Что такое электроизмерительный прибор: точность и принцип действия


Сфера применения

Электроизмерительный прибор является необходимым устройством в связи, энергетике, промышленности, на транспорте, в медицине и научных исследованиях. Применяется это устройство и в быту, например для учета потребленной электроэнергии. А если применить специальные преобразователи величин неэлектрических в электрические, то диапазон применения электроизмерительных приборов становится значительно шире.

Классификация электроизмерительных приборов

Один из существенных признаков систематизации подобных устройств — воспроизводимая или измеряемая физическая величина. Согласно ему приборы подразделяются:

— на измеряющие силу электрического тока – амперметры,

— измеряющие электрическое напряжение – вольтметры,

— измеряющие электрическое сопротивление – омметры,

— измеряющие частоту колебаний электротока – частотомеры,

— измеряющие различные величины – мультиметры или авометры, тестеры,

— для воспроизведения указанных сопротивлений – магазины сопротивлений,

— измеряющие мощность электрического тока – варметры и ваттметры,

— измеряющие потребление электрической энергии – электросчетчики и пр.

Важнейшие характеристики

    Максимальный предел измерения;Допустимый предел погрешности.

Аренда измерительных приборов– услуга для выполнения определенной задачи, когда покупка нецелесообразна. Наша компания предлагает на прокат широкий ассортимент строительного инструментапо минимальным ценам.

Измерение— это процесс определения физической величины с помощью технических средств.

Мера— это средство измерения физической величины заданного размера.

Измерительный прибор— это средство измерения, в котором вырабатывается сигнал, доступный для восприятия наблюдателем.

Меры и приборы подразделяются на образцовые и рабочие. Образцовые меры и приборыслужат для поверки по ним рабочих средств измерений. Рабочие меры и приборы служат для практических измерений.

Система обозначений

За рубежом заводы-изготовители устанавливают свои обозначения на выпускаемых измерительных устройствах. В России и некоторых бывших республиках Советского Союза традиционна унифицированная система знаков. Основана она на принципе работы конкретного прибора. Основные электроизмерительные приборы в обозначении всегда имеют прописную букву русского алфавита, которая указывает на принцип действия устройства. А также число, которое обозначает условный номер модели. Иногда можно встретить прописную букву М, которая обозначает, что прибор модернизированный или К (контактный). Есть и другие, обозначения. Например, Д (электродинамические приборы), Н (самопишущие приборы), Р (меры, устройства, измеряющие параметры элементов электросетей, измерительные преобразователи), И (индукционные приборы), Л (логометры) и пр.

Показатели точности

Одна из главных характеристик прибора для электроизмерений – класс точности. Их существует несколько. А определяется он по зависимости от допустимого предела погрешности, вызванной конструктивными особенностями отдельно взятого устройства.

Точность электроизмерительных приборов не может быть равна погрешности относительной или абсолютной. Последняя не является определителем точности, а относительная имеет зависимость от значения величины, подвергшейся изменению, то есть для различных участков шкалы будет иметь разные значения.

Поэтому для характеристики точности электроприбора применяется приведенная погрешность (ɣ). Определяется она отношением погрешности абсолютной конкретного прибора (∆x) к максимуму (или пределу) измеряемой величины (xпр). Полученная величина, выраженная в процентах, и будет классом точности конкретного прибора:

— ɣ = ∆x / xпр * 100%.

Любой электроизмерительный прибор на шкале обязательно имеет указание на класс точности. Согласно ГОСТу он может быть 0,05, 0,1, 0,2, 0,5, 1,0, 1,5, 2,5 и 4,0. На этом основании приборы можно классифицировать следующим образом:

— класс точности 0,05 и 0,1 — образцовые, использующиеся для поверки точных приборов (например, лабораторных);

— класс точности 0,2 и 0,5 – лабораторные, используются в лабораториях для производства измерений и поверки технических приборов;

— класс точности 1,0, 1,5, 2,5 и 4,0 – технические, применяются для технических измерений.

Датчики давления

Автоматизация технологических процессов подразумевает контроль многих величин и показателей. Один из них – давление. Его контроль необходим для поддержания заданных величин в АСУ ТП и для обеспечения безопасности. Датчики давления широко востребованы и применяются в энергетике, коммунальном хозяйстве, нефте- и пищевой промышленности, в газовых отраслях. Такой тип датчиков не имеет прямого контакта со средой, отделение от которой осуществляется мембраной. Физические параметры датчика давления зависят от давления измеряемой среды и изменяются вместе с ним. Существует несколько типов давления:

  • Абсолютное, отсчитываемое от абсолютного нуля
  • Атмосферное – давление в открытом сосуде или в водоеме
  • Избыточное – разность между абсолютным и атмосферным
  • Дифференциальное, то есть разность двух величин, измеряемых одним прибором

Классификация датчиков давления производится по:

  • Исполнению – бытовые, общепромышленные, специальные
  • Типу выходного сигнала – ток, напряжение или протокол
  • Способу подключения к измеряемой среде – фланец, штуцер
  • Климатическому исполнению
  • Наличию индикации

Подбирая датчик давления для системы автоматического регулирования, важно учитывать класс точности прибора. Высокая точность необходима для специальных задач. Ввиду специфики условий эксплуатации на предприятиях часто используют КИП во взрывозащищенном исполнении. По типу взрывозащиты бывают следующие варианты исполнения:

  • d – взрывонепроницаемая оболочка
  • e – повышенная безопасность
  • ia, ib – искробезопасная электрическая цепь
  • h – герметическая изоляция
  • m – герметизация
  • o – отсутствие искрообразования
  • p – метод повышенного давления
  • q – заполнение порошком
  • s – спецзащита

Электроизмерительные приборы: принцип действия

Работа большей части электроизмерительных приборов основана на магнитоэлектрическом эффекте. Электроны, двигаясь по проводнику электрической цепи, образуют вокруг себя магнитное поле. В нем и перемещается стрелка измеряющего устройства, реагируя на силу окружающего поля. Чем магнитное поле слабее, тем меньше отклонение стрелки и наоборот.

Если в непосредственной близости от проводника, через который не протекает электрический ток, подвешена стрелка, то реагировать она может только на магнитное поле Земли. Но если через проводник пропустить ток, стрелка будет уже реагировать на магнитное поле электрического тока. Таким образом, механическое отклонение стрелки провоцируют электроны, двигаясь через проводник. И следовательно, чем больше электрический ток, тем сильнее образованное им поле и тем дальше от начального положения отклоняется стрелка. Этот незатейливый принцип является основополагающим для большинства электроизмерительных приборов.

Один электроизмерительный прибор отличается от другого не измерительным отклонением стрелки (приборов с цифровым индикатором это не касается), а внутренними цепями и способами создания электромагнитного поля. Как известно, для движения в электрической сети электронов необходима нагрузка. Поэтому это движение имеет некоторые различия в омметрах, вольтметрах и амперметрах, имеющих измерительные клещи. Приборы с такими захватами «вытягивают» магнитное поле из пластинок, их образующих. В вольтметре для получения магнитного поля применяется резистор, который получает нагрузку при подаче на цепь напряжения. Омметр имеет индивидуальный источник питания и использует устройство, которое подвергает измерению, для образования магнитного поля.

Описанные выше приборы проводят измерения одинаковым способом, притом что подача нагрузки и источники питания у них разные.

Измерительное смещение стрелки, провоцируемое магнитным полем движущихся электронов, указывает на какое-либо деление шкалы. Их обычно несколько, и у каждой свой предел измерения напряжения, сопротивления и тока. На некоторых приборах для удобства пользователя продуман селекторный переключатель.

Магнитоэлектрический механизм

Магнитоэлектрический механизм содержит постоянный магнит, магнитопровод и катушку с током.

Магнитная система измерительного механизма (рис. 11.2) состоит из постоянного магнита 1 и замкнутого магнитопровода 2. В рабочем зазоре между ними образуется равномерное радиальное магнитное поле с индукцией В. Подвижная катушка 3, выполненная из тонкого изолированного провода, намотанного на алюминиевый каркас, помещена в рабочем зазоре и укреплена на осях. Концы обмотки электрически соединены со спиральными пружинками, по которым измеряемый ток I поступает в катушку. При наличии тока на активную длину l витка обмотки действует сила F, равная, согласно закону Ампера, F=BlwI, где w — число витков обмотки.

Под действием пары таких сил на обеих активных сторонах катушки создается вращающий момент Мвр, который прямо пропорционален току. Под действием Мвр подвижная часть ИМ вместе с указателем поворачивается на некоторый угол α, который пропорционален току I. Магнитоэлектрические приборы, в которых используются магнитоэлектрические ИМ, применяют для измерения постоянных токов (амперметры), напряжений (вольтметры), сопротивлений (омметры) и т. д. Магнитоэлектрические амперметры и вольтметры отличаются высокой точностью, равномерностью шкалы, обладают малым потреблением энергии от объекта измерения. К недостаткам этих приборов относятся: непригодность к работе в цепях переменного тока, чувствительность к перегрузкам и зависимость показаний от окружающей температуры.

Рис. 11.2. Конструкция магнитной системы магнитоэлектрического измерительного механизма с внутрирамочным магнитом

Магнитоэлектрические ИМ служат и для измерения в цепях переменного тока, но только в сочетании с различными преобразователями переменного тока в постоянный. К таким приборам относятся, например, выпрямительные, термоэлектрические.

Как работают цифровые измерители

Цифровые электроизмерительные приборы имеют высокий класс точности (погрешность варьируется от 0,1 до 1,0 %) и широкий предел измерений. Они быстродейственны и могут совместно работать с электронно-вычислительными машинами, что позволяет передавать результаты измерений без каких-либо искажений на различные расстояния.

Эти устройства считаются приборами сравнения и непосредственной оценки. Их работа основана на принципе перевода измеряемой величины в код, благодаря чему пользователь имеет цифровое представление информации. Ещё какие электроизмерительные приборы относятся к цифровым? Это устройства, которые, измеряя непрерывную электрическую величину, автоматически конвертируют её в дискретную, кодируют и выдают результат в цифровой форме, удобной для считывания пользователем.

Классификация измерительных приборов

По принципу работы:

    Показывающие – те, по которым можно только отсчитывать измеряемую величину в данный момент времени;Самопишущие (или регистрирующие) – снабжены устройством для автоматической записи данных измеряемой величины для последующего анализа;Сигнализирующие – оснащены специальной звуковой или световой сигнализацией, срабатывающей по достижению прибором заранее заданного значения;Регулирующие – имеющие возможность автоматически поддерживать значение на заданном уровне или изменять его по указанному закону;Установки – выполняющие по результату измерения определенную работу согласно выставленной программе. Применяются при дозировке и взвешивании сыпучих и жидких веществ, сортировке продукции и т.д.

По виду показаний: аналоговые (непрерывные) и цифровые (дискретные).

По виду измеряемой величины: для измерения температуры, электрических показателей, давления, влажности, плотности газов, концентрации растворов, расхода и количества, а также для определения составов (анализа) жидкостей и газов.

Устройства, расположенные в одном корпусе

Это приборы, которые для неодновременного измерения нескольких величин используют один механизм для измерения. Или же они имеют несколько преобразователей с общим для всех отсчетным устройством (шкалой). Она градуируется в единицах измеряемых величин. Чаще всего комбинированные электроизмерительные приборы совмещают в себе устройства, измеряющие силу постоянного или переменного тока и электрического напряжения (ампервольтметры); сопротивления, силы постоянного и переменного тока, напряжение (авометры или ампервольтомметры). А также существуют универсальные цифровые электроизмерительные приборы, которые измеряют напряжение постоянного и переменного тока, индуктивность и количество импульсов.

Примером такого устройства может служить новая разработка «Актаком ADS-4031». Прибор от гармонично сочетает в себе функциональный генератор, цифровой осциллограф, частотомер, RLC-метр и цифровой мультиметр. Кроме основных пяти совмещенных устройств, осциллографический тестер благодаря дополнительным приспособлениям может использоваться для ряда других измерительных задач.

Устройство, принцип действия

Потребление электроэнергии бытовыми приборами

Работу электрических приспособлений рассмотрим на примере базовых устройств, таких как:

  1. амперметры;
  2. вольтметры;
  3. омметры.

Амперметры

Такие устройства измеряют величину электрического тока. Поскольку показания напрямую зависят от поступаемого электросигнала, сопротивление амперметра должно быть меньше, чем резистивность нагрузки. Это необходимо для неизменной силы заряда при подключении нагрузки. По своим конструктивным особенностям такие электроизмерительные приборы подразделяются на:

  1. амперметр переменного тока;
  2. амперметр постоянного тока;
  3. магнитоэлектрические;
  4. электромагнитные.

Различают модификации: с аналоговой шкалой, с цифровой шкалой. Кроме того, устройства отличаются ценой деления и пределами измерений.

Аналоговый вольтметр переменного тока и цифровые вольтметры.

Измеряют напряжение:

  1. постоянное;
  2. переменное.

И

Существуют также цифровые вольтметры, имеющие цифровые индикаторные показания. Принцип работы измерителя напряжения аналогичен токовому измерителю, отличие только в градуировках шкал, пределах измерений и модификациях.

Омметр

Устройство, позволяющее измерить как сопротивление амперметра, так и сопротивление вольтметра. Диапазон измерения:

  1. единицы, десятки (Ом);
  2. сотни, тысячи (Ом).

Подключается такой показывающий элемент в цепь последовательно. Измеряет косвенно величину сопротивления, учитывая значение входящего электрического тока и постоянную величину напряжения.

Приборная шкала каждого электроустрйоства имеет нанесенные условные знаки, обозначающие характеристики прибора, класс точности (например, амперметра), виды рабочих токов, номинальное напряжение и т.п.

Пример современного измерителя сопротивления – омметр Виток, имеющий комбинированное питание.

ОАО «Электроприбор»

Один из таких долгожителей — Чебоксарский завод электроизмерительных приборов. Сегодня он называется ОАО «Электроприбор». Его цеха выпускают аналоговые и цифровые электроизмерительные устройства и шунты. В прайсах завода – амперметры, вольтметры, ватт- и варметры, многофункциональные устройства для измерений. А также измерительные преобразователи напряжения, тока, частоты и мощности. В современных реалиях завод принял к производству линейку вспомогательных изделий – шунтов, которые способны расширять диапазон измерения по напряжению и току. Выпускает «Электроприбор» трансформаторы и добавочные сопротивления.

Пользуются большим спросом приборы с электронными преобразователями, измеряющими частоту реактивной или активной мощности, а также ее коэффициент. Не менее популярны индикаторы, приборы для оснащения специализированных учебных кабинетов, различные цифровые приборы и комплектующие. В конце прошлого века предприятие получило сертификат, подтверждающий систему менеджмента качества ИСО 9001, соответствующую международному стандарту.

Чебоксарский завод более 55 лет занимает лидерские позиции среди производителей электроизмерительных приборов.

Определение электронных приборов. Классификация электронных приборов (стр. 1 )

1. Определение электронных приборов. Классификация электронных приборов

Электронные приборы – это устройства, работа которых основана на использовании электрических, тепловых, оптических и акустических явлений в твёрдом теле, жидкости, вакууме, газе или плазме. Наиболее общие функции, выполняемые электронными приборами, состоят в преобразовании информационных сигналов или энергии.

Основными задачами электронного прибора как преобразователя информационных сигналов являются: усиление, генерирование, передача, накопление и хранение сигналов, а также выделение их на фоне шумов.

Электронные приборы можно классифицировать по их назначению, физическим свойствам, основным электрическим параметрам, конструктивно технологическим признакам, роду рабочей среды и т. д.

В зависимости от вида сигналов и способа обработки информации все существующие электронные приборы разделяют на электропреобразовательные, электросветовые, фотоэлектрические, термоэлектрические, акустоэлектрические и механоэлектрические.

По виду рабочей среды различают следующие классы приборов: полупроводниковые, электровакуумные, газоразрядные, хемотронные (рабочая среда – жидкость). В зависимости от выполняемых функций и назначения электронные приборы делят на выпрямительные, усилительные, генераторные, переключательные, индикаторные и др.

По диапазону частот – низкочастотные, высокочастотные, сверхвысокочастотные; по мощности – малой мощности, средней мощности и мощные.

2. Режимы и параметры электронных приборов

Понятие режима электронного прибора включает в себя совокупность условий, определяющих его работу. Любой режим определяется совокупностью параметров. Различают электрический, механический, климатический режимы.

Каждый из указанных режимов характеризуется своими параметрами.

Оптимальные условия работы прибора при эксплуатации, испытаниях или измерениях его параметров определяются номинальным режимом. Предельные параметры характеризуют предельно допустимые режимы работы. К ним относятся максимально допустимые значения напряжений на электродах прибора, максимально допустимая мощность, рассеиваемая прибором, и т. д. Различают статический и динамический режимы. Если прибор работает при постоянных значениях напряжений на электродах, такой режим называется статическим. В этом случае все параметры не меняются во времени. Режим работы прибора, при котором напряжение хотя бы на одном из электродов меняется во времени, называется динамическим. Кроме параметров режима, различают параметры электронного прибора(например, коэффициент усиления, внутреннее сопротивление, междуэлектродные ёмкости и др.). Связь между изменениями токов и напряжений на электродах в статическом режиме описывается статическими характеристиками. Совокупность статических характеристик при фиксированных значениях третьего параметра называют семейством характеристик.

3.Электропроводность материалов.

Применяемые в электронике полупроводники имеют монокристаллическую решётку. Каждый атом кристаллической решётки за счёт ковалентных связей прочно удерживается в узлах кристаллической решётки. В идеальной решётке все электроны связаны со своими атомами, поэтому такая структура не проводит электрический ток. Однако небольшие энергетические воздействия могут привести к отрыву некоторых электронов от своих атомов, делая их способными перемещаться по кристаллической решётке. Такие электроны называются электронами проводимости. Энергетические состояния электронов проводимости образуют зону значений (уровней) энергии, называемую зоной проводимости. Энергетические состояния валентных электронов образуют валентную зону. Между максимальным уровнем энергии валентной зоны W в и минимальным уровнем зоны проводимости W c лежит запрещённая зона. Ширина запрещённой зоны в W c определяет минимальную энергию, необходимую для освобождения валентного электрона, т. е. энергию ионизации атома полупроводника. Ширина запрещённой зоны для большинства полупроводников составляет 0,1 – 3 эВ.

4. Понятие электрохимического потенциала (уровня Ферми).

Вероятность нахождения свободного электрна в энергитическом состоянии W опредяляется функцией

Полупроводники с донорной примесью называются электронными полупроводниками, или полупроводниками n-типа.

С повышением температуры уровень Ферми смещается к середине запрещённой зоны. В случае полупроводника с акцепторной примесью электроны являются неосновными носителями заряда, дырки – основными носителями, а полупроводник с акцепторной примесью называют дырочным, или полупроводником p-типа.

С повышением температуры уровень Ферми смещается к середине запрещённой зоны.

5.Собственная проводимость.

Собственная и примесная проводимость полупроводников

1. Особенности полупроводников

Строение полупроводников. В полупроводниках атомы связаны ковалентными (парноэлектронными) связями, которые при низких температурах и освещенности прочны. С ростом же температуры и освещенности эти связи могут разрушаться, образуя свободный электрон и «дырку». Реальными частицами являются лишь электроны (e). Э

лектронная проводимость обусловлена движением свободных электронов. Дырочная проводимость вызвана движением связанных электронов, которые переходят от одного атома к другому, поочерёдно замещая друг друга, что эквивалентно движению “дырок” в противоположном направлении. “Дырке” условно приписывается “+” заряд. В чистых полупроводниках концентрация свободных электронов и “дырок” одинаковы.
Электронно-дырочная
проводимость – проводимость, вызванная образованием свободных носителей заряда (электронов и “дырок”), образующихся при разрыве ковалентных связей, называется
собственной проводимостью.
6.Примесная электропроводность полупроводниковых материалов.

Примесная проводимость

– проводимость, обусловленная образованием свободных носителей заряда при внесении примесей иной валентности (n)
Донорная примесь
nпримеси > nполупроводник Мышьяк в германий nприм. =5; nп/прово-к=4

Каждый атом примеси вносит свободный электрон

Полупроводники n – типа

с донорной примесью
Основные носители зарядаэлектроны Не основные носители
о –
“дырки” Проводимость электроннаяАкцепторная примесь
nпримеси < n полупроводник

Индий в германий nприм. =3; nп/прово-к=4 Каждый атом примеси захватывает электрон из основного полупроводника, создавая дополнительную дырку.

7. Электрические переходы в полупроводниковых приборах

Электрическим переходом называется переходный слой между областями твёрдого тела с различными типами или значениями проводимости. Чаще всего используется электрический переход между полупроводниками n — и p-типа, называемый электронно-дырочным переходом, или p-n — переходом. Используются также переходы между областями с одинаковым типом электропроводности, но с различными значениями удельной проводимости (n+-n; p+-p). Знак «+» отмечает область с большей концентрацией примеси.

Широкое применение получили переходы металл-полупроводник. Электрические переходы могут создаваться как на основе полупроводников с одинаковой шириной запрещённой зоны (гомопереходы), так и с различными значениями ширины (гетеропереходы).

Электрические переходы используются практически во всех полупроводниковых приборах. Физические процессы в переходах лежат в основе действия большинства полупроводниковых приборов.

Широко применяются несимметричные p-n-переходы, в которых концентрация примесей в эмиттере значительно больше, чем в другой

области – базе. В симметричных p-n-переходах концентрация акцепторов в p-области равна концентрации доноров в n-области.

8-9 Электронно-дырочный переход в равновесном состоянии

Контактная разность потенциалов.

Равновесие соответствует нулевому внешнему напряжению на переходе. Поскольку концентрация электронов в n-области значительно больше, чем в p-области, а концентрация дырок в p-области больше, чем в n-области. Вследствие этого заряды будут диффундировать из области с большей концентрацией в область с меньшей концентрацией, что приведёт к появлению диффузионного тока электронов и дырок.

На границе p — и n-областей создаётся слой, обеднённый подвижными носителями. В приконтактной области n-типа появляется нескомпенсированный заряд положительных ионов, а в дырочной области – нескомпенсированный заряд отрицательных ионов примесей. Таким образом, электронный полупроводник заряжается положительно, а дырочный – отрицательно.

Между областями полупроводника с различными типами электропроводности возникает электрическое поле напряжённостью Е. Образовавшийся двойной слой электрических зарядов называется запирающим, он обеднён основными носителями и имеет вследствие этого низкую электропроводность.

Вектор напряженности поля направлен так, что он препятствует диффузионному движению основных носителей и ускоряет неосновные носители. Этому полю соответствует контактная разность потенциалов ϕ k, связанная с взаимной диффузией носителей. За пределами p-n-перехода полупроводниковые области остаются нейтральными. Движение неосновных носителей образует дрейфовый ток, направленный навстречу диффузионному току. Итак, в условиях равновесия встречные дрейфовый и диффузионный токи должны быть равны, т. е.

Тогда выражение для контактной разности потенциалов ϕ k в p-n-переходе

10. Электронно-дырочный переход в неравновесном состоянии

Если к p-n-переходу подключить источник напряжения, равновесное состояние нарушится, и в цепи будет протекать ток. Различают прямое и обратное включения p-n-перехода.

10.Прямое включение

. Пусть внешнее напряжение приложено плюсом к p-области, а минусом – к n-области. При этом оно противоположно по знаку контактной разности потенциалов. Так как концентрация подвижных носителей в p-n-переходе значительно ниже, чем в p — и n-областях, сопротивление p-n-перехода значительно выше сопротивления p — и n-областей. Можно считать, что приложенное напряжение полностью падает на переходе. Основные носители будут двигаться к контакту, сокращая дефицит носителей в p-n-переходе и уменьшать сопротивление и толщину p-n-перехода. Поток основных носителей через контакт увеличится. Ток, протекающий через переход, в данном случае называется прямым, а напряжение, приложенное к переходу – прямым напряжением. Диффузия дырок через переход приводит к увеличению концентрации дырок за переходом. Возникающий при этом градиент концентрации дырок обусловливает диффузионное проникновение их в глубь n-области, где они являются неосновными носителями. Это явление называется инжекцией (впрыскиванием). Инжекция дырок не нарушает электрической нейтральности в n-области, т. к. она сопровождается поступлением из внешней цепи такого же количества электронов.

11.Обратное включение

.

Если внешнее напряжение приложено плюсом к n-области, а минусом к – p-области, то оно совпадает по знаку с контактной разностью потенциалов В этом случае напряжение на переходе возрастает, и высота потенциального барьера становится выше, чем при отсутствии напряжения.

Направление результирующего тока противоположно направлению прямого тока, поэтому он называется обратным током, а напряжение, вызывающее обратный ток, называется обратным напряжением. Поле в переходе является ускоряющим лишь для неосновных носителей. Под действием этого поля концентрация неосновных носителей на границе перехода снижается и появляется градиент концентрации носителей заряда. Это явление называется экстракцией носителей.

Таким образом, p-n-переход обладает несимметричной проводимостью: проводимость в прямом направлении значительно превышает проводимость p-n-перехода в обратном направлении, что нашло широкое применение при изготовлении полупроводниковых приборов.

12. Вольт-амперная характеристика p-n-перехода

Вольт-амперная характеристика p-n-перехода представляет собой зависимость тока через p-n-переход от величины и полярности приложенного напряжения.

13. Свойства p-n-перехода

При больших отрицательных напряжениях в р-n

-переходе наблюдается резкий рост обратного тока. Это явление называют пробоем
р-n
-перехода. Пробой перехода возникает при достаточно сильном электрическом поле, когда неосновные носителя зарядов ускоряются настолько, что ионизируют атомы полупроводника. При ионизации создаются электроны и дырки, которые, разгоняясь, снова ионизируют атомы и т. д., в результате чего диффузионный ток через переход резко возрастает, а на вольт-амперной характеристике
р-n
-перехода в области больших отрицательных напряжений наблюдается скачок обратного тока. Следует отметить, что после пробоя переход выходит из строя только тогда, когда происходят необратимые изменения его структуры в случае чрезмерного перегрева, который наблюдается при тепловом пробое. Если же мощность, выделяющаяся на
р-n
— переходе, поддерживается на допустимом уровне, он сохраняет работоспособность и после пробоя. Такой пробой называют электрическим (восстанавливаемым).

14 Устройство и принцип действия полупровдниковых диодов.

В зависимости от технологических процессов, используемых при изготовлении диодов, различают: сплавные, диффузионные, планарно-эпитаксиальные диоды и их разновидности. Устройство полупроводникового диода, изготовленного по планарно-эпитаксиальной технологии, приведено на рис. 1.

Рис. 1

Большинство полупроводниковых диодов выполняют на основе несимметричных p-n-переходов. В качестве структурных элементов диодов используют также p-i-, n-i-переходы, переходы металл-полупроводник, p+-p-, p+-n-переходы, гетеропереходы. Изготовляются также диоды с p‑i‑n‑, p+-p-n — и n+-n-p-структурами. Вся структура с электрическим переходом заключается в металлический, стеклянный, керамический или пластмассовый корпус для исключения влияния окружающей среды. Полупроводниковые диоды изготовляются как в дискретном, так и в интегральном исполнении. Основным элементом полупроводникового диода является р-n

-переход, поэтому вольт-амперная характеристика реального диода близка к вольт-амперной характеристике
р-n
-перехода, приведенной на рисунке 3.3, г. Параметры и режим работы диода определяются его вольтамперной характеристикой, иллюстрирующей зависимость протекающего через диод тока
I
от приложенного напряжения
U
. Типовая вольтамперная характеристика прибора показана на рисунке.

15. Классификация полупроводниковых диодов.

Диоды классифицируются: по материалу (германиевые, кремниевые, арсенид-галлиевые); структуре перехода (точечные, плоскостные); назначению (выпрямительные, импульсные, стабилитроны и т. д.); диапазону частот (низко — и высокочастотные); виду вольт-амперной характеристики и т. д. В зависимости от технологических процессов, используемых при изготовлении диодов, различают: сплавные, диффузионные, планарно-эпитаксиальные диоды и их разновидности. По типу p-n-перехода различают плоскостные и точечные диоды. Пло-скостным считается p-n-переход, линейные размеры которого, определяющие его площадь, значительно больше его толщины, в противном случае диод относят к точечным. В зависимости от области применения диоды делят на выпрямительные, стабилитроны, варикапы, импульсные, туннельные, фото-, излучательные и др. По типу исходного материала различают кремниевые, германиевые, селеновые, арсенид-галлиевые диоды и др. По методу изготовления перехода: сплавные, диффузионные, эпитаксиальные, диоды Шотки и др.

16. Система условных обозначений диодов.

Для маркировки полупроводниковых диодов используется буквенно-цифровая система условных обозначений согласно ОСТ 11.336.919-81. Первый элемент – буква или цифра, характеризует используемый материал: Г(1) – германий (Ge); К(2) – кремний (Si); А(3) – галлий (Ga) и его соединения; И(4) – индий In и его соединения. Второй элемент – буква, характеризует тип диода: Д – выпрямительный; В – варикап; И – туннельный и обращенный; С – стабилитрон и стабистор; Л – излучающий светодиод. Третий элемент – цифра, характеризует назначение диода. Например, для диодов группы Д: 1 – выпрямительные маломощные (ток до 300 мкА); 2 – выпрямительные средней мощности (ток до 10 А); 3 – диоды большой мощности (ток свыше 10 А); 4–9 – диоды импульсные с различным временем восстановления. Четвертый элемент (2–3 цифры) – номер разработки (для стабилитрона – напряжение стабилизации в десятых долях вольта). Пятый элемент – буква, характеризует вариант по параметрам.

1 – общее обозначение (выпрямительный, импульсный, высокочастотный диод); 2 – стабилитрон; 3 – двуханодный стабилитрон; 4 – туннельный диод; 5 – обращенный диод; 6 – варикап; 7 – светодиод; 8 – фотодиод

17. Выпрямительные диоды

Предназначены для преобразования переменного тока с частотой от 50 до 20000 Гц в пульсирующий ток одного направления и широко используются в источниках питания радиоэлектронной аппаратуры различного назначения. В качестве полупроводникового материала для таких диодов используют кремний, реже германий и арсенид галлия. Принцип работы выпрямительных диодов основан на вентильном свойстве p-n-перехода. Делятся на диоды малой, средней и большой мощности. Диоды малой мощности предназначены для выпрямления токов до 300 мА, средней и большой мощности – для выпрямления токов соответственно от 300 мА до 10 А и от 10 до 1000 А. Преимущества кремниевых диодов: малые обратные токи; возможность использования при более высоких температурах окружающей среды и больших значениях обратных напряжений. Преимущество германиевых диодов – малое падение напряжения 0,3¼0,6 В при протекании прямого тока (по сравнению с 0,8¼1,2 В у кремниевых).

В качестве выпрямительных диодов используют плоскостные, сплавные, диффузионные и эпитаксиальные диоды, выполненные на основе несимметричных p-n-переходов. Барьерная емкость перехода из-за большой площади велика и ее значение достигает десятков пикофарад. Германиевые диоды могут быть использованы при температурах не более 70¼80 °С, кремниевые – до 120¼150 °С, арсенид-галлиевые – до 150 °С.

Максимальное обратное напряжение маломощных низкочастотных выпрямительных диодов лежит в пределах от нескольких десятков до 1200 В. На более высокие напряжения промышленностью выпускаются выпрямительные столбы, использующие последовательное соединение диодов. Обратные токи не превышают 300 мкА для германиевых диодов и 10 мкА для кремниевых.

Мощные (силовые) диоды различаются по частотным свойствам и работают на частотах в диапазоне от десятков герц до десятков килогерц и изготавливаются преимущественно из кремния.

Работа при больших токах и высоких обратных напряжениях связана с выделением значительной мощности в p-n-переходе. Поэтому в установках с диодами средней и большой мощности используются охладители – радиаторы с воздушным и жидкостным охлаждением. При воздушном охлаждении тепло отводится с помощью радиатора. При этом охлаждение может быть естественным (за счет конвекции воздуха) или принудительным (с использованием обдува корпуса прибора и радиатора с помощью вентилятора). При жидкостном охлаждении в радиатор по специальным каналам пропускается теплоотводящая жидкость (вода, антифриз, трансформаторное масло, синтетические диэлектрические жидкости).

К основным параметрам выпрямительных диодов относятся:

максимально допустимый прямой ток Iпр макс;

прямое падение напряжения на диоде Uпр (при Iпр макс);

максимально допустимое обратное напряжение Uобр макс;

обратный ток при заданном обратном напряжении Iобр (при Uобр макс);

диапазон рабочих температур окружающей среды;

коэффициент выпрямления Кв;

предельная частота выпрямления, соответствующая уменьшению коэффициента выпрямления в 2 раза.

18.
Стабилитроны
Полупроводниковыми стабилитронами называют диоды, предназначенные для стабилизации уровня напряжения в схеме. Принцип работы стабилитронов основан на использовании электрического вида пробоя p-n-перехода при обратном смещении.

На обратной ветви ВАХ имеется участок со слабой зависимостью напряжения от величины обратного тока (участок с электрическим пробоем p-n-перехода). В качестве стабилитронов используются плоскостные кремниевые диоды. ВАХ стабилитрона изображена на рис. 5. Величина обратного напряжения, при котором начинает развиваться электрический пробой, в значительной степени зависит от удельного сопротивления исходного материала, определяемого концентрацией примеси.

При напряжении менее 6 В в p-n-переходе диода преобладает туннельный пробой. В диапазоне от 6 до 12 В наблюдаются оба вида электрического пробоя – туннельный и лавинный, а выше 12 В преобладает лавинный пробой. С изменением температуры напряжение стабилизации Uст изменяется. Низковольтные и высоковольтные стабилитроны имеют противоположные изменения напряжения стабилизации при увеличении температуры. При туннельном пробое с ростом температуры Uст уменьшается, а при лавинном – возрастает. Для напряжений от 6 до 12 В влияние температуры незначительно, т. к. в переходе существуют оба вида пробоя.

Рис. 3

Основными параметрами стабилитрона являются:

напряжение стабилизации Uст – падение напряжения на стабилитроне при протекании заданного тока стабилизации;

минимальный Icт мин и максимальный Icт макс токи стабилитрона;

температурный коэффициент напряжения стабилизации

;

дифференциальное сопротивление стабилитрона , определяемое на участке пробоя;

статическое сопротивление .

Полупроводниковые диоды, применяемые для стабилизации напряжений менее 1 В с использованием прямой ветви ВАХ, называют стабисторами.

19. Варикапы

В варикапах используется зависимость барьерной емкости p-n-перехода от обратного напряжения. Они делятся на подстроечные, или варикапы, и умножительные, или варакторы. Варикапы используются для изменения резонансной частоты колебательных систем. Варакторы применяются для умножения частоты.

Основными специальными параметрами варикапов являются:

номинальная емкость Св, измеренная при заданном обратном напряжении Uобр;

коэффициент перекрытия по емкости – отношение емкостей варикапа при двух заданных значениях обратного напряжения;

сопротивление потерь rп – суммарное активное сопротивление, включающее сопротивление кристалла, контактных соединений и выводов;

добротность – отношение реактивного сопротивления варикапа на заданной частоте переменного сигнала к сопротивлению потерь;

температурный коэффициент емкости – отношение относительного изменения емкости к вызывавшему его абсолютному изменению температуры окружающей среды.

Кроме рассмотренных диодов выпускаются туннельные диоды, диоды Ганна, лавинно-пролетные диоды, успешно работающие в диапазоне сверхвысоких частот (0,3…300 ГГц), а также фото — и излучательные диоды, используемые в фотоэлектрических и оптоэлектронных приборах и в качестве светоиндикаторных устройств.

20. Импульсные диоды

Предназначены для работы в цифровых и других устройствах импульсной техники. Обозначаются так же, как и выпрямительные, имеют малую длительность переходных процессов. От выпрямительных диодов отличаются малыми емкостями p-n-перехода (доли пикофарад) и рядом параметров, определяющих переходные характеристики диода. Уменьшение емкостей достигается за счет уменьшения площади p-n-перехода, поэтому допустимые мощности рассеяния у них невелики (30¼40 мВт).

На работу импульсных диодов влияют эффекты накопления и рассасывания носителей заряда. При воздействии на диод коротких по времени импульсов начинает сказываться инерционность процессов рассасывания носителей и перезаряда его емкости. Время установления сопротивления прямовключенного p-n-перехода диода tуст определяется инжекцией носителей заряда, их диффузионным перемещением в глубь базы, которое уменьшает объемное сопротивление базы диода до своего стационарного состояния. После окончания прямоугольного импульса при обратном включении p-n-перехода первоначально резко увеличивается величина обратного тока вследствие интенсивного рассасывания неравновесных носителей с последующим его экспоненциальным уменьшением до стационарного значения теплового тока I0.Время восстановления обратного сопротивления перехода tвос до своего нормального значения определяется по формуле

,где vдр и vрек – скорости дрейфа и рекомбинации носителей в структуре, определяющие скорость рассасывания носителей, W – протяженность структуры диода между его выводами. Скорость дрейфа носителей зависит от напряженности поля, сравнительно невелика и имеет свой предел vнас. Для уменьшения tвос необходимо уменьшить объем полупроводниковой структуры и увеличить скорость рекомбинации неосновных носителей, что достигается технологией изготовления импульсных диодов: введением в исходный материал нейтральных примесей, чаще всего золота (Au), для создания так называемых «ловушек» – центров рекомбинации. Параметры импульсных диодов те же, что и у высокочастотных диодов. Кроме того, к ним добавляются специфические параметры:

ü общая емкость диода Сд (десятые доли¼единицы пикофарад);

ü максимальное импульсное прямое напряжение Uпр макс и;

o максимально допустимый импульсный ток Iпр макс и;

ü время установления прямого напряжения tуст – интервал времени от момента подачи импульса прямого тока на диод до достижения заданного прямого напряжения (доли наносекунд¼доли микросекунд);

ü время обратного восстановления диода tвос – время переключения диода с заданного прямого тока на заданное обратное напряжение от момента прохождения тока через нулевое значение до момента достижения обратным током заданного значения (доли наносекунд ¼доли микросекунд).

Для уменьшения tвос применяют специальные разновидности импульсных диодов: диоды с барьером Шотки (ДБШ), диоды с накоплением заряда (ДНЗ). В ДБШ переход выполнен на основе выпрямляющего контакта металл-полупроводник, в котором работа выхода из металла больше, чем работа выхода из полупроводника. У этих диодов не затрачивается время на накопление и рассасывание зарядов в базе, их быстродействие зависит только от скорости процесса перезаряда барьерной емкости. Конструктивно ДБШ выполняются в виде пластины низкоомного кремния, на которую нанесена высокоомная эпитаксиальная пленка с электропроводностью того же типа. На поверхность пленки вакуумным напылением нанесен слой металла. Инерционность ДБШ в основном определяется емкостью выпрямляющего контакта, которая может быть меньше 0,01 пФ.

ДНЗ – используется для формирования коротких прямоугольных импульсов. Это достигается за счет неравномерного легироания области диода. Для изготовления таких диодов применяются меза — и эпитаксиальная технология.

21. Диоды с накоплением заряда (ДНЗ).

В ДНЗ база изготовляется неравномерно легированной по длине. У таких диодов концентрация примеси в базе при приближению к p-n-переходу уменьшается, поэтому неравномерной оказывается и концентрация основных носителей базы – электронов, если база имеет проводимость n-типа. За счет этого электроны диффундируют в сторону p-n-перехода, оставляя в глубине базы избыточный положительный заряд атомов донор-

ной примеси, а вблизи перехода избыточный заряд электронов. Между этими зарядами возникает электрическое поле, направленное в сторону перехода. Под действием этого поля дырки, инжектированные в базу при прямом включении диода, концентрируются (накапливаются) в базе у границы перехода. При переключении диода с прямого на обратное направление эти дырки под действием поля внутри перехода быстро уходят из базы в эмиттер, и время восстановления обратного сопротивления уменьшается.

Для изготовления таких диодов применяются меза — и эпитаксиальная технология.

22. Диоды с барьером Шотки.

время обратного восстановления диода tвос – время переключения диода с заданного прямого тока на заданное обратное напряжение от момента прохождения тока через нулевое значение до момента достижения обратным током заданного значения (доли наносекунд …доли микросекунд). Для уменьшения tвос применяют специальные разновидности импульсных диодов: диоды с барьером Шотки (ДБШ), диоды с накоплением заряда (ДНЗ). В ДБШ переход выполнен на основе выпрямляющего контакта металл-полупроводник, в котором работа выхода из металла больше, чем работа выхода из полупроводника. У этих диодов не затрачивается время на накопление и рассасывание зарядов в базе, их быстродействие зависит только от скорости процесса перезаряда барьерной емкости. Конструктивно ДБШ выполняются в виде пластины низкоомного кремния, на которую нанесена высокоомная эпитаксиальная пленка с электропроводностью того же типа. На поверхность пленки вакуумным напылением нанесен слой металла. Инерционность ДБШ в основном определяется емкостью выпрямляющего контакта, которая может быть меньше 0,01 пФ.

23
Туннельные и обращённые диоды
Принцип работы туннельного диода (TД) основан на явлении туннельного эффекта в p-n-переходе, образованном вырожденными полупроводниками. Это приводит к появлению на вольт-амперной характеристике участка с отрицательным дифференциальным сопротивлением при прямом напряжении. Известно, что частица, имеющая энергию, недостаточную для преодоления потенциального барьера, может пройти сквозь него, если с другой стороны этого барьера имеется свободный энергетический уровень, который она занимала перед барьером. Это явление называется туннельным эффектом. Чем уже потенциальный барьер и чем меньше его высота, тем больше вероятность туннельного перехода. Туннельный переход совершается без затраты энергии. Вольт-амперная характеристика туннельного диода показана на рис. 2.26, а.

2.17. Параметры туннельных диодов

Пиковый ток I п (от сотен микроампер – до сотен миллиампер).

Напряжение пика U п – прямое напряжение, соответствующее току п I.

Ток впадины I в, соответствующий напряжению U в.

Напряжение впадины – прямое напряжение, соответствующее току в I. Напряжение раствора U p – прямое напряжение, соответствующее типовому току на второй восходящей ветви ВАХ, определяет возможный скачок напряжения на нагрузке при работе туннельного диода в схеме переключения.

24.

Разновидностью туннельных диодов являются
обращенные диоды
, изготовляемые на основе полупроводника с концентрациями примесей в р — и n — областях диода, меньших, чем в туннельных, но больших, чем в обычных выпрямительных диодах.

Вольт-амперная характеристика обращенного диода представлена на рис. 2.28.

Прямая ветвь ВАХ обращенного диода аналогична прямой ветви обычного выпрямительного диода, а обратная ветвь аналогична обратной ветви ВАХ туннельного диода, т. к. при обратных напряжениях происходит туннельный переход электронов из валентной зоны р-области в зону проводимости n-области и при малых обратных напряжениях (десятки милливольт) обратные токи оказываются большими. Таким образом, обращенные диоды обладают выпрямляющим эффектом, но проводящее направление в них соответствует обратному включению, а запирающее – прямому включению. Благодаря этому их можно использовать в детекторах и смесителях на СВЧ в качестве переключателей.

Из за большого объема этот материал размещен на нескольких страницах: 1

ОАО «НИИ Электромера»

65 лет назад, согласно Постановлению Совета министров СССР, был образован ВНИИЭП — Всесоюзный научно-исследовательский институт электроизмерительных приборов. Кроме научно-исследовательских работ по разработке новейших образцов техники здесь изготавливали небольшие серии высокоточных, уникальных приборов. Разрабатывая системы электроизмерительных приборов, предназначенных для автоматизации экспериментов и промиспытаний сложной техники, институт создал измерительно-управляющие комплексы.

В конце прошлого столетия ВНИИЭП преобразован в ОАО «НИИ Электромера».

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]