Что это такое
ВАХ расшифровывается как вольт-амперная характеристика диодного полупроводника. Она отражает зависимость тока, который проходит через p-n переход диода. ВАХ определяет зависимость тока от величины, а также полярности приложенного напряжения. Вольт-амперная характеристика имеет вид графика (схема). Данный график имеет следующий вид:
ВАХ для диода
Для каждого вида диода график ВАХ будет иметь свой конкретный вид. Как видим, график содержит кривую. По вертикали вверху здесь отмечены значения прямого тока (прямом включении), а внизу – в обратном. Но горизонтали схема и график отображают напряжение, аналогично в прямом и обратном направлении. Таким образом схема вольт-амперной характеристики будет состоять из двух частей:
- верхняя и правая часть – элемент функционирует в прямом направлении. Она отражает пропускной ток. Линия в этой части идет резко вверх. Она характеризует значительный рост прямого напряжения;
- нижняя левая часть – элемент действует в обратном направлении. Она соответствует закрытому (обратному) току через переход. Здесь линия идет практически параллельно горизонтальной оси. Она отражает медленное нарастание обратного тока.
Обратите внимание! Чем круче будет вертикальная верхняя часть графика, и ближе к горизонтальной оси нижняя линия, тем более лучше будут выпрямительные свойства полупроводника.
Стоит отметить, что ВАХ сильно зависит от температуры окружающей среды. К примеру, повышение температуры воздуха может привести резкому повышению обратного тока. Построить своими руками ВАХ можно следующим образом:
- берем блок питания;
- подключаем его к любому диоду (минус на катод, а плюс на анод);
- с помощью мультиметром делаем замеры.
Из полученных данных и строится вольт-амперная характеристика для конкретного элемента. Ее схема или график могут иметь следующий вид.
Нелинейная ВАХ
На графике видна ВАХ, которая в таком исполнении называется нелинейной. Рассмотрим на примерах различных типов полупроводников. Для каждого отдельного случая данная характеристика буде иметь свой график, хотя они все будут носить единый характер лишь с небольшими изменениями.
Устройство
Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:
- Корпус
представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала. - Внутри баллона
имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны. - Внутри катодакосвенного накала
имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель. - Второй электрод
является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму. - Оба электрода
вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов. - Для изготовления диодного кристалла
чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.
Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.
ВАХ для шотки
Одним из наиболее распространенных диодов на сегодняшний день является шоттки. Этот полупроводник был назван в честь физика из Германии Вальтера Шоттки. Для шоттки вольт-амперная характеристика будет иметь следующий вид.
ВАХ для шоттки
Как видим, для шоттки характерно малое падение напряжения в ситуации прямого подключения. Сам график носит явный ассиметричный характер. В зоне прямых смещений наблюдается экспоненциальное увеличение тока и напряжения. При обратном и прямом смещении для данного элемента ток в барьере обусловлен электронами. В результате этого такие элементы характеризуется быстрым действием, поскольку у нет диффузных и рекомбинационных процессов. При этом несимметричность ВАХ будет типичной для структур барьерного типа. Здесь зависимость тока от напряжения определена изменением количества носителей, которые берут участие в зарядопереносных процессах.
Области применения диодов
Несмотря на простое устройство, полупроводниковые диоды широко используются в электронике:
- Для выпрямления переменного напряжения. Классика жанра – используется свойство p-n перехода проводить ток в одном направлении.
- Диодные детекторы. Здесь используется нелинейность ВАХ, позволяющая выделять из сигнала гармоники, нужные из которых могут быть выделены фильтрами.
- Два диода, включенные встречно-параллельно, служат ограничителем мощных сигналов, которые могут перегрузить последующие входные каскады чувствительных радиоприёмных устройств.
- Стабилитроны могут включаться в качестве искрозащитных элементов, не позволяющих высоковольтным импульсам попасть в цепи датчиков, установленных в опасных зонах.
- Диоды могут служить переключающими устройствами в высокочастотных схемах. Они открываются постоянным напряжением и пропускают (или не пропускают) ВЧ сигнал.
- Параметрические диоды служат усилителями слабых сигналов в диапазоне СВЧ за счет наличия в прямой ветви характеристики участка с отрицательным сопротивлением.
- На диодах собирают смесители, работающие в передающей или приёмной аппаратуре. Они смешивают сигнал гетеродина с высокочастотным (или низкочастотным) сигналом для последующей обработки. Здесь также используется нелинейность ВАХ.
- Нелинейная характеристика позволяет применять диоды на СВЧ в качестве умножителей частоты. При прохождении сигнала через умножительный диод, выделятся высшие гармоники. Дальше их можно выделить методом фильтрации.
- Диоды применяют в качестве элементов настройки резонансных цепей. При этом используется наличие управляемой емкости у p-n перехода.
- Некоторые виды диодов применяют в качестве генераторов в диапазоне СВЧ. В основном это туннельные диоды и приборы с эффектом Ганна.
Это только краткое описание возможностей полупроводниковых приборов с двумя выводами. При глубоком изучении свойств и характеристик с помощью диодов можно решать многие задачи, поставленные перед разработчиками электронной аппаратуры.
Watch this video on YouTube
Принцип работы и основные характеристики стабилитрона
Что такое диодный мост, принцип его работы и схема подключения
Описание, технические характеристики и аналоги выпрямительных диодов серии 1N4001-1N4007
Что такое тиристор, как он работает, виды тиристоров и описание основных характеристик
Что такое светодиод, его принцип работы, виды и основные характеристики
Что такое варистор, основные технические параметры, для чего используется
Кремниевый диод и его ВАХ
Кроме шоттки, большой популярностью на данный момент пользуются кремниевые полупроводники. Для кремниевого типа диода вольт-амперная характеристика выгляди следующим образом.
ВАХ кремниевого и германиевого диода
Для таких полупроводников данная характеристика начинается примерно со значения 0,5-0,7 Вольт. Очень часто кремниевые полупроводники сравнивают с германиевыми. Если температуры окружающей среды равны, то оба устройства будут демонстрировать ширину запрещённой зоны. При этом кремниевый элемент будут иметь меньший прямой ток, чем из германия. Это же правило касается и обратного тока. Поэтому у германиевых полупроводников обычно сразу наступает тепловой пробой, если имеются обратное большое напряжение. В итоге, при наличии одинаковой температуры и прямого напряжения, потенциальный барьер у кремниевых полупроводников будет выше, а ток инжекции ниже.
P-N-переход
Рассмотрим процессы происходящий при прохождении тока через электронно-дырочный переход
. Левый слой, обозначенный буквой n, имеет электронную проводимость. Ток в нём связан с перемещением свободных электронов, которые условно обозначены кружками со знаком «минус». Правый слой, обозначенный буквой p, обладает дырочной проводимостью. Ток в этом слое связан с перемещением дырок, которые на рисунке обозначены кружками с «плюсом».
Движение электронов и дырок в режиме прямой проводимости
Движение электронов и дырок в режиме обратной проводимости.
При соприкосновении полупроводников с различными типами проводимости электроны вследствие диффузии
начнут переходить в p-область, а дырки — в n-область, в результате чего пограничный слой n-области заряжается положительно, а пограничный слой p-области — отрицательно. Между областями возникает электрическое поле, которое является как бы барьеров для основных носителей тока, благодаря чему в p-n переходе образуется область с пониженной концентрацией зарядов. Электрическое поле в p-n переходе называют потенциальным барьером, а p-n переход — запирающим слоем. Если направление внешнего электрического поля противоположно направлению поля p-n перехода («+» на p-области, «-» на n-области), то потенциальный барьер уменьшается, возрастает концентрация зарядов в p-n переходе, ширина и, следовательно, сопротивление перехода уменьшается. При изменении полярности источника внешнее электрическое поле совпадает с направлением поля p-n перехода, ширина и сопротивление перехода возрастает. Следовательно, p-n переход обладает вентильными свойствами.
ВАХ и выпрямительный диод
В завершении хотелось бы рассмотреть данную характеристику для выпрямительного диода. Выпрямительный диод – одна из разновидностей полупроводника, который применятся для преобразования переменного в постоянный ток.
ВАХ для выпрямительного диода
На схеме показана экспериментальная ВАХ и теоретическая (пунктирная линия). Как видим, они не совпадают. Причина этого кроется в том, для теоретических расчетов не учитывались некоторые факторы:
- наличие омического сопротивления базовой и эмиттерной областей у кристалла;
- его выводов и контактов;
- наличие возможности токов утечки по кристальной поверхности;
- протекание процессов рекомбинации и генерации в переходе для носителей;
- различные типы пробоев и т. д.
Все эти факторы могут оказывать различное влияние, приводя к отливающейся от теоретической реальной вольт-амперной характеристики. Причем значительное влияние на внешний вид графика в данной ситуации оказывает температура окружающей среды. ВАХ для выпрямительного диода демонстрирует высокую проводимость устройства в момент приложения к нему напряжения в прямом направлении. В обратном же направлении наблюдается низкая проводимость. В такой ситуации ток через элемент практически не течет в обратном направлении. Но это происходит только при определенных параметрах обратного напряжения. Если его превысить, то на графике видно лавинообразное повышение тока в обратном направлении.
Назначение
Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:
- Диодные мосты
представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста. - Диодные детекторы
получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников. - Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
- Переключатели
, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам. - Создание диодной искрозащиты
. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.
Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.
Из чего состоит диод
В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.
После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.
Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.
Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.
Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.
диод Д226
Вот это и есть тот самый PN-переход
PN-переход диода
Как определить напряжение и полярность
Светодиод пропускает ток только в одном направлении
Поэтому важно подключить устройство в схему правильно. Для этого нужно определить, который из выводов корпуса является катодом, а который анодом
- Визуально – традиционно ножка катода короткая, а анода длинная. Катод имеет знак «минус», анод – «плюс». Можно найти катод и по-другому. Внимательно посмотрев через корпус, можно увидеть кристаллик на подставке. Вывод подставки и будет катодом.
- Подключение к источнику питания – выбирают устройство, напряжение которого не выше допустимого для светодиода напряжения. Обычно это батарейка или резистор. При правильном положении светодиод светится ярче.
- Использование мультиметра – выставляют шкалу на приборе в режим измерения сопротивления и прикасаются щупами к выводам светодиода. Контакт очень короткий. При обратном подключении мультиметр ничего не показывает, при правильном – замеряет сопротивление в районе 1,7 кОм.