Вместо пролога.
При сборке или ремонте усилителей звука довольно часто требуется подобрать идентичные по параметрам пары биполярных транзисторов. Китайские цифровые тестеры могут измерить коэффициент передачи тока базы (в народе — коэффициент усиления) биполярного транзистора, но маломощного. Для входных дифференциальных или двухтактных каскадов подойдёт. А как быть с мощными выходными?
Для этих целей в измерительной лаборатории радиолюбителя, занимающегося конструированием или ремонтом усилителей, должен быть прибор для проверки транзисторов. Он должен измерять коэффициент усиления на больших токах, близких к рабочим.
Для справки: коэффициент усиления транзистора «по научному» называется коэффициентом передачи тока базы в цепь эмиттера, обозначается h21э. Раньше назывался «бэта» и обозначался как β, поэтому иногда радиолюбители старой школы прибор для проверки транзисторов называют «бетник».
В Интернете и радиолюбительской литературе можно найти огромное количество вариантов схем прибора для проверки транзисторов. Как довольно простых, так и сложных, рассчитанных на разные режимы или автоматизацию процесса измерений.
Для самостоятельной сборки решено было выбрать схему попроще, чтобы наши читатели без труда могли сделать прибор для проверки транзисторов своими руками. Заметим сразу, что нам как-то чаще приходится иметь дело с усилителями на биполярных транзисторах, поэтому и получившийся в конце концов прибор предназначен для измерения параметров только биполярных транзисторов.
Для справки: раньше главный редактор РадиоГазеты измерения проводил старым дедовским способом: два мультиметра ( в цепь базы и цепь эмиттера) и «многооборотник» для задания тока. Долго, но информативно – можно не просто подобрать транзисторы, но и снять зависимость h21э от тока коллектора. Довольно быстро пришло осознание бесполезности данного занятия: для наших транзисторов снимать такую зависимость – одно расстройство (настолько они кривые), для импортных – пустая трата времени (все графики есть в даташитах).
Включив паяльник, главный редактор принялся собирать прибор для проверки транзисторов своими руками.
Как это все работает?
Для тестирования вам нужно вставить измеряемый компонент (конденсатор, резистор, светодиод и т.п.) в контакты панельки ZIF, следя при этом, чтобы номера контактов были разными.
Затем зажать компонент специальным рычажком и нажать кнопку на приборе.
Устройство включится и через пару секунд выдаст вам полную информацию о вставленном компоненте. Вероятно, вы скажете, что мультиметром замерять проще. Может и так, но это относится только к резисторам. Другие компоненты, например, конденсаторы мерить мультиметром долго и нудно. К тому же ESR-тестер может определить степень изношенности конденсатора.
Прибор может питаться от внешнего источника питания с напряжением 9В, или от батарейки крона.
Если ноги плохо пахнут, вспомните, откуда они растут.
Немного погуглив, я нашёл схему прибора для проверки транзисторов, которая растиражирована на довольно приличном количестве сайтов. Простая, портативная… но кроме самого автора её никто не хвалит. Это должно было смутить сразу, но увы.
Итак, исходная схема (с немного упрощенной индикацией и коммутацией):
Увеличение по клику
По замыслу автора здесь операционный усилитель совместно с испытуемым транзистором образуют источник стабильного тока. Ток эмиттера в этой схеме постоянный и определяется величиной эмиттерного резистора. Зная этот ток, нам остаётся только измерить ток базы, а затем путём деления одного на другое получить значение h21э. (в авторском варианте шкала измерительной головки сразу градуировалась в значениях h21э).
Два биполярных транзистора на выходе ОУ служат для увеличения нагрузочной способности микросхемы при измерении на больших токах. Диодный мост включён для того, чтобы исключить необходимость перекоммутации амперметра при переключении с «p-n-p» на «n-p-n» транзисторы. Для повышения точности подбора комплементарных пар биполярных транзисторов требуется отобрать стабилитроны (задающие опорное напряжение) с максимально близкими напряжениями стабилизации.
Меня как-то сразу смутило «не совсем корректное» включение операционного усилителя при однополярном питании. Но макетная плата всё стерпит, поэтому схема была собрана и опробована.
Сразу выявились недостатки. Ток через транзистор сильно зависел от напряжения питания, что ни разу не напоминает генератор стабильного тока. Что там умудрился подбирать автор схемы, питая при этом прибор от аккумулятора, остаётся большой загадкой. По мере разряда аккумулятора «образцовый» ток будет уплывать и довольно заметно. Потом пришлось повозиться в «умощнителем» на выходе ОУ иначе схема неустойчиво работала при измерении транзисторов разной мощности. Потребовалось подобрать значение резистора, а потом я перешёл на более «классический» вариант умощнителя. А двухполярное (правильное) питание ОУ решило проблему с плавающим током.
В итоге схема приобрела вид:
Увеличение по клику
Но тут выявился ещё один недостаток – если вы перепутаете проводимость биполярного транзистора (включите на приборе «p-n-p», а подключите транзистор «n-p-n»), а при подборе из большого количества транзисторов вы точно рано или поздно забудете переключить прибор, то выходит из строя один из транзисторов «умощнителя» и придётся заниматься ремонтом прибора. Да и к чему нам сложности с двухполярным питанием, операционник, умощнитель и прочее?
Как проверить транзистор, не выпаивая из схемы
Схема пробника для проверки транзисторов: R1 20 кОм, С1 20 мкФ, Д2 Д7А — Ж.
Выпаивание из схемы определенного элемента сопряжено с некоторыми трудностями – по внешнему виду сложно определить, какое именно из них необходимо выпаивать.
Многие профессионалы для проверки транзистора непосредственно в гнезде предлагают использовать пробник. Этот прибор представляет собой блокинг-генератор, в котором роль активного элемента играет сама деталь, требующая проверки.
Система работы пробника со сложной схемой построена на включении 2 индикаторов, которые сообщают – пробита цепь, или нет. Варианты их изготовления широко представлены в интернете.
Последовательность действий при проверке транзисторов одним из таких приборов, следующая:
- Сначала тестируется исправный транзистор, с помощью которого проверяют, есть генерация тока, или нет. Если генерация есть, то продолжаем тестирование. При отсутствии генерации меняются местами выводы обмоток.
- Далее проверяется лампа Л1 на размыкание щупов. Лампочка должна гореть. В случае, если этого не происходит, меняются местами выводы любой из обмоток трансформатора.
- После этих процедур начинается непосредственная проверка прибором транзистора, который предположительно вышел из строя. К его выводам подключаются щупы.
- Переключатель устанавливается в положение PNP или NPN, включается питание.
Свечение лампы Л1 свидетельствует о пригодности проверяемого элемента схемы. Если же начинает гореть лампа Л2, значит есть какие-то неполадки (скорее всего пробит переход между коллектором и эмиттером);
В случае если не горит ни одна из ламп, то это признак того, что он вышел из строя.
Существуют также пробники с очень простыми схемами, которые перед началом работы не требуют никакой наладки. Они характеризуются очень малым током, который проходит через элемент, подлежащий тестированию. При этом, опасность его вывода из строя практически нулевая.
К такой категории относятся приборы, состоящие из батарейки и лампочки (или светодиода).
Для проверки нужно последовательно выполнить такие операции:
- Подключить к наиболее вероятному выходу базы один из щупов.
- Вторым щупом поочередно касаемся каждого из оставшихся двух выводов. Если в одном из подключений контакта нет, тогда произошла ошибка с выбором базы. Нужно начинать сначала с другой очередностью.
- Далее советуют проделать те же операции с другим щупом (поменять плюсовый на минусовый) на выбранной базе.
- Поочередное соединение базы щупами разных полярностей с коллектором и эмиттером в одном случае должно зафиксировать контакт, а в другом нет. Считается, что такой транзистор исправный.
Всё гениальное просто!
Я задался целью сделать что-то попроще и понадёжнее. Идея с источником тока мне понравилась, проводя измерения на фиксированном (заранее известном) токе эмиттера, мы можем сократить необходимое количество измерительных приборов (амперметров). Тут я вспомнил про свою любимую микросхему TL431. Генератор тока на ней строится всего из 4-х деталей: Учитывая не очень большую нагрузочную способность этой микросхемы (а на радиатор её крепить крайне неудобно), для испытания мощных транзисторов при больших токах воспользуемся идеей господина Дарлингтона: Теперь загвоздка – ни в одном справочнике нет схемы источника тока на TL431 и транзисторе «p-n-p» структуры. Решить эту проблему помогла идея не менее уважаемого мною господина Шиклаи:
Да, пытливый глаз заметит, что через токозадающий резистор здесь протекают токи обоих транзисторов, что вносит некоторую погрешность в измерения. Но, во-первых, при значениях коэффициента передачи тока базы транзистора Т2 выше 20, погрешность составит менее 5%, что для радиолюбительских целей вполне допустимо (мы не Шаттл к Венере запускаем).
Во-вторых, если мы всё же запускаем Шаттл, и нам требуется высокая точность, эту погрешность легко учесть в расчётах. Ток эмиттера транзистора Т1 практически равен току базы транзистора Т2, а его-то мы и будем измерять. В результате, при расчёте h21э (а это очень удобно выполнять в программе Excel) вместо формулы: h21э=Iэ/Iб нужно использовать формулу: h21э=Iэ/Iб-1
Для минимизации данной погрешности, а так же для обеспечения нормальной работы микросхемы TL431 в широком диапазоне токов в качестве транзистора Т1 следует отобрать транзистор с максимальным h21э. Так как это маломощный биполярный транзистор, пока не готов наш прибор, можно воспользоваться китайским мультиметром. Мне удалось всего из 5 штук транзисторов КТ3102 найти экземпляр со значением 250.
Так как сегодня в хозяйстве любого радиолюбителя найдётся китайский мультиметр (а то и не один), его-то мы и будем использовать в качестве измерителя базового тока, что позволит нам не городить коммутацию для разных диапазонов базовых токов (у меня мультиметр с автоматическим выбором предела измерений), а заодно исключить из схемы выпрямительный мост – цифровому мультиметру без разницы направление протекающего тока.
Схема имени меня, Шиклаи и Дарлингтона.
Для объединения вышеприведённых схем в одну добавим немного коммутирующих элементов, источник питания и для большей универсальности расширим диапазон эмиттерных токов. В результате получилась вот такая схема прибора для проверки транзисторов:
Увеличение по клику
При указанных на схеме номиналах расчетный ток эмиттера обеспечивается уже при +4В питающего напряжения, так что это действительно генератор стабильного тока. Ради эксперимента я пару раз подключал транзисторы не той структуры. Ничего не сгорело! Хотя может быть стоило ток побольше задать? Скажу честно, испытаний на выносливость этого прибора проведено мало, время покажет, но начало мне нравится.
В принципе, питать прибор можно даже от нестабилизированного источника, так как стабилизация тока в схеме осуществляется в очень широком диапазоне питающих напряжений. Но! Бывают транзисторы (особенно отечественные), у которых коэффициент передачи тока базы сильно зависит от напряжения коллектор-эмиттер. Чтобы устранить погрешности измерений из-за нестабильной сети, в схеме предусмотрен стабилизированный источник питания. Кстати, именно из-за таких «кривых» транзисторов следует проводить измерения минимум при трёх разных значения тока.
Итак, схема прибора для проверки транзисторов получилась очень простой, что позволяет без проблем собрать этот прибор самостоятельно, своими руками. Прибор позволяет измерять коэффициент передачи тока базы маломощных и мощных биполярных транзисторов «p-n-p» и «n-p-n» структуры путём измерения тока базы при фиксированном токе эмиттера.
Для маломощных биполярных транзисторов выбраны значения тока эмиттера: 2мА, 5мА, 10мА. Для мощных биполярных транзисторов измерения проводятся при токах эмиттера: 50мА, 100мА, 500мА. Ни кто не запрещает проверять транзисторы средней мощности при токах 10мА, 50мА, 100мА. В общем, вариантов масса. Значения эмиттерных токов можно изменить на своё усмотрение путём пересчёта соответствующего токозадающего резистора по формуле:
R= Uо/Iэ ,
где Uо — опорное напряжение TL431 (2,5В), Iэ — требуемый ток эмиттера испытуемого транзистора.
ВНИМАНИЕ: В природе встречаются микросхемы TL431 с опорным напряжением 1,2В (не помню как отличается маркировка). В этом случае значения всех токозадающих резисторов, указанных на схеме, необходимо пересчитать!
Примеры измерений радиодеталей
Пользоваться измерителем радиоэлементов очень просто. Надо установить деталь и включить прибор. Он протестирует питание, если оно в норме, начнёт проверять установленную в разъёмы деталь. По результатам теста высветит сообщение, в котором будет указан тип детали и её параметры.
Фирменный прибор
Чтобы было понятнее, разберём работу популярных клонов М328 и GM328. Разница между ними в наборе возможных функций (у GM328 больше). Любой прибор включается кратковременным нажатием на валкодер. Нажали, 1–2 секунды подержали и отпустили. Выключается прибор либо выбором соответствующей строчки в основном меню (Switch Off) либо удержанием нажатого валкодера в течении 10 секунд.
Конструкция и детали.
Из-за простоты устройства печатная плата не разрабатывалась, все элементы распаиваются на выводах переключателей и разъёмов. Всю конструкцию можно собрать в корпусе небольшого размера, всё будет зависеть от габаритов применённого трансформатора и переключателей.
При испытании мощных биполярных транзисторов на больших токах (100мА и 500мА) их необходимо закрепить на радиаторе! Если пластинчатый радиатор смонтировать на одной из стенок прибора или сам радиатор использовать в качестве стенки прибора, то это сделает пользование устройством более удобным. Радиатор, который всегда с собой! Это существенно ускорит процесс испытания мощных транзисторов в корпусах ТО220, ТО126, ТОР3, ТО247 и аналогичных.
Микросхему стабилизатора блока питания также необходимо установить на небольшой радиатор. Диодный мост подойдёт любой на ток 1А и выше. В качестве трансформатора можно использовать подходящий малогабаритный, мощностью от 10Вт с напряжением вторичной обмотки 10-14В.
Опционально: в приборе для проверки транзисторов предусмотрены гнёзда для подключения второго мультиметра (включенного в режим измерения постоянного напряжения на предел 2-3В). Подсмотрел эту идею на одном из форумов. Это позволяет измерить Uбэ транзистора (при необходимости вычислить крутизну). Данная функция очень удобна при подборе биполярных транзисторов одной структуры для ПАРАЛЛЕЛЬНОГО включения в одном плече выходного каскада усилителя. Если при одном и том же токе напряжения Uэб отличаются не более чем на 60мВ, то такие транзисторы можно включать параллельно БЕЗ эмиттерных токовыравнивающих резисторов. Теперь вы понимаете, почему усилители фирмы Accuphase, где в выходном каскаде в каждом плече включено параллельно до 16 транзисторов, стоят таких денег?
Перечень используемых элементов:
Резисторы: R3 — 820 Ом, 0,25Вт, R4 — 1к2, 0,25Вт, R5 — 510 Ом, 0,25 Вт, R6 — 260 Ом, 0,25Вт R7 — 5,1 Ом, 5Вт (лучше больше), R8 — 26 Ом, 1 Вт, R9 — 51 Ом, 0,5Вт, R10 — 1к8, 0,25 Вт.
Конденсаторы:
С1 — 100nF, 63V, C2 — 1000uF, 35V, C3 — 470uF, 25V
Коммутация:
S1 — переключатель типа П2К или галетный на три положения с двумя группами контактов на замыкание, S2 — переключатель типа П2К, тумблер или галетный с одной группой контактов на переключение, S3 — переключатель типа П2К или галетный на два положения с четырьмя группами контактов на переключение, S4 — кнопка без фиксации, S5 — сетевой выключатель
Активные элементы:
T3 — транзистор типа КТ3102 или любой маломощный n-p-n типа с высоким коэффициентом усиления, D3 — TL431, VR1 — интегральный стабилизатор 7812 (КР142ЕН8Б), LED1 — светодиод зелёного цвета, BR1 — диодный мост на ток 1А.
Разное:
Tr1 — трансформатор мощностью от 10Вт, с напряжением вторичной обмотки 10-14В, F1 — предохранитель на 100mA…250mA, клеммы (подходящие доступные) для подключения измерительных приборов и испытуемого транзистора.
Характеристики тестера T7
- Автоматическое определение NPN и PNP транзисторов, n-канальный и p-канальный МОП-транзистор, диод (в том числе двойной диода), тиристор, транзистор, резистор, конденсатор и другие компоненты.
- Автоматический тест компонента и отображение на ЖК-дисплее
- Может обнаружить защитный MOSFET диод, коэффициент усиления, определении выводов транзистора
- Измерение емкости MOSFET, пороговое напряжение
- Управление одной кнопкой, автоматическое отключение.
- Всего 20 nA тока при отключении.
- Автоматическая идентификация компонентов по расположению ног.
- Измерения биполярного транзистора — коэффициент усиления и база-эмиттер пороговое напряжение.
- Выявление транзисторов Дарлингтона.
- Может одновременно измерять два резистора, так что вы можете измерить потенциометр.
- Измерение сопротивления с разрешением 0.1 Ом, до 50 МОм может быть измерено.
- Можно измерить конденсаторы емкости 30pF — 100mf, разрешение 1pF.
- Измерить эквивалентное последовательное сопротивление ESR, разрешение 0.01 Ом.
- Может показать прямое падение напряжения на диоде.
- LED определяет как прямое падение напряжения на диоде
- Может измерять у диода проходную емкость. Если биполярный транзистор — тоже покажет проходную емкость.
- Питание от литиевого аккумулятора 1000 мА/ч
- Цена 25-30$
Работа с прибором для проверки транзисторов.
1. Подключаем к прибору мультиметр, включенный в режим измерения тока. Если нет режима «авто», то выбираем предел в соответствии с типом проверяемых транзисторов. Для маломощных — микроамперы, для мощных биполярных транзисторов — миллиамперы. Если вы не уверены в выборе режима, поставьте сначала миллиамперы, если показания будут низкие, переключите прибор на меньший предел.
2. Если есть необходимость подобрать транзисторы с одинаковым Uбэ, подключаем к соответствующим гнёздам прибора второй мультиметр в режиме измерения напряжения на предел 2-3В.
3. Подключаем прибор к сети и нажимаем кнопку «Вкл» (S5).
4. Переключателем S3 выбираем структуру испытуемого транзистора «p-n-p» или «n-p-n», а переключателем S2 его тип — маломощный или мощный. Переключателем S1 устанавливаем минимальное значение эмиттерного тока.
5. Подключаем к соответствующим гнездам выводы испытуемого транзистора. При этом, если транзистор мощный, его следует закрепить на радиаторе.
6. Нажимаем на 2-3 секунды кнопку S4 «Измерение». Считываем показания мультиметра, заносим их в таблицу.
7. Переключателем S1 устанавливаем следующее значение эмиттерного тока и повторяем пункт 6.
8. По окончании измерений отключаем транзистор от прибора, прибор — от сети. В принципе, парные транзисторы можно отобрать по близким значениям измеренного базового тока. Если требуется рассчитать коэффициент h21э или построить графики, то следует перенести данные в электронную таблицу Excel или аналогичную.
9. Сравниваем полученные данные в таблице и отбираем транзисторы с близкими значениями.
Калибровка
При первом запуске универсального тестера радиокомпонентов может потребоваться калибровка. Если есть инструкция, вам просто нужно выполнить все шаги по пунктам. Ничего сложного, действия простейшие, но без них никто не гарантирует точность измерений.
Сообщение о калибровке
Если инструкций нет, вы можете прочитать подсказки на экране. Сообщения обычно на английском, отображаются последовательно.
Пример калибровки универсального тестера GM328
Так как английский доступен не всем, приведем пример калибровки китайского «производителя» GM328. Это одна из самых популярных сборок, которая стоит около 12 долларов$.
Чтобы откалибровать универсальный тестер GM328, соедините все три контакта (области) для измерений с помощью перемычек. Удобно делать две перемычки П-образной формы, первая соединяет 1-2, вторая 2-3. Вы можете сделать одну в виде буквы S. Порядок действий следующий:
- Включите устройство. Включите GM328, коротко нажав на энкодер (некоторые называют его энкодером).
Перейти в режим самотестирования. Из-за этого:
- Как только после запуска на экране загорится какая-либо надпись, снова нажмите ручку и удерживайте ее 7-8 секунд. Ни больше ни меньше, так как в другой момент нажатия произойдет перезагрузка или устройство выключится.
- Если через 7-8 секунд отпустить ручку, на экране появится главное меню. Необходимо перейти из текущего режима в режим самотестирования — «Самотестирование». Текущий режим подсвечивается зеленым светом или галочкой (как на фото). Поверните ручку, чтобы изменить положение. Если нужно спуститься дальше — по часовой стрелке
Это главное меню. Для калибровки нужно перейти в режим самотестирования -Selftest
- Когда нужная линия будет отмечена, нажмите ручку, подтверждая выбор.
- После запуска тестовой программы появляется надпись Short Probers — проверка короткой (вы закроете все области измерения перемычками). Горит около минуты. В этот период необходимо установить перемычки.
Требования к установке перемычек и результат проверки устойчивости к короткому замыканию между зонами измерения
- После того, как перемычки будут вставлены, появится ряд цифр. Это сопротивление перемычек, установленных между контактами.
- После отображения этого сообщения отображается Остров Проберса. Это означает, что изоляция между измерительными штырями будет дополнительно проверена, и перемычки должны быть удалены.
Когда появляется это сообщение, необходимо удалить перемычки
- После снятия перемычек отображаются следующие два сообщения. Они носят информационный характер: показывают изоляцию между контактами.
Это данные испытаний изоляции области измерения
- Затем появляется сообщение о необходимости установки конденсатора емкостью более 100 мкФ. Его ножки нужно вставить в 1 и 3 штифты. Без этого шага калибровка не будет завершена. И сообщение о его необходимости будет появляться перед каждым измерением, что ужасно нервирует. Примечание! Конденсатор для калибровки должен быть листовым. В крайнем случае категорически не рекомендуется использовать керамику и электролит.
Этот тип сообщения указывает на необходимость установки конденсатора емкостью более 100 нФ
- После установки конденсатора достаточной емкости появится сообщение «Test End», и устройство продолжит работу без раздражающих сообщений.
Это пример калибровки конкретного универсального тестера радиокомпонентов. Это не значит, что у других будет то же самое. Но, по крайней мере, вы будете иметь представление о том, что от вас может потребоваться.
Вместо эпилога.
Немного замечаний по маломощным биполярным транзисторам ( не зря же я для них режимы предусмотрел?). Почему-то радиолюбители наибольшее внимание при построении усилителей на транзисторах уделяют ( и то в лучшем случае) подбору идентичных экземпляров для оконечного каскада.
Между тем, на входе усилителя чаще всего используют дифференциальные каскады или реже двухтактные. При этом напрочь забывается, что для получения от диф. каскада как и от двухтактного по максимуму всех его замечательных свойств транзисторы в таком каскаде также должны быть подобраны!
Более того, для обеспечения максимально близкого температурного режима корпуса транзисторов дифкаскада лучше склеить между собой (или прижать друг к другу хомутиком), а не разносить по разным сторонам платы. Применение во входном каскаде интегральных транзисторных сборок устраняет эти проблемы, но такие сборки порой стоят дорого или просто не доступны радиолюбителям.
Поэтому подбор маломощных транзисторов входного каскада остаётся актуальной задачей, и предлагаемый прибор для проверки транзисторов может существенно облегчить этот процесс. Тем более, что один из выбранных для измерения режимов — ток 5мА, чаще всего и является током покоя первого каскада. А на каком токе проводит измерения китайский мультиметр???
Удачного творчества!
Главный редактор «РадиоГазеты».
Разборка
Конечно решил заглянуть под крышечку. Внутри та-же знакомая плата, что и в младших моделях. Подозреваю, что всё отличие заключается в прошивке и организации питания. Ну и ладно.