сопротивления нагрузки Rэ.

в)В схеме с ОБ базу «заземляем» на общий провод через конденсатор Сб. В этом случае транзистор усиливает только по напряжению, а по току усиления нет. Входное сопротивление его небольшое (десятки Ом), и используется такое включение, в основном, в генераторах.

Схема включения с общей базой.

Эта схема очень хороша при использовании сигналов высоких частот. В принципе для этого такое включение транзистора, в первую очередь, и используется. Очень большими минусами являются малое входное сопротивление и, конечно же, отсутствие усиления по току. Смотрите сами, на входе у нас ток эмиттера I_э, на выходе I_к.

I_э = I_к + I_б

То есть ток эмиттера больше тока коллектора на небольшую величину тока базы. А это значит, что усиление по току не просто отсутствует, более того, ток на выходе немного меньше тока на входе. Хотя, с другой стороны, эта схема имеет достаточно большой коэффициент передачи по напряжению. Вот такие вот достоинства и недостатки, продолжаем…

Схема включения биполярного транзистора с общим коллектором

Вот так вот выглядит схема включения биполярного транзистора с общим коллектором. Ничего не напоминает? Если взглянуть на схему немного под другим углом, то мы узнаем тут нашего старого друга – эмиттерный повторитель. Про него была чуть ли не целая статья (вот она), так что все, что касается этой схемы мы уже там рассмотрели. А нас тем временем ждет наиболее часто используемая схема – с общим эмиттером.

Схема включения биполярного транзистора с общим эмиттером.

Эта схема заслужила популярность своими усилительными свойствами. Из всех схем она дает наибольшее усиление по току и по напряжению, соответственно, велико и увеличение сигнала по мощности. Недостатком схемы является то, что усилительные свойства сильно подвержены влиянию роста температуры и частоты сигнала.

Со всеми схемами познакомились, теперь рассмотрим подробнее последнюю (но не последнюю по значимости) схему усилителя на биполярном транзисторе (с общим эмиттером). Для начала, давайте ее немножко по-другому изобразим:

Тут есть один минус – заземленный эмиттер. При таком включении транзистора на выходе присутствуют нелинейные искажения, с которыми, конечно же, нужно бороться. Нелинейность возникает из-за влияния входного напряжения на напряжение перехода эмиттер-база. Действительно, в цепи эмиттера ничего «лишнего» нету, все входное напряжение оказывается приложенным именно к переходу база-эмиттер. Чтобы справиться с этим явлением, добавим резистор в цепь эмиттера. Таким образом, мы получим отрицательную обратную связь.

Советуем к прочтению: Микросхема LM358: datasheet на русском, применение, аналоги, назначение выводов

А что же это такое?

Если говорить кратко, то принцип отрицательной обратной связи заключается в том, что какая то часть выходного напряжения передается на вход и вычитается из входного сигнала. Естественно, это приводит к уменьшению коэффициента усиления, поскольку на вход транзистора из-за влияния обратной связи поступит меньшее значение напряжение, чем в отсутствие обратной связи.

И тем не менее, отрицательная обратная связь для нас оказывается очень полезной. Давайте разберемся, каким образом она поможет уменьшить влияние входного напряжения на напряжение между базой и эмиттером.

Итак, пусть обратной связи нет, Увеличение входного сигнала на 0.5 В приводит к такому же росту U_{бэ}. Тут все понятно А теперь добавляем обратную связь! И точно также увеличиваем напряжение на входе на 0.5 В. Вслед за этим возрастает U_{бэ}, что приводит к росту тока эмиттера. А рост I_э приводит к росту напряжения на резисторе обратной связи. Казалось бы, что в этом такого? Но ведь это напряжение вычитается из входного! Смотрите, что получилось:

Выросло напряжение на входе – увеличился ток эмиттера – увеличилось напряжение на резисторе отрицательной обратной связи – уменьшилось входное напряжение (из-за вычитания U_{ос}) – уменьшилось напряжение U_{бэ}.

То есть отрицательная обратная связь препятствует изменению напряжения база-эмиттер при изменении входного сигнала. В итоге наша схема усилителя с общим эмиттером пополнилась резистором в цепи эмиттера:

Есть еще одна проблема в нашем усилителе. Если на входе появится отрицательное значение напряжения, то транзистор сразу же закроется (напряжения базы станет меньше напряжения эмиттера и диод база-эмиттер закроется), и на выходе ничего не будет. Это как то не очень хорошо… Поэтому необходимо создать смещение. Сделать это можно при помощи делителя следующим образом:

Получили такую красотищу Если резисторы R_1 и R_2 равны, то напряжение на каждом из них будет равно 6В (12В / 2). Таким образом, при отсутствии сигнала на входе потенциал базы будет равен +6В. Если на вход придет отрицательное значение, например, -4В, то потенциал базы будет равен +2В, то есть значение положительное и не мешающее нормальной работе транзистора.

Чем бы еще улучшить нашу схему… Пусть мы знаем, какой сигнал будем усиливать, то есть знаем его параметры, в частности частоту. Было бы отлично, если бы на входе ничего, кроме полезного усиливаемого сигнала не было. Как это обеспечить? Конечно, же при помощи фильтра высоких частот! Добавим конденсатор, который в сочетании с резистором смещения образует ФВЧ:

Вот так схема, в которой почти ничего не было, кроме самого транзистора, обросла дополнительными элементами Пожалуй, на этом и остановимся, скоро будет статья, посвященная практическому расчету усилителя на биполярном транзисторе. В ней мы не только составим принципиальную схему усилителя, но и рассчитаем номиналы всех элементов, а заодно и выберем транзистор, подходящий для наших целей. До скорой встречи!

Входные характеристики для схемы с общим эмиттером.

Изобразим характеристики уже рассмотренного транзистора КТ603А (рис. 1.60).

Теперь эффект Эрли проявляется в том, что при увеличении напряжения uкэ характеристики сдвигаются вправо. Дифференциальное сопротивление теперь определяется выражением rдиф= (duбэ/diб) |iб– заданный , uкэ= const

Выходные характеристики для схемы с общим эмиттером

Изобразим эти характеристики для транзистора КТ603А (рис. 1.61).

Обратимся к ранее полученному выражению iк=αст·iэ+iко В соответствии с первым законом Кирхгофа iэ=iк+iб и с учетом предыдущего выражения получим iкαст· (iк+iб) +iко откуда iк=αст/ (1 -αст) ·iб+ 1 / (1 -αст) ·iко

Введем обозначение: βст ≡ αст / (1- αст )

Коэффициент αст называют статическим коэффициентом передачи базового тока. Его величина обычно составляет десятки — сотни (это безразмерный коэффициент).

Легко заметить, что 1 / (1 -αст) = βст + 1 Введем обозначение i′ко ≡ (βст + 1) ·iко В итоге получаемiк= βст ·iб+i′ко Это выражение в первом приближении описывает выходные характеристики в области активной работы, не учитывая наклона характеристик.

Для учета наклона выражение записывают в виде iк= βст ·iб+i′ко +uкб· ( 1 /r′к ),гдеr′к =duкэ/diк|uкэ – заданное, iб=const

В первом приближении r′к = ( 1 / 1 + βcт) · rк (сопротивление rк определено выше). Часто пользуются так называемым дифференциальным коэффициентом передачи базового тока β.

Для приращения тока коллектора ∆iк и тока базы ∆iб можно записать:

∆iк ≈ β · ∆ iб

По определению β=diк/diб|iк – заданный, uкэ=const

Для транзистора КТ603А при t = 25°С β = 10…80.

Величина β зависит от режима работы транзистора. Приведем типичный график зависимости β от тока эмиттера(он практически равен току коллектора) для uкб= 2 В (рис. 1.62).

Для нормальной работы транзистора на постоянном токе, кроме рассмотренного выше условия Pк< Рк макс, должны выполняться условия iк

Для рассмотренного выше транзистора КТ603А iк макс= 300 мА,uкэ макс = 30 В (при t < 70° С).

Изобразим схематически на выходных характеристиках для схемы с общим эмиттером так называемую область безопасной работы, в которой указанные условия выполняются (рис. 1.63).

Обычно допустимо предполагать (с той или иной погрешностью), что выходные характеристики для схемы с общим эмиттером расположены на отрезках прямых, расходящихся веерообразно из одной точки на оси напряжений (рис. 1.64).

Напряжение Uэ (это положительная величина) называют напряжением Эрли. Для транзистора КТ603А Uэ ~ 40 В.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]