Электромагнит 220в своими руками. Как сделать электромагнит в домашних условиях? Как сделать мощный электромагнит

Магнетизм и электричество

Словарные определения электричества и магнетизма отличаются, хотя они являются проявлениями одной и той же силы. Когда электрические заряды движутся, они создают магнитное поле. Его изменение, в свою очередь, приводит к возникновению электрического тока.

Изобретатели используют электромагнитные силы для создания электродвигателей, генераторов, аппаратов МРТ, левитирующих игрушек, бытовой электроники и множества других бесценных устройств, без которых невозможно представить повседневную жизнь современного человека. Электромагниты неразрывно связаны с электричеством, они просто не смогут работать без внешнего источника питания.

Электромагниты и их применение

Обратите внимание на направление электрического тока в катушке. Согласно правилу правой руки, электрический ток создает магнитное поле, силовые линии которого направлены так же, как у магнита. Таким образом, мы можем назначить магнитные полюса катушке с электрическим током, что и у магнита. Поэтому такую ​​катушку с электрическим током можно назвать электромагнитом.

Важно! Катушка с железным сердечником внутри называется электромагнитом.

Электромагниты находят бóльшее применение в технике, чем постоянные магниты. Это происходит в основном по двум причинам:

  1. Они создают более сильное магнитное поле, потому что мы можем использовать в них ферромагнитный сердечник, который в 1000-чи раз усилит магнитное поле, создаваемое электрическим током, протекающим в катушке.
  2. Вы можете управлять ими — увеличивать или уменьшать значение индукции, потому что она прямо пропорциональна электрическому току, протекающему в обмотке.

Отметим широкое применение электромагнитов, которые используются, например, в:

  • электрические машины (двигатели и генераторы);
  • громкоговорители, реле, контакторы и т.д.;
  • магнитные железные дороги;
  • устройства, использующие ядерный магнитный резонанс (МРТ). Основной частью МРТ является сверхпроводящий электромагнит, который генерирует очень сильное магнитное поле с индукцией = 3 Тесла. Внутрь этого электромагнита помещается пациент, подлежащий тестированию;
  • электромагнитные краны (сталелитейные заводы, верфи, цеха);
  • круговые ускорители (например, в ЦЕРНе, где работает сверхпроводящий электромагнит);
  • замки для ворот и дверей.

Конечно, не во всех случаях применения электромагнит похож на так называемый стержневой магнит, очень часто он напоминает подковообразный магнит. Например, электромагнит, используемый для подъема железного лома, модель которого показана на рис. 8. или электромагнит, который используется для электрического звонка (рис. 9.).

Наконец, интересный факт. Можно пойти еще дальше и соединить оба конца катушки. Тогда мы получим так называемую тороидальную катушку (см. рис. 10). Это важный компонент электрических систем переменного тока; он служит для хранения энергии магнитного поля и может иметь высокую индуктивность (L).

Определение

Электромагнит – это специальное устройство, работа которого создает магнитное поле при подаче на него электрического тока. Чаще всего электромагниты состоят из первичной обмотки и сердечника, который обладает ферромагнитными свойствами.

Обмотка изготавливается обычно из медного или алюминиевого провода различной толщины, обязательно покрытого изоляцией. Но существуют и электромагниты из сверхпроводящих материалов. Сами же магнитопроводы делают из стали, железоникелевых сплавов или чугуна. А для того чтобы минимизировать потери на вихревые токи, магнитопроводы конструктивно выполняются из целого набора тонких листов. Теперь мы знаем, что такое электромагнит. Рассмотрим более подробно историю создания этого полезного устройства.

Как сделать самодельный электромагнит

В этом видеоролике канала Креосан показано, как сделать самостоятельно электрический магнит. Нужно взять трансформатор от микроволновки, распилить его и достать обмотки. Также подойдут и другие трансформаторы. Но мощные и доступные только в микроволновках.

Нам понадобится первичная обмотка. Мы его только включили в сеть, а он уже начинает вибрировать. Что же будет, когда он будет притягивать железо? Настало время испытать electromagnet. На него можно подавать 12, 24, 36, 48, 110, 220 вольт. При этом может быть постоянный и переменный ток. Включаем аккумулятор от ноутбука и посмотрим, на что способен самодельный электромагнит при напряжении 12 вольт. Берем орешек и при участии электромагнита плющим его дверью. Как видите, с орешком он легко расправился. Попробуем поднять что-то потяжелее. Например крышку от канализационного люка.

Есть идея простого измерителя пульсаций.

Простейший электромагнит за 5 минут

Далее. Еще один канал (HM Show) выпустил ролик по той же теме.Он показал, как сделать простой электромагнит за 5 минут. Для изготовления устройства своими руками понадобится стальной стержень, медная проволока и любой изолирующий материал.

Для начала изолируем стальной стержень строительным скотчем, излишки материала отрезаем. Необходимо намотать медную проволоку на изолирующий материал так, чтобы было как можно меньше воздушных зазоров. От этого зависит сила магнита, также от толщины медной проволоки, количества витков и силы ток. Данные показатели нужно подбирать экспериментально. После того, как намотали проволоку, обмотать её изолирующим материалом.

Зачищаем концы проволоки. Подключаем магнит к блоку питания и подаем напряжение четыре вольта с силой тока 1 ампер. Как видим, болтики плохо магнитятся. Чтобы усилить магнит, увеличиваем силу тока до 1,9 ампера и результат сразу меняется в лучшую сторону! С данной силой тока можем уже поднимать и не только болтики, но и кусачки с плоскогубцами. Попробуйте изготовить с использованием батарейки, а получившийся результат написать в комментариях.

izobreteniya.net

История

Создателем электромагнита считается Уильям Стерджен. Именно он в 1825 году сделал первый подобный магнит. Конструктивно устройство представляло собой цилиндрический кусок железа, вокруг которого был намотан толстый заизолированный медный провод. В момент, когда по нему пускали электрический ток, стержень из металла приобретал свойства магнита. А когда течение тока прерывалось, весь магнетизм устройство сразу же теряло. Именно такое качество – включение и отключение при необходимости – и позволяет применять электромагниты в ряде технологических и промышленных сфер.

Мы рассмотрели вопрос о том, что такое электромагнит. Теперь же разберем основные его виды. Разделяются они в зависимости от способа создания магнитного поля. Но функция их остается одной и той же.

Как сделать электромагнит своими руками в домашних условиях

Такое устройство удобно тем, что его работой легко управлять при помощи эл/тока – менять полюса, силу притяжения. В некоторых вопросах оно становится поистине незаменимым, а часто используется как конструктивный элемент различных самоделок. Своими руками сделать простой электромагнит несложно, тем более что практически все необходимое можно найти в каждом доме.

Что понадобится

  • Любой подходящий образец из железа (оно хорошо магнитится). Это будет сердечник электромагнита.
  • Проволока – медная, обязательно с изоляцией, чтобы предотвратить прямой контакт двух металлов. Для самодельного эл/магнита рекомендуемое сечение – 0,5 (но не более 1,0).
  • Источник постоянного тока – батарейка, АКБ, БП.

Дополнительно:

  • Соединительные провода для подключения электромагнита.
  • Паяльник или изолента для фиксации контактов.

Это общая рекомендация, так как электромагнит изготавливается с определенной целью. Исходя из этого, и подбираются составные части схемы. А если он делается в домашних условиях, то какого-то стандарта и быть не может – подойдет все, что есть под рукой. Например, применительно к первому пункту в качестве сердечника нередко используют гвоздь, дужку замка, отрезок железного стержня – выбор вариантов огромный.

Порядок изготовления

Обмотка

Медный провод аккуратно, виток за витком, накручивается на сердечник. При такой скрупулезности КПД электромагнита будет максимально возможным. После первого «прохода» по железному образцу проволока укладывается вторым слоем, иногда и третьим. Это зависит от того, какая мощность устройства требуется. Но направление намотки должно быть неизменным, иначе произойдет «разбалансировка» магнитного поля, и электромагнит вряд ли что-то сможет притянуть к себе.

Чтобы понять смысл протекающих процессов, достаточно вспомнить уроки физики из курса средней школы – движущиеся электроны, создаваемое ими ЭМП, направление его вращения.

После окончания намотки проволока обрезается так, чтобы выводы было удобно подключить к источнику питания. Если это батарейка – то напрямую. При использовании БП, аккумулятора или иного прибора понадобятся соединительные провода.

Что учесть

С количеством слоев есть определенные сложности.

  • С увеличением витков повышается реактивное сопротивление. Значит, сила тока начнет снижаться, а притяжение станет более слабым.
  • С другой стороны, повышение номинала тока вызовет нагрев обмотки.

Именно поэтому ориентироваться на сторонние советы «бывалых и повидавших» не стоит. Есть конкретный сердечник (со своей магнитной проводимостью, размерами, сечением), проволока и источник питания. Поэтому придется экспериментировать, добиваясь оптимального сочетания таких параметров, как ток, сопротивление и температура.

Подробно принцип действия работы электромагнита описан в следующем видео:

Подключение

  • Зачистка выводов «медяшки». Проволока изначально покрыта несколькими слоями лака (в зависимости от марки), а он, как известно – изолятор.
  • Спаивание медного и соединительного проводов. Хотя это и непринципиально – можно сделать скрутку, изолировав ее трубкой ПВХ или клейкой лентой.
  • Фиксация вторых концов проводов на зажимах. Например, типа «крокодил». Такие съемные контакты позволят легко менять полюса электромагнита, если это понадобится в процессе его применения.
  • Для изготовления мощного электромагнита домашние умельцы нередко используют катушку от МП (магнитного пускателя), реле, контакторов. Они есть и на 220, и на 380 В.

Железный сердечник подобрать по ее внутреннему сечению несложно. Для удобства управления в схему нужно включить реостат (переменное сопротивление). Соответственно, такой эл/магнит подключается уже к розетке. Сила притяжения регулируется изменением R цепи.

  • Можно повысить мощность электромагнита за счет увеличения сечения сердечника. Но только до определенных пределов. И здесь придется экспериментировать.
  • Прежде чем делать эл/магнит, необходимо убедиться, что выбранный образец железа для этого подходит. Проверка достаточно простая. Берется обычный магнитик; в доме много чего есть на таких «присосках». Если он притянет подобранную для сердечника деталь, можно использовать. При отрицательном или «слабом» результате лучше поискать другой образец.

Сделать электромагнит достаточно просто. Все остальное зависит от терпения и сообразительности мастера. Возможно, чтобы получить то, что нужно, придется поэкспериментировать – с напряжением питания, сечением проволоки и так далее. Любая самоделка требует не только творческого подхода, но и времени. Если его не пожалеть, то отличный результат обеспечен.

electroadvice.ru

Независимо от того, для чего человеку понадобился магнит, его легко можно сделать в домашних условиях. Когда под рукой такая штука, с ее помощью можно не только позабавиться, поднимая со стола различные мелкие железяки, но и подыскать ей полезное применение, например, найти оброненную на ковер иголку. Из этой статьи вы узнаете, как легко можно сделать электромагнит своими руками в домашних условиях.

Немного физики

Как мы помним (или не помним) из уроков физики, для того, чтобы преобразовать электрический ток в магнитное поле, нужно создать индукцию. Индуктивность создается при помощи обычной катушки, внутри которой это поле возникает и передается на стальной сердечник, вокруг которого совершена обмотка катушки.

Таким образом, в зависимости от полярности, один конец сердечника будет излучать поле со знаком «минус», а противоположное – со знаком «плюс». Но на визуальные магнетические способности полярность ни коим образом не влияет. Итак, когда с физикой покончено, можно приступить к решительным действиям по созданию простейшего электромагнита своими руками.

Материалы для изготовления самого простого магнита

В первую очередь нам потребуется любая катушка индуктивности с намотанным на сердечник медным проводом. Это может быть обычный трансформатор из любого блока питания. Отличным средством для создания электромагнитов является обмотка вокруг зауженной тыльной части кинескопов старых мониторов или телевизоров. Нити проводников в трансформаторах защищены изоляцией, состоящей из почти невидимого слоя специального лака, препятствующего прохождению электрического тока, что нам как раз и нужно. Помимо указанных проводников, для создания электромагнита своими руками также нужно приготовить:

  1. Обычную батарейку на полтора Вольта.
  2. Скотч или изоленту.
  3. Острый ножик.
  4. Гвоздь сотку.

Процесс изготовления простейшего магнита

Начинаем с изъятия проводов из трансформатора. Как правило, его середина находится внутри стального обрамления. Можно, сняв поверхностную изоляцию на катушке, просто разматывать провод, протаскивая его между рамами и катушкой. Поскольку нам не понадобится много провода, этот способ здесь самый приемлемый. Когда мы высвободили достаточное количество провода, делаем следующее:

  1. Наматываем изъятый из катушки трансформатора провод вокруг гвоздя, который будет служить нашему электромагниту стальным сердечником. Витки желательно делать как можно чаще, плотно прижимая их друг к другу. Не забываем на начальном витке оставить длинный конец провода, посредством которого наш электромагнит будет запитываться к одному из полюсов батарейки.
  2. Когда дошли до противоположного конца гвоздя, также оставляем длинный проводник для запитки. Излишки провода обрезаем ножом. Чтобы спираль, намотанная нами, не распускалась, можно обмотать ее скотчем или изолентой.
  3. Зачищаем оба конца провода, идущего от гвоздя с намоткой, от изоляционного лака ножиком.
  4. Один конец зачищенного проводника прислоняем к плюсу батарейки и прихватываем его скотчем или изолентой так, чтобы контакт хорошо сохранялся.
  5. Другой конец тем же способом приматываем к минусу.

Электромагнит готов к работе. Разбросав по столу металлические скрепки или кнопки, можно проверить его работоспособность.

Как изготовить более мощный магнит?

Как своими руками сделать электромагнит с более мощными магнетическими свойствами? На силу магнетизма влияет несколько факторов, и самым главным из них является мощность электрического тока батареи, которую мы используем. Например, изготовив электромагнит из квадратной батарейки на 4,5 вольт, силу его магнитных свойств увеличим втрое. 9-вольтовая крона даст еще более мощный эффект.

Но не стоит забывать, что, чем сильнее электрический ток, тем больше потребуется витков, поскольку сопротивление при малом количестве витков будет слишком сильным, что приведет к сильному нагреву проводников. При сильном их нагреве изоляционный лак может начать плавиться, витки начнут коротить друг на друга или на стальной сердечник. И то, и другое рано или поздно приведет к короткому замыканию.

Также сила магнетизма зависит от количества витков вокруг сердечника магнита. Чем их будет больше, тем сильнее будет поле индукции, и тем сильнее будет магнит.

Изготавливаем более мощный магнит

Попробуем изготовить своими руками электромагнит на 12 вольт. Питаться он будет от сетевого блока питания на 12 вольт или от 12-вольтового автомобильного аккумулятора. Для его изготовления нам понадобится гораздо большее количество медного проводника, а потому следует изначально извлечь из заготовленного трансформатора внутреннюю катушку с медным проводом. Болгарка – самое отличное средство для ее извлечения.

Что нам понадобится для изготовления:

  • Стальная подкова от большого навесного замка, которая послужит нам сердечником. В данном случае примагничивать железяки можно будет обоими его концами, что еще более увеличит подъемную способность магнита.
  • Катушка с медным проводом в лакированной изоляции.
  • Изолента.
  • Ненужный блок питания на 12 вольт или автомобильный аккумулятор.

Процесс изготовления мощного 12-вольтового магнита

Конечно, в роли сердечника можно использовать и любой другой массивный стальной штырь. Но подкова от старого замка подойдет как нельзя лучше. Ее изгиб будет служить в качестве своеобразной ручки, если мы начнем поднимать грузы, обладающие внушительным весом. Итак, в данном случае процесс изготовления электромагнита своими руками следующий:

  1. Наматываем проволоку из трансформатора вокруг одной из подков. Витки кладем как можно плотнее. Изгиб подковы будет немного мешать, но ничего страшного. Когда заканчивается длина стороны подковы, укладываем витки в противоположную сторону, поверх первого ряда витков. Делаем, в общей сложности, 500 витков.
  2. Когда обмотка одной половины подковы готова, обматываем ее одним слоем изоленты. Изначальный конец провода, предназначенного для подпитки от источника тока, выводим в верхнюю часть будущей ручки. Обматываем нашу катушку на подкове еще одним слоем изоленты. Другой конец проводника приматываем к изгибающейся сердцевине ручки и на другой стороне делаем еще одну катушку.
  3. Наматываем проволоку на противоположную сторону подковы. Делаем все так же, как и в случае с первой стороной. Когда 500 витков уложено, так же выводим конец провода для запитки от энергоисточника. Кому непонятно, порядок действий хорошо показан в этом видео.

Заключительная стадия изготовления электромагнита своими руками – подпитка к энергоисточнику. Если это аккумулятор, наращиваем концы зачищенных проводников нашего электромагнита при помощи дополнительных проводов, которые подсоединяем к клеммам аккумулятора. Если это блок питания, отрезаем штекер, идущий на потребитель, зачищаем провода и к каждому прикручиваем по проводу от электромагнита. Изолируем изолентой. Включаем блок питания в розетку. Поздравляем. Вы сделали своими руками мощный электромагнит на 12 вольт, который в состоянии поднимать грузы свыше 5 кг.

Электромагнит — искусственный магнит, у которого магнитное поле возникает и концентрируется в ферромагнитном сердечнике в результате прохождения электрического тока по охватывающей его обмотке, т.е. при пропускании тока через катушку помещенный внутри нее сердечник приобретает свойства естественного магнита.

Область применения электромагнитов очень обширна. Их используют в электрических машинах и аппаратах, в устройствах автоматики, в медицине, в различного рода научных исследованиях. Наиболее часто электромагниты и соленоиды используются для перемещения каких-то механизмов, а на производствах для подъёма груза.

Так, например, грузоподъемный электромагнит является очень удобным, производительным и экономичным механизмом: для закрепления и освобождения транспортируемого груза не требуется обслуживающий персонал. Достаточно положить электромагнит на перемещаемый груз и включить электрический ток в катушку электромагнита и груз притянется к электромагниту, а для освобождения от груза необходимо лишь отключить ток.

Конструкция электромагнита легка для повторения и в сущности не представляет собой ничего кроме сердечника и катушки из проводника. В этой статье мы ответим на вопрос как сделать электромагнит своими руками?

Как работает электромагнит (теория)

Если по проводнику протекает электрический ток, то вокруг этого проводника образуется магнитное поле. Так как ток может течь только тогда, когда цепь замкнута, то проводник должен представлять собой замкнутый контур, как, например, круг, который является простейшим замкнутым контуром.

Раньше проводником, свернутым в круг, часто пользовались для наблюдения действия тока на магнитную стрелку, помещенную в его центре. В этом случае стрелка находится на равном расстоянии от всех частей проводника, благодаря чему легче можно наблюдать действие тока на магнит.

Чтобы усилить действие электрического тока на магнит, можно прежде всего увеличить ток. Однако, если обогнуть проводник, по которому протекает какой-то ток, два раза вокруг охватываемого им контура, то действие тока на магнит удвоится.

Таким образом можно во много раз увеличить это действие, огибая проводник соответствующее число раз вокруг данного контура. Получающееся при этом проводящее тело, состоящее из отдельных витков, число которых может быть произвольным, называется катушкой.

Вспомним курс школьной физики, а именно о том, что при протекании электрического тока через проводник . Если проводник свернуть в катушку линии магнитной индукции всех витков сложатся, и результирующее магнитное поле будет сильнее чем для одиночного проводника.

Магнитное поле, порожденное электрическим током в принципе не имеет существенных отличий по сравнению с магнитным если вернуться к электромагнитам, то формула его тяговой силы выглядит так:

F=40550∙B 2 ∙S,

где F — сила тяги, кГ (сила измеряется также в ньютонах, 1 кГ =9,81 Н, или 1 Н =0,102 кГ); B — индукция, Тл; S — площадь сечения электромагнита, м2.

То есть сила тяги электромагнита зависит от магнитной индукции, рассмотрим её формулу:

Здесь U0 — магнитная постоянная (12.5*107 Гн/м), U — магнитная проницаемость среды, N/L — число витков на единицу длины соленоида, I — сила тока.

Отсюда следует, что сила с которой магнит притягивает что-либо зависит от силы тока, количества витков и магнитной проницаемости среды. Если в катушке нет сердечника — средой является воздух.

Ниже приведена таблица относительных магнитных проницаемостей для разных сред. Мы видим, что у воздуха она равна 1, а у других материалов в десятки и даже сотни раз больше.

В электротехнике используют специальный металл для сердечников, его часто называют электротехнической или трансформаторной сталью. В третьей строке таблицы вы видите «Железо с кремнием» у которого относительная магнитная проницаемость равна 7*103 или 7000 Гн/м.

Это и есть усредненное значение для трансформаторной стали. Она отличается от обычной как раз-таки содержанием кремниями. На практике её относительная магнитная проницаемость зависит от приложенного поля, но не будем углубляться в подробности. Что даёт сердечник в катушке? Сердечник из электротехнической стали усилит магнитное поле катушки примерно в 7000-7500 раз!

Всё что нужно запомнить для начала — это то, что от материала сердечника внутри катушки зависит , а от неё зависит сила с которой будет тянуть электромагнит.

Практика

Одним из наиболее популярных опытов, которые проводят для демонстрации возникновения магнитного поля вокруг проводника является опыт с металлической стружкой. Проводник накрывают листом бумаги и на него насыпают магнитную стружку, потом через проводник пропускают электрический ток, и стружка изменяет своё располагаясь каким-то образом на листе. Это уже почти электромагнит.

Но для электромагнита просто притягивать металлические стружки недостаточно. Поэтому нужно его усилить, исходя из вышесказанного — нужно сделать катушку, намотанную на металлический сердечник. Простейшим примером — будет изолированный медный провод, намотанный на гвоздь или болт.

Такой электромагнит способен притягивать разные булавки, скрепи и тому подобное.

В качестве провода можно использовать либо любой провод в ПВХ или другой изоляции, либо медный провод в лаковой изоляции типа ПЭЛ или ПЭВ, которые используются для обмоток трансформаторов, динамиков, двигателей и прочее. Найти его можно либо новый в катушках, либо смотать с тех же трансформаторов.

10 Нюансов изготовления электромагнитов простыми словами:

1. Изоляция по всей длине проводника должна быть однородной и целой, чтобы не было межвитковых замыканий.

2. Намотка должна идти в одну сторону как на катушке с нитками, то есть нельзя изогнуть провод на 180 градусов и пойти в обратном направлении. Это связано с тем что результирующее магнитное поле будет равно алгебраической сумме полей каждого витка, если не вдаваться в подробности, то витки, намотанные в обратную сторону, будут порождать электромагнитное поле противоположное по знаку, в результате поля будут вычитаться и в результате сила электромагнита будет меньше, а если витков в одном и другом направлении будет одинаковое количество — магнит совсем ничего не будет притягивать, так как поля подавят друг друга.

3. Сила электромагнита также будет зависеть от силы тока, а он от напряжения приложенного к катушке и её сопротивления. Сопротивление катушки зависит от длины провода (чем длиннее, тем оно больше) и площади его поперечного сечения (чем больше сечение, тем меньше сопротивление) приблизительный расчёт можно провести по формуле — R=p*L/S

4. Если ток будет слишком большим — катушка сгорит

5. При постоянном токе — ток будет больше, чем при переменном из-за влияния реактивного сопротивления индуктивности.

6. При работе на переменном токе — электромагнит будет гудеть и дребезжать, его поле будет постоянно менять направление, а его тяговая сила будет меньше (в два раза) чем при работе на постоянном. При этом сердечник для катушек переменного тока выполняется из тонколистового металла, собираясь в единое целое, при этом пластины друг от друга изолируются лаком или тонким слоем окалины (оксида), т.н. шихты — для уменьшения потерь и токов Фуко.

7. При одинаковой тяговой силе электрический магнит переменного тока будет весить в два раза больше, соответственно возрастают и габариты.

8. Но стоит учесть, что электромагниты переменного тока обладают большим быстродействием чем магниты постоянного тока.

9. Сердечники электромагнитов постоянного тока

10. Оба типа электромагнитов могут работать как на постоянном, так и на переменном токе, вопрос только какой силой он будет обладать, какие потери и нагрев будут происходить.

3 идеи для электромагнита из подручных средств на практике

Как уже было сказано самый простой способ сделать электромагнит — использовать металлический стержень и медный провод подобрав и один и другой под нужную мощность. Напряжение питания этого устройства подбирается опытным путем исходя из силы тока и нагрева конструкции. Для удобства можно использовать пластиковую катушку от ниток или подобного, а под её внутренее отверстие подобрать сердечник — болт или гвоздь.

Второй вариант — использовать почти готовый электромагнит. Вспомните об электромагнитных коммутационных приборах — реле, магнитных пускателях и контакторах. Для использования на постоянном токе и напряжении 12В удобно использовать катушку от автомобильных реле. Всё что нужно сделать — снять корпус выломать подвижные контакты и подключить питание.

Для работы от 220 или 380 вольт удобно использовать катушки , они намотаны на оправке и легко вынимаются. Сердечник подберите исходя из площади поперечного сечения отверстия в катушке.

Так вы можете включать магнит от розетки, а регулировать его силу удобно если использовать реостат или ограничивать ток с помощью мощного сопротивления, например, .

Электромагнит является очень полезным устройством, который массово используется в промышленности и во многих сферах человеческой деятельности. Хоть это устройство и может показаться сложным по своей конструкции, однако оно легкое в изготовлении и маленький домашний электромагнит можно сделать в домашних условиях из подручных средств.

Давайте посмотрим процесс создания этой самоделки в видео:

Для того, чтобы сделать маленький электромагнит в домашних условиях нам понадобится:

— Железный гвоздь или болт; — Медная проволока; — Наждачная бумага; — Алкалиновая батарейка.

В самом начале следует отметить, что не советуется брать слишком толстую проволоку. Медная проволока диаметром в один миллиметр отлично подойдет для будущего электромагнита. Что касается размера гвоздя или болта, то идеальным вариантом будет длина в 7-10 сантиметров.

Итак, приступим к изготовлению мини электромагнита. Вначале нам нужно намотать медную проволоку на болт. Важно обратить внимание на то, чтобы каждый виток плотно прилегал к предыдущему.

Намотать проволоку нужно так, чтобы в обеих концах осталось по куску проволоки.

Осталось лишь подключить наши провода к источнику, а именно алкалиновой батарее. После этого наш болт будет притягивать металлические элементы.

Принцип работы электромагнита очень прост. Когда электрический ток проходит через катушку с сердечником образуется магнитное поле, которое и притягивает металлические элементы. Мощность электромагнита зависит от плотности витка и количества слоев медной проволоки, а также от силы тока.

Наряду с постоянными магнитами с 19 века человек стал активно применять в технике и быту магниты переменные, работу которых можно регулировать подачей электрического тока. Конструктивно простой электромагнит представляет собой катушку из электроизоляционного материала с намотанным на ней проводом. При наличии минимума набора материалов и инструментов электромагнит не сложно изготовить самостоятельно. О том, как его сделать мы и расскажем в этой статье.

При прохождении по проводнику электрического тока вокруг провода возникает магнитное поле, при отключении тока поле исчезает. Для усиления магнитных свойств в центр катушки можно вводить стальной сердечник или увеличивать силу тока.

Общая характеристика

Электромагнит – это простая катушка провода, которая подключена к источнику, передающему постоянный ток.

Подключившись к источнику постоянного тока (а также напряжения), катушка и провод начинают получать энергетические ресурсы и создают магнитное поле, которое является подобным полю, что образуется в постоянных полосовых магнитах. Плотность, которой обладает магнитный поток, всегда является пропорциональной величине электрического тока, протекающего сквозь толщу катушки. Полярность электромагнита определяют по направлению тока. Механизм образования включает в себя (самый простой вариант) наматывание провода вокруг сердечника, выполненного из металла, через который потом пропускают электричество из определенного источника. Если внутренняя полость катушка заполнена воздухом, то ее называют соленоидом.

Электромагнит – это устройств, посредством которого можно создавать электромагнитное поле. Главной характеристикой является его способность контролировать силу данного поля, полярность и ее форму. При этом силу магнитного поля контролируют посредством величины использованного электрического тока, который протекает сквозь катушку. Полярность можно задавать, определив в каком направлении нужно двигать протекающий ток. Форма магнитного поля зависит от формы металлической сердцевины, служащей «стержнем» для обмотки проводом. Не забывайте, что полюса электромагнита определяются аналогично тому, как это делают в соленоидах, по физическому правилу правой руки. П.П.Р. также называют правилом буравчика, являющегося мнемоническим средством, посредством которого определяют направление векторных произведений и правого базиса.

Увеличивать силу электромагнита, а точнее его поля, можно при помощи:

  • применения сердечников из «мягкого» железа;
  • применения больших чисел витков;
  • применения электрического тока в больших размерах.

Как сделать электромагнит

Электромагнит, в отличие от постоянного магнита, приобретает свои свойства только под воздействием электрического тока. С его помощью он меняет силу притяжения, направление полюсов и некоторые другие характеристики. Некоторые увлеченные механикой люди самостоятельно делают электромагниты, чтобы использовать их в самодельных установках, механизмах и разнообразных конструкциях. Сделать электромагнит своими руками несложно. Используются простые приспособления и подручные материалы.

Самый простой набор для изготовления электромагнита
Что понадобится:

  • Один железный гвоздь 13-15 см. в длину или иной металлический предмет, который и станет сердечником электромагнита.
  • Около 3 метров изолированной медной проволоки.
  • Источник электропитания — аккумуляторная батарея или генератор.
  • Небольшие провода для контакта провода с батарейкой.
  • Изолирующие материалы.

Если вы используете более крупную металлическую заготовку для создания магнита, то количество медной проволоки должно пропорционально увеличиваться. Иначе магнитное поле получится слишком слабым. Сколько именно понадобится обмотки, точно ответить нельзя. Обычно мастера выясняют это экспериментальным путем, увеличивая и уменьшая количество проволоки, параллельно измеряя изменения магнитного поля. Из-за избытка проволоки сила магнитного поля тоже становится меньше.

Пошаговая инструкция

Следуя простым рекомендация, вы легко сделаете электромагнит самостоятельно.

Зачищаем концы медного провода
Шаг 1
Очистите от изоляции концы медного провода, который будете наматывать на сердечник. Достаточно 2-3 см. Они понадобятся, чтобы соединить медную проволоку с обычной, которая в свою очередь будет подключаться к источнику питания.

Наматываем медный провод вокруг гвоздя
Шаг 2
Вокруг гвоздя или другого сердечника аккуратно намотайте медный провод так, чтобы витки были расположены параллельно друг к другу. Делать это необходимо только в одном направлении. От этого зависит расположение полюсов будущего магнита. Если вы захотите изменить их расположение, то можно просто перемотать проволоку в другом направлении. Не выполнив этого условия, вы добьетесь того, что магнитные поля различных секций будут воздействовать друг на друга, из-за чего сила магнита будет минимальной.

Подсоединяем провод к батарейке
Шаг 3
Концы очищенного медного провода соедините с двумя заранее подготовленными обычными проводками. Соединение заизолируйте, а один конец проводка подключите к клемме положительного заряда на аккумуляторе, а другой — на противоположный конец. Причем неважно, какой проводок к какому концу будет подключен — это не отразится на эксплуатационных возможностях электромагнита. Если все сделано правильно, то магнит сразу же начнет работать! Если у аккумулятора есть реверсивный способ подключения, то вы сможете изменить направление полюсов.

Электромагнит работает!

Как повысить силу магнитного поля

Если полученный магнит кажется вам недостаточно мощным, попробуйте увеличить количество витков медного провода. Не забывайте о том, что, чем дальше расположены провода от железной сердцевины, тем меньше будет воздействие их на металл. Другой способ — подключить более мощный источник питания. Но и тут нужно быть осторожнее. Слишком сильный ток разогреет сердечник. При высоком нагреве плавится изоляция, и электромагнит может стать опасным.

Подключили мощный источник питания — магнит стал мощнее
Есть смысл поэкспериментировать с сердечниками. Возьмите более толстое основание — металлический брусок шириной 2-3 см. Узнать, насколько мощный получился электромагнит, позволит специальный прибор, измеряющий силу магнитного поля. С его помощью и методом экспериментов вы найдете золотую середину в создании электромагнита.

Основная классификация

Существует три основных способа классификации электромагнитов. Они обусловлены током в электромагнитах и способом его создания:

  1. Нейтральный э/м постоянного тока – устройство, в котором магнитный поток создают так, что сила притяжения становится зависимой только от размерности и скорости подачи постоянного тока, а его направление в обмотке ни на что не влияет.
  2. Поляризованный э/м постоянного тока – устройство, внутрь которого помещают 2 независимых магнитных потока: поляризующий и рабочий. Второй создают при помощи рабочей обмотки. Поляризующиеся потоки своим образованием обязаны постоянными магнитными полями, реже дополнительным электромагнитам. Данные потоки необходимы для создания притягивающих сил в магните. Деятельность такого устройства обуславливается направлением и/или величиной электрического тока в обмотке, выполняющего работу.
  3. Э/м переменного тока – устройств, обмотку которого питает источник переменного тока. Течение потока магнитной природы может периодически изменяться по своему направлению и размерности (величине). Потенциал однонаправленной силы, отвечающей за притяжение, меняться может только по своей величине, что приводит к пульсации этой силы в размере от нуля до максимально предельных значений с частотой вдвое большей, чем частота подпитывающего тока. Чаще всего используются в бытовой технике.

Устройство электромагнита

Классический электромагнит представляет собой устройство, в котором появляется магнитное поле в то время когда через него проходит электрический ток. В самом простом электромагните, такое поле может образоваться даже вокруг обычного проводника, если он находится под напряжением.

В схему простейшего электромагнита входит ферромагнитный сердечник с намотанной обмоткой. Когда по обмотке протекает электрический ток, в сердечнике образуется мощное магнитное поле. Для совершения механических действий конструкция оборудована подвижной частью, называемой якорем. Для обмотки используется алюминиевый или медный изолированный провод. Данная принципиальная схема является основой для создания аналогичных электромагнитов своими руками в домашних условиях.

Другие виды классификации

Существуют и другие способы классификации электромагнитов. Например, их могут различать по полю электромагнита и его статуса: переменное и/или постоянное.

Также бывают классификации, основанные на методах, по которым происходит включение обмотки (последовательное и параллельное включение), на работоспособности и ее характеристике (способные работать в течение длительного времени, прерывистые и кратковременные) и отличные по скорости выполнения задачи (замедленные и быстродействующие).

Как устроены плоскошлифовальные станки

Подавляющее большинство деталей, изготовленных из металла, подвергается такой технологической операции, как шлифовка. Для ее выполнения с высокой эффективностью и точностью и применяются станки плоскошлифовальной группы.

Довольно сложный в изготовлении ленточный станок с отличным функционалом

На плоскошлифовальных станках серийных моделей можно обрабатывать как плоские, так и профильные детали. Точность обработки поверхности, которой удается добиться при использовании таких устройств, составляет 0,16 микрон. Конечно, достичь такого результата при обработке на станках, изготовленных своими руками, практически невозможно. Однако даже той точности, которую позволяют получать самодельные станки, вполне достаточно для многих металлических изделий.

Несущим конструктивным элементом станков данной группы (как и любого другого оборудования) является станина. От ее габаритов напрямую зависит, какого размера детали можно обрабатывать на станке

Наиболее распространенным материалом изготовления станин плоскошлифовального оборудования является чугун, так как данный металл за счет своих характеристик отлично гасит вибрации, что особенно важно для устройств подобного назначения

Рабочий стол и органы управления шлифовального станка 3Г71М

Конструктивным элементом плоскошлифовальных станков, на котором фиксируется обрабатываемая заготовка, является рабочий стол, имеющий круглую или прямоугольную форму. Его размеры в зависимости от конкретной модели плоскошлифовального оборудования могут серьезно варьироваться. Обрабатываемые детали на таком рабочем столе могут фиксироваться за счет его намагниченной поверхности либо при помощи специальных зажимных элементов. В процессе обработки рабочий стол совершает возвратно-поступательные и круговые движения.

В плоскошлифовальных станках, выпускаемых серийно, рабочие столы приводятся в движение при помощи гидравлической системы. В оборудовании, собранном своими руками, для этого используют механические передачи.

Шлифовка стальной заготовки, фиксируемой на рабочей поверхности станка с помощью магнитного поля

Важными элементами конструкции плоскошлифовального оборудования, за счет которых обеспечиваются точность и плавность перемещения рабочего стола, являются направляющие. Кроме высокой точности изготовления, направляющие должны обладать исключительной прочностью, так как в процессе практически постоянных перемещений рабочего стола они подвергаются активному износу.

Для достижения высокой точности обработки направляющие должны обеспечить точное, плавное (без рывков) перемещение рабочего стола с минимальным трением соприкасающихся элементов. Именно поэтому для изготовления данных конструктивных элементов используется высокопрочная сталь, которую после изготовления из нее направляющих подвергают закалке.

Вариант изготовления направляющих с использованием уголков и подшипников

Рабочий инструмент плоскошлифовального станка, в качестве которого может использоваться шлифовальный круг или абразивная лента, устанавливается на шпинделе бабки. Вращение рабочему инструменту, за которое отвечает главный электрический двигатель, может передаваться посредством редуктора или ременной передачи.

Для плоскошлифовальных станков, которые делаются своими руками, можно выбрать более простой вариант: подобрать диаметр шлифовального круга таким образом, чтобы его можно было закрепить непосредственно на валу электродвигателя. Это исключит необходимость использования редукторной или ременной передачи.

Простейший электромагнит за 5 минут

Далее. Еще один канал (HM Show) выпустил ролик по той же теме. Он показал, как сделать простой электромагнит за 5 минут. Для изготовления устройства своими руками понадобится стальной стержень, медная проволока и любой изолирующий материал.

Для начала изолируем стальной стержень строительным скотчем, излишки материала отрезаем. Необходимо намотать медную проволоку на изолирующий материал так, чтобы было как можно меньше воздушных зазоров. От этого зависит сила магнита, также от толщины медной проволоки, количества витков и силы ток. Данные показатели нужно подбирать экспериментально. После того, как намотали проволоку, обмотать её изолирующим материалом.

Зачищаем концы проволоки. Подключаем магнит к блоку питания и подаем напряжение четыре вольта с силой тока 1 ампер. Как видим, болтики плохо магнитятся. Чтобы усилить магнит, увеличиваем силу тока до 1,9 ампера и результат сразу меняется в лучшую сторону! С данной силой тока можем уже поднимать и не только болтики, но и кусачки с плоскогубцами. Попробуйте изготовить с использованием батарейки, а получившийся результат написать в комментариях.

В этом видео уроке канал «Э+М» рассказал о том, что такое электромагнит. Также показал, как сделать его руками с напряжением питания 12 вольт и поставил серию опытов с его использованием. Показал, как увеличить эффективность.

Для начала немного теории истории. В начале 19 века датский физик Эрстед обнаружил связь между электричеством и магнетизмом. Ток, проходящий через проводник, находящийся рядом с компасом, отклоняет его стрелку в сторону проводника. Это свидетельствует о наличии магнитного поля вокруг проводника. Также выяснилось, что если в намотать проводник в катушку, его магнитные свойства усилится. В катушке с проводом, так называемом соленоиде, образуются магнитные линии, такие же, как и в постоянном магните.

В зависимости от того, какой стороной понесем катушку к компасу, он будет отклоняться в ту или иную сторону. Так как в катушке образовались два полюса: северный и южный. Можно изменить направление электрического тока, когда поменяются полюса. Для эксперимента автор канала намотал 2 одинаковые катушки. Первая катушка 260 витков, сопротивление 7 ом. 2 в два раза больше. 520 витков, сопротивление 15 ом. Питание будет осуществляться от источника постоянного тока. Напряжение 12 вольт. В данном случае это компьютерный блок питания. Также подойдет свинцовый аккумулятор.

Начнем эксперименты с первой катушке, у которой 260 витков. Мультиметр установлена в режиме измерения тока. Он покажет ток в амперах, текущий через катушку. Как видим показатель 1,4 ампера. Этого достаточно, чтобы притянуть маленькие металлические предметы. Попробуем объект побольше. Пусть это будет железный рубль. Катушка не может справиться с этой нагрузкой. Попробуем провести тот же опыт со второй катушкой. Ток здесь составляет 0,7 ампера. Это в 2 раза меньше, чем у 1. При том же напряжении 12 вольт. Она также не может притянуть рубль. Что можно сделать, чтобы увеличить магнитные свойства нашей катушки? Попробуем ставить железный сердечник. Для этого используем болт. Теперь он выступит в качестве магнитопровода. Последний способствует прохождению магнитного потока через себя, увеличивает соответствующие свойства соленоида. Теперь наша конструкция превратилась в электромагнит. Он уже с легкостью справляется с рублем. Ток остался таким же, 1,4 ампера.

Поэкспериментируем дальше и посмотрим, сколько таких предметов может притянуть магнитная катушка.Электромагнит нагрелся, значит его сопротивление увеличилось. Чем больше сопротивление, тем меньше ток. Тем меньше магнитное поле катушка создаёт. Дадим а полностью остыть электромагниту и повторим экспериментов. В этот раз нагрузкой станут 12 монет. Как видим, нижние монеты при снижении тока начали сами отпадает. Сколько не пытался ведущий экспериментировать, удалось поднять не более такой нагрузки.

Проведем тот же опыт со второй катушкой. У него два раза больше витков. Посмотрим, сильнее ли она, чем предыдущая.Смотрите продолжение о электромагните на 12 вольт на видео с 6 минуты.

izobreteniya.net

Конструкция и составные части

Чем отличаются диэлектрические галоши от бот, где их применяют и как поверяют

Центральным рабочим элементом привода является блок соленоида, который образуется полой катушкой и магнитным сердечником. Коммуникационные электромагнитные связи данного компонента с другими деталями обеспечиваются малой внутренней арматурой с управляющими импульсными клапанами. В нормальном состоянии сердечник поддерживается пружиной со штоком, который опирается в седло.

Кроме того, типовое устройство электромагнитного привода предусматривает наличие так называемого ручного дублера рабочей части, который берет на себя функции механизма в моменты резких перепадов или полного отсутствия напряжения. Может предусматриваться и дополнительный функционал, обеспечиваемый средствами сигнализации, вспомогательными запирающими элементами и фиксаторами позиции сердечника. Но поскольку одним из преимуществ приводов такого типа является небольшой размер, то в целях оптимизации разработчики стараются исключать чрезмерное насыщение конструкции второстепенными устройствами.

Способы эксплуатации

Наиболее широкой и важной областью применения электромагнитов является сфера конструирования и эксплуатации электрических машин и аппаратов, входящих в систему автоматики в промышленности. Другой важной областью является аппаратура регулировки и защиты электротехнических объектов/установок.

Также электромагниты применяются при изготовлении разнообразных механизмов, в роли привода по которому осуществляется необходимое поступательное перемещение (поворот) рабочего органа определенной машины или для создания удерживающих сил. Примером последних функций может служить электромагнит в составе грузоподъемного механизма/машины.

Существуют электромагниты муфт, необходимых для начала действия торможения или установления сцепления (в машинах), электромагниты, применяемых в пускателях, устройствах контактора и выключателя, а также их используют при создании электроизмерительных приборов и т. д.

Электромагниты – это устройства, которые являются перспективными при конструировании тяговых приводов в скоростных транспортных средствах, где с их помощью создают магнитную подушку. В настоящее время и медицина не обходится без использования электромагнитов. При проведении химических, биологических и физических экспериментов их нередко применяют.

Благодаря широте эксплуатации и конструктивном исполнении, а также масштабе и затратам энергии, электромагниты являются доступными как в быту, так и в любых других сферах деятельности человека. Вес электромагнитов может варьироваться от нескольких грамм до сотни тон, а потребляемое электричество расходуется – от доли Вт до многих десятков МВт.

Электромагниты

Однажды, в очередной раз, перелистывая книгу, которую нашел у мусорного бачка, обратил внимание на простой, приблизительный расчет электромагнитов. Титульный лист книги показан на фото1.

Вообще их расчет это сложный процесс, но для радиолюбителей, расчет, приведенный в этой книге, вполне подойдет. Электромагнит применяется во многих электротехнических приборах. Он представляет собой катушку из проволоки, намотанной на железный сердечник, форма которого может быть различной. Железный сердечник является одной частью магнитопровода, а другой частью, с помощью которой замыкается путь магнитных силовых линий, служит якорь. Магнитная цепь характеризуется величиной магнитной индукции — В, которая зависит от напряженности поля и магнитной проницаемости материала. Именно поэтому сердечники электромагнитов делают из железа, обладающего высокой магнитной проницаемостью. В свою очередь, от магнитной индукции зависит силовой поток, обозначаемый в формулах буквой Ф. Ф = В • S — магнитная индукция — В умноженная на площадь поперечного сечения магнитопровода — S. Силовой поток зависит также от так называемой магнитодвижущей силы (Ем), которая определяется числом ампервитков на 1см длины пути силовых линий и может быть выражена формулой: Ф = магнитодвижущая сила (Ем) • магнитное сопротивление (Rм) Здесь Ем = 1,3•I•N, где N — число витков катушки, а I — сила текущего по катушке тока в амперах. Другая составляющая: Rм = L/M•S, где L — средняя длина пути силовых магнитных линий, М — магнитная проницаемость, a S — поперечное сечение магнитопровода. При конструировании электромагнитов весьма желательно получить большой силовой поток. Добиться этого можно, если уменьшить магнитное сопротивление. Для этого надо выбрать магнитопровод с наименьшей длиной пути силовых линий и с наибольшим поперечным сечением, а в качестве материала — железоматериал с большой магнитной проницаемостью. Другой путь увеличения силового потока путем увеличения ампервитков не является приемлемым, так как в целях экономии проволоки и питания следует стремиться к уменьшению ампервитков. Обычно расчеты электромагнитов делаются по специальным графикам. В целях упрощения в расчетах мы будем также пользоваться некоторыми выводами из графиков. Предположим, требуется определить ампервитки и силовой поток замкнутого железного магнитопровода, изображенного на рисунке 1,а и сделанного из железа самого низкого качества.

Рассматривая график (к сожалению я его в приложении не нашел) намагничивания железа, нетрудно убедиться, что наиболее выгодной является магнитная индукция в пределах от 10 000 до 14 000 силовых линий на 1 см2, что соответствует от 2 до 7 ампервиткам на 1 см. Для намотки катушек с наименьшим числом витков и более экономичных в смысле питания для расчетов надо принимать именно эту величину (10 000 силовых линий на 1 см2 при 2 ампервитках на 1 см длины). В этом случае расчет может быть произведен следующим образом. Так, при длине магнитопровода L =L1+L2 равной 20 см + 10 см = 30 см, потребуется 2×30=60 ампервитков. Если диаметр D сердечника (Рис.1,в)примем равным 2 см, то его площадь будет равна: S = 3,14xD2/4 = 3,14 см2. 0тсюда возбуждаемый магнитный поток будет равен: Ф = B х S= 10000 x 3,14=31400 силовых линий. Можно приближенно вычислить и подъемную силу электромагнита (P). P = B2 • S/25 • 1000000 = 12,4 кг. Для двухполюсного магнита этот результат следует удвоить. Следовательно, Р=24,8 кг = 25 кг. При определении подъемной силы необходимо помнить, что она зависит не только от длины магнитопровода, но и от площади соприкосновения якоря и сердечника. Поэтому якорь должен точно прилегать к полюсным наконечникам, иначе даже малейшие воздушные прослойки вызовут сильное уменьшение подъемной силы. Далее производится расчет катушки электромагнита. В нашем примере подъемная сила в 25 кг обеспечивается 60 ампервитками. Рассмотрим, какими средствами можно получить произведение N•J = 60 ампервиткам. Очевидно, этого можно добиться либо путем использования большого тока при малом количестве витков катушки, например 2 А и 30 витков, либо путем увеличения числа витков катушки при уменьшении тока, например 0,25 А и 240 витков. Таким образом, чтобы электромагнит имел подъемную силу в 25 кг, на его сердечник можно намотать и 30 витков и 240 витков, но при этом изменить величину питающего тока. Конечно, можно выбрать и другое соотношение. Однако изменение величины тока в больших пределах не всегда возможно, так как оно обязательно потребует изменения диаметра применяемой проволоки. Так, при кратковременной работе (несколько минут) для проводов диаметром до 1 мм допустимую плотность тока, при которой не происходит сильного перегревания провода, можно принять равной 5 а/мм2. В нашем примере проволока должна быть следующего сечения: для тока в 2 а — 0,4 мм2, а для тока в 0,25 а — 0,05 мм2, диаметр проволоки будет 0,7 мм или 0,2 мм соответственно. Каким же из этих проводов следует производить обмотку? С одной стороны, выбор диаметра провода может определяться имеющимся ассортиментом проволоки, с другой — возможностями источников питания, как по току, так и по напряжению. Действительно, две катушки, одна из которых изготовлена из толстой проволоки в 0,7 мм и с небольшим числом витков — 30, а другая — из проволоки в 0,2 мм и числом витков 240, будут иметь резко различное сопротивление. Зная диаметр проволоки и ее длину, можно легко определить сопротивление. Длина проволоки L равна, произведению общего числа витков на длину одного из них (среднюю): L = N x L1 где L1 — длина одного витка, равная 3,14 x D. В нашем примере D = 2 см, и L1 = 6,3 см. Следовательно, для первой катушки длина провода будет 30 x 6,3 = 190 см, сопротивление обмотки постоянному току будет примерно равно ? 0,1 Ом, а для второй — 240 x 6,3 = 1 512 см, R ? 8,7 Ом. Пользуясь законом Ома, нетрудно вычислить необходимое напряжение. Так, для создания в обмотках тока в 2А необходимое напряжение равно 0,2В, а для тока в 0,25А — 2,2В. Таков элементарный расчет электромагнитов. Конструируя электромагниты, надо не только производить указанный расчет, но и уметь выбрать материал для сердечника, его форму, продумать технологию изготовления. Удовлетворительными материалами для изготовления сердечников в кружках являются прутковое железо (круглое и полосовое) и различные. железные изделия: болты, проволока, гвозди, шурупы и т. д. Чтобы избежать больших потерь на токах Фуко, сердечники для приборов переменного тока необходимо собирать из изолированных друг от друга тонких листов железа или проволоки. Для придания железу «мягкости» его необходимо подвергать отжигу. Большое значение имеет и правильный выбор формы сердечника. Наиболее рациональные из них кольцевые и П-образные. Некоторые из распространенных сердечников показаны на рисунке 1.

Просмотров:40 339

Метки: Электромагнит

Промышленность

Наверное, все хоть раз, но видели разновидности такого устройства, как электромагнит подъемный. Это толстый «блин» различного диаметра, который обладает огромной силой притяжения и используется для переноски груза, металлолома и вообще любого иного металла. Удобство его заключается в том, что достаточно отключить питание — и весь груз сразу же отцепляется, и наоборот. Это значительно упрощает процесс погрузки и разгрузки.

Сила электромагнита, кстати, рассчитывается по следующей формуле:

F=40550∙B^2∙S.

Рассмотрим ее более подробно. В данном случае F – это сила в килограммах (также может измеряться в ньютонах), B – значение индукции, а S – площадь рабочей поверхности устройства.

Как сделать мощный электромагнит | Сделай все сам

Для того дабы сделать сильный электромагнит , возьмите отличный магнитопровод, обмотайте его изолированным проводником и подключите к источнику тока. Мощность такого электромагнит а дозволено регулировать разными методами.

Вам понадобится

  • кусок низкоуглеродистой электротехнической стали цилиндрической формы, отчужденный медный провод, источник непрерывного тока.

Инструкция

1. Возьмите заготовку из электротехнической стали и старательно, виток к витку обмотайте ее изолированным медным проводом. Провод возьмите среднего сечения, для того, дабы вместилось как дозволено огромнее витков, но в то же время не слишком тонкий, дабы он не перегорел от крупных токов.

2. Позже этого подсоедините провод к источнику непрерывного тока через реостат, если в самом источнике нет вероятности регулировать напряжение.

Для такого магнита абсолютно довольно источника, тот, что выдает до 24 В.

Позже этого переведите ползунок реостата на наивысшее сопротивление либо регулятор источника на минимальное напряжение.

3. Медлительно и осмотрительно увеличивайте напряжение. При этом появится характерная вибрация, сопровождаемая звуком, тот, что дозволено слышать при работе трансформатора – это типично.

Непременно контролируйте температуру обмотки, от того что от этого зависит продолжительность работы электромагнит а. Доведите напряжение до того значения, при котором медный провод начнет очевидно нагреваться.

Позже этого отключите ток и дайте обмотке остынуть. Вновь включите ток и с подмогой таких манипуляций обнаружьте наивысшее напряжение, при котором проводник не будет нагреваться.

Это и будет номинальный режим работы сделанного электромагнит а.

4. Поднесите к одному из полюсов работающего магнита тело из вещества, которое содержит сталь. Оно должно прочно притянуться к пятаку магнита (пятаком считаем основание стального сердечника).

Если сила притяжения неудовлетворительна, возьмите провод с большей длиной и наложите витки несколькими слоями, пропорционально увеличивая магнитное поле.

При этом сопротивление проводника увеличится, и его регулировку необходимо будет проводить вновь.

5. Дабы магнит класснее притягивал, возьмите сердечник подковообразной формы и обмотайте проводом его прямые участки – тогда поверхность притяжения и его сила увеличится. Дабы увеличить силу притяжения, сделайте сердечник из сплава железа и кобальта, проводимость магнитного поля которого несколько выше.

Совет 2: Как сделать электромагнит

Люди давным-давно подметили, что при пропускании электрического тока через катушку, намотанную из металлического провода, создается магнитное поле.

Расчёты

Перед тем, как начать собирать электромагнит своими руками, делают предварительный расчёт его параметров. Элементы конструкции рассчитывают отдельно для ЭМ постоянного и переменного тока.

Для постоянного тока

Перед тем, как производить расчёты, определяются с требуемой величиной магнитодвижущей силы (МДС) катушки. Параметры обмотки должны обеспечивать нужную МДС, в то же время катушка не должна перегреваться, иначе будет потерян изоляционный слой провода намотки. Исходными данными для расчёта являются напряжение в проводе электромагнитной катушки и требуемая величина магнитодвижущей силы.

Методики расчёта электромагнитов постоянного тока постоянно публикуются в сети интернета. Там же можно подобрать формулы для определения МДС, поперечного сечения сердечника и провода обмотки, его длины.

Дополнительная информация. В основном в интернете ищут расчёты электромагнитов на 12 вольт, сделанных своими руками. В зависимости от потребностей, можно пойти разными путями расчётов. В основном выбирают «рецепты» по определению сечения и длины провода обмотки с питанием от стандартной батарейки формата «А» или «АА».

Для переменного тока

Основой для ЭМ переменного тока является расчёт обмотки. Как и в предыдущем случае, руководствуются исходными требованиями величины МДС. Несмотря на большое количество рекомендуемых формул расчёта, чаще всего «способности» устройства определяют опытным подбором параметров деталей его конструкции. Методики расчёта ЭМ переменного тока всегда можно найти во всемирной информационной паутине (интернете).

Советы по тому, как сделать электромагнит своими руками

Независимо от того, для чего человеку понадобился магнит, его легко можно сделать в домашних условиях.

Когда под рукой такая штука, с ее помощью можно не только позабавиться, поднимая со стола различные мелкие железяки, но и подыскать ей полезное применение, например, найти оброненную на ковер иголку.

Из этой статьи вы узнаете, как легко можно сделать электромагнит своими руками в домашних условиях.

Немного физики

Как мы помним (или не помним) из уроков физики, для того, чтобы преобразовать электрический ток в магнитное поле, нужно создать индукцию. Индуктивность создается при помощи обычной катушки, внутри которой это поле возникает и передается на стальной сердечник, вокруг которого совершена обмотка катушки.

Таким образом, в зависимости от полярности, один конец сердечника будет излучать поле со знаком «минус», а противоположное – со знаком «плюс». Но на визуальные магнетические способности полярность ни коим образом не влияет. Итак, когда с физикой покончено, можно приступить к решительным действиям по созданию простейшего электромагнита своими руками.

Материалы для изготовления самого простого магнита

В первую очередь нам потребуется любая катушка индуктивности с намотанным на сердечник медным проводом. Это может быть обычный трансформатор из любого блока питания.

Отличным средством для создания электромагнитов является обмотка вокруг зауженной тыльной части кинескопов старых мониторов или телевизоров.

Нити проводников в трансформаторах защищены изоляцией, состоящей из почти невидимого слоя специального лака, препятствующего прохождению электрического тока, что нам как раз и нужно. Помимо указанных проводников, для создания электромагнита своими руками также нужно приготовить:

  1. Обычную батарейку на полтора Вольта.
  2. Скотч или изоленту.
  3. Острый ножик.
  4. Гвоздь сотку.

Процесс изготовления простейшего магнита

Начинаем с изъятия проводов из трансформатора. Как правило, его середина находится внутри стального обрамления. Можно, сняв поверхностную изоляцию на катушке, просто разматывать провод, протаскивая его между рамами и катушкой. Поскольку нам не понадобится много провода, этот способ здесь самый приемлемый. Когда мы высвободили достаточное количество провода, делаем следующее:

  1. Наматываем изъятый из катушки трансформатора провод вокруг гвоздя, который будет служить нашему электромагниту стальным сердечником. Витки желательно делать как можно чаще, плотно прижимая их друг к другу. Не забываем на начальном витке оставить длинный конец провода, посредством которого наш электромагнит будет запитываться к одному из полюсов батарейки.
  2. Когда дошли до противоположного конца гвоздя, также оставляем длинный проводник для запитки. Излишки провода обрезаем ножом. Чтобы спираль, намотанная нами, не распускалась, можно обмотать ее скотчем или изолентой.
  3. Зачищаем оба конца провода, идущего от гвоздя с намоткой, от изоляционного лака ножиком.
  4. Один конец зачищенного проводника прислоняем к плюсу батарейки и прихватываем его скотчем или изолентой так, чтобы контакт хорошо сохранялся.
  5. Другой конец тем же способом приматываем к минусу.

Электромагнит готов к работе. Разбросав по столу металлические скрепки или кнопки, можно проверить его работоспособность.

Как изготовить более мощный магнит?

Как своими руками сделать электромагнит с более мощными магнетическими свойствами? На силу магнетизма влияет несколько факторов, и самым главным из них является мощность электрического тока батареи, которую мы используем. Например, изготовив электромагнит из квадратной батарейки на 4,5 вольт, силу его магнитных свойств увеличим втрое. 9-вольтовая крона даст еще более мощный эффект.

Но не стоит забывать, что, чем сильнее электрический ток, тем больше потребуется витков, поскольку сопротивление при малом количестве витков будет слишком сильным, что приведет к сильному нагреву проводников. При сильном их нагреве изоляционный лак может начать плавиться, витки начнут коротить друг на друга или на стальной сердечник. И то, и другое рано или поздно приведет к короткому замыканию.

Также сила магнетизма зависит от количества витков вокруг сердечника магнита. Чем их будет больше, тем сильнее будет поле индукции, и тем сильнее будет магнит.

Изготавливаем более мощный магнит

Попробуем изготовить своими руками электромагнит на 12 вольт. Питаться он будет от сетевого блока питания на 12 вольт или от 12-вольтового автомобильного аккумулятора.

Для его изготовления нам понадобится гораздо большее количество медного проводника, а потому следует изначально извлечь из заготовленного трансформатора внутреннюю катушку с медным проводом.

Болгарка – самое отличное средство для ее извлечения.

Что нам понадобится для изготовления:

  • Стальная подкова от большого навесного замка, которая послужит нам сердечником. В данном случае примагничивать железяки можно будет обоими его концами, что еще более увеличит подъемную способность магнита.
  • Катушка с медным проводом в лакированной изоляции.
  • Изолента.
  • Нож.
  • Ненужный блок питания на 12 вольт или автомобильный аккумулятор.

Процесс изготовления мощного 12-вольтового магнита

Конечно, в роли сердечника можно использовать и любой другой массивный стальной штырь. Но подкова от старого замка подойдет как нельзя лучше. Ее изгиб будет служить в качестве своеобразной ручки, если мы начнем поднимать грузы, обладающие внушительным весом. Итак, в данном случае процесс изготовления электромагнита своими руками следующий:

  1. Наматываем проволоку из трансформатора вокруг одной из подков. Витки кладем как можно плотнее. Изгиб подковы будет немного мешать, но ничего страшного. Когда заканчивается длина стороны подковы, укладываем витки в противоположную сторону, поверх первого ряда витков. Делаем, в общей сложности, 500 витков.
  2. Когда обмотка одной половины подковы готова, обматываем ее одним слоем изоленты. Изначальный конец провода, предназначенного для подпитки от источника тока, выводим в верхнюю часть будущей ручки. Обматываем нашу катушку на подкове еще одним слоем изоленты. Другой конец проводника приматываем к изгибающейся сердцевине ручки и на другой стороне делаем еще одну катушку.
  3. Наматываем проволоку на противоположную сторону подковы. Делаем все так же, как и в случае с первой стороной. Когда 500 витков уложено, так же выводим конец провода для запитки от энергоисточника. Кому непонятно, порядок действий хорошо показан в этом видео.

Заключительная стадия изготовления электромагнита своими руками – подпитка к энергоисточнику. Если это аккумулятор, наращиваем концы зачищенных проводников нашего электромагнита при помощи дополнительных проводов, которые подсоединяем к клеммам аккумулятора.

Если это блок питания, отрезаем штекер, идущий на потребитель, зачищаем провода и к каждому прикручиваем по проводу от электромагнита. Изолируем изолентой. Включаем блок питания в розетку. Поздравляем.

Вы сделали своими руками мощный электромагнит на 12 вольт, который в состоянии поднимать грузы свыше 5 кг.

Техника

Также подобные магниты применяются в различной технике и электронике, и в бытовой сфере, к примеру, в качестве замков. Такие замки удобны тем, что очень быстры и просты в работе, но при этом достаточно в экстренной ситуации обесточить здание — и все они откроются, что очень удобно при пожаре.

Ну и, само собой, работа всех реле устроена на принципах электромагнетизма.

Как видим, это очень важное устройство, которое нашло применение в разных сферах науки и техники.

Медицина

Еще в конце XIX века электромагнитам нашли применение в медицине. Один из таких примеров — это специальный аппарат, который мог извлекать из глаза инородные тела (металлическую стружку, ржавчину, окалину и прочие).

И в наше время электромагниты также широко используются в медицине, и, наверное, один из таких аппаратов, про который слышали все, — это МРТ. Работает он на основе магнитно-ядерного резонанса, и, по сути, является огромным и мощнейшим электромагнитом.

Примеры использования ЭМ

В качестве примеров применения электромагнитов можно привести следующие приборы:

  • телевизоры;
  • трансформаторы;
  • пусковые устройства автомобилей.

Телевизоры

Современные жилища, как правило, заполнены различными электроприборами. Находясь вблизи телеприёмника, они могут воздействовать магнитной индукцией на экран телевизора (ТВ). В ТВ уже существует встроенная защита от намагничивания экрана. Если на поле дисплея появились разноцветные пятна, то надо выключить прибор на 10-20 минут. Встроенная защита уберёт намагниченность экрана.

В некоторых случаях этот способ не оказывает нужную помощь. Тогда применяют специальный электромагнит, который называют дросселем. Это своеобразная катушка индукции. Прибор подключают к розетке бытовой электросети и проводят им вдоль и поперёк экрана. В результате наведённые магнитные поля поглощаются дросселем.

Трансформаторы

Конструкция трансформаторов очень схожа со строением электромагнитов. И там, и там есть обмотки и сердечники. Отличие трансформатора от ЭМ состоит в том, что у первого магнитопровод имеет замкнутую форму. Поэтому суммированная магнитная сила обнуляется встречными магнитными потоками.

Пусковое устройство автомобиля

Стартер автомобиля работает как пусковое устройство двигателя. Он включается на время заводки мотора. Временная передача стартового усилия на коленвал двигателя обеспечивается втягивающим электромагнитом.

При повороте ключа в замке зажигания ЭМ втягивает шестерню в зубцы коленвала. Во время контакта электродвигатель стартера проворачивает мотор до возникновения цикла сгорания топлива в цилиндрах мотора. Затем тяговое реле отключает электромагнит, и шестерня стартера возвращается в исходное положение. После чего автомобиль может двигаться.

Электромагниты настолько плотно вошли в сферу деятельности человека, что существование без них немыслимо. Нехитрые устройства можно встретить повсеместно. Знание принципа их действия позволит домашнему мастеру справляться с мелким ремонтом бытовых электротехнических устройств.

Как сделать простой электромагнит – пошаговая инструкция со схемами

Такое устройство удобно тем, что его работой легко управлять при помощи эл/тока – менять полюса, силу притяжения.

В некоторых вопросах оно становится поистине незаменимым, а часто используется как конструктивный элемент различных самоделок.

Своими руками сделать простой электромагнит несложно, тем более что практически все необходимое можно найти в каждом доме.

Что понадобится

  • Любой подходящий образец из железа (оно хорошо магнитится). Это будет сердечник электромагнита.
  • Проволока – медная, обязательно с изоляцией, чтобы предотвратить прямой контакт двух металлов. Для самодельного эл/магнита рекомендуемое сечение – 0,5 (но не более 1,0).
  • Источник постоянного тока – батарейка, АКБ, БП.

Дополнительно:

  • Соединительные провода для подключения электромагнита.
  • Паяльник или изолента для фиксации контактов.

Это общая рекомендация, так как электромагнит изготавливается с определенной целью. Исходя из этого, и подбираются составные части схемы.

А если он делается в домашних условиях, то какого-то стандарта и быть не может – подойдет все, что есть под рукой.

Например, применительно к первому пункту в качестве сердечника нередко используют гвоздь, дужку замка, отрезок железного стержня – выбор вариантов огромный.

Обмотка

Медный провод аккуратно, виток за витком, накручивается на сердечник. При такой скрупулезности КПД электромагнита будет максимально возможным.

После первого «прохода» по железному образцу проволока укладывается вторым слоем, иногда и третьим. Это зависит от того, какая мощность устройства требуется.

Но направление намотки должно быть неизменным, иначе произойдет «разбалансировка» магнитного поля, и электромагнит вряд ли что-то сможет притянуть к себе.

Чтобы понять смысл протекающих процессов, достаточно вспомнить уроки физики из курса средней школы – движущиеся электроны, создаваемое ими ЭМП, направление его вращения.

После окончания намотки проволока обрезается так, чтобы выводы было удобно подключить к источнику питания. Если это батарейка – то напрямую. При использовании БП, аккумулятора или иного прибора понадобятся соединительные провода.

Что учесть

С количеством слоев есть определенные сложности.

  • С увеличением витков повышается реактивное сопротивление. Значит, сила тока начнет снижаться, а притяжение станет более слабым.
  • С другой стороны, повышение номинала тока вызовет нагрев обмотки.

Подробно принцип действия работы электромагнита описан в следующем видео:

Подключение

  • Зачистка выводов «медяшки». Проволока изначально покрыта несколькими слоями лака (в зависимости от марки), а он, как известно – изолятор.
  • Спаивание медного и соединительного проводов. Хотя это и непринципиально – можно сделать скрутку, изолировав ее трубкой ПВХ или клейкой лентой.
  • Фиксация вторых концов проводов на зажимах. Например, типа «крокодил». Такие съемные контакты позволят легко менять полюса электромагнита, если это понадобится в процессе его применения.

Полезные советы

  • Для изготовления мощного электромагнита домашние умельцы нередко используют катушку от МП (магнитного пускателя), реле, контакторов. Они есть и на 220, и на 380 В.

Применение грузоподъемных и крупномасштабных электромагнитов

Электродвигатели и генераторы жизненно важны в современном мире. Мотор принимает электрическую энергию и использует магнит, чтобы превратить электрическую энергию в кинетическую. Генератор, наоборот, преобразует движение, используя магниты, чтобы вырабатывать электричество. При перемещении габаритных металлических объектов используются грузоподъемные электромагниты. Они также необходимы при сортировке металлолома, для отделения чугуна и других черных металлов от цветных.

Настоящее чудо техники – японский левитирующий поезд, способный развивать скорость до 320 километров в час. В нем используются электромагниты, помогающие парить в воздухе и невероятно быстро передвигаться.

Военно-морские силы США проводят высокотехнологичные эксперименты с футуристической электромагнитной рельсовой пушкой. Она может направлять свои снаряды на значительные расстояния с огромной скоростью. Снаряды обладают огромной кинетической энергией, поэтому могут поражать цели без использования взрывчатых веществ.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]