Изолированная нейтраль электрической сети: терминология, назначение и применение

Как известно, изолированная нейтральная централь не используется в квартирной или домашней электропроводке. Однако для трансформаторов и генераторов высоковольтных проводов она является неотъемлемой частью всей сети электричества.

В этой статье мы углубимся в терминологию и область применения изолированный вид нейтрали.

Система заземления IT или система заземления с изолированной нейтралью.

Обычно эта система описывается примерно так:

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

На этом всё описание системы IT обычно и ограничивается и совершенно не понятно как этим всем практически пользоваться? Как подключать потребителей, как подключать системы автоматизации?

Прежде всего, не понятно – если линейное напряжение 380 В, а фазное – 220, то как будет работать однофазная нагрузка? Ведь нуля нет, то есть фактически он оборван. А что произойдёт при обрыве нуля? Правильно, всё пойдёт в разнос – либо сгорит, либо просто не захочет работать. Как выходят из этого диссонанса в системе IT? Слушаем Василия дальше.

На эти вопросы я и постараюсь ответить.

Во-первых, где можно встретиться с этой системой?

Она широко используется на судах и всём, что считается судами, на морских нефтяных и газовых платформах, например. Не важно, что платформа стоит на дне моря, с точки зрения морского регистра она – судно

Описание изолированного устройства

Такое устройство защиты представляет собой систему, когда нулевой провод генератора или трансформатора не соединяют с заземлителем. Соединение с глухим заземлением допускается через аппаратуру сигнализации, защиты и устройства измерения, которые обладают большим сопротивлением.

В этом случае изолированная нейтраль представляет собой трехфазную сеть, подключенную от электрического оборудования к заземлению через резисторы.

При этом параллельно подключают систему с конденсаторами. Такая схема подключения нейтрали имеет две составляющие:

  • активную;
  • реактивную.

Активная схема предназначена для препятствия току утечки с помощью резисторов, которые благодаря большому сопротивлению понижают его значение до минимального. Реактивная система обладает конденсаторами, в которых одна обкладка соединяется с линией, а вторая — с землей.

Как же подключить однофазную нагрузку в системе с изолированной нейтралью?

Здесь варианта два:

1) На нефтяных судах часто есть две параллельные трехфазные линии, линия 0,4 кВ 3 фазы и 230 В 3 фазы. Чтобы подключить прибор, предназначенный для использования в сети 230В, нужно включить его в сеть 230 В МЕЖДУ ДВУМЯ ФАЗАМИ, т.е. в линейное напряжение.

То есть, использовать не схему “звезда”, как это делается обычно для получения 220В, а схему “треугольник”, подключив нагрузку 220 В (которую язык почему-то не поворачивается уже назвать “однофазной”) к одной из сторон “треугольника”.

2) Использовать трансформатор, например понижающий 3Ф 400В / 3Ф 230 В. С трансформатором тоже два варианта, после него так же может быть система IT, либо трансформатор может обеспечить искусственную нейтраль на вторичной обмотке.

Обычно используют трансформатор 380 / 220 В, первичная обмотка которого подключена к любым двум фазам. Если нужно заземление, то один из выводов вторичной обмотки “глухо” заземляют, и получают систему TN-S (или, скорее TN-C-S). При правильном выборе защитного автомата и УЗО система обеспечит отличную защиту от КЗ и прямого прикосновения.

Однако, более безопасной будет система, в которой ни один из выводов трансформатора не подключается на корпус. Трансформатор может быть любым, главное, чтобы на его выходе было напряжение 220 В – не важно, линейное или фазное.

С подключением электродвигателей, клапанов и тому подобного, проблем обычно не возникает, а вот с автоматикой могут быть проблемы. Они связаны с тем, что не все приборы корректно работают при включении их питания в линейное напряжение 230 В (между фазами). Если столкнулись с этой проблемой, тут можно выйти из положения, либо заменой прибора, либо используя маломощный трансформатор с искусственным нолём после вторичной обмотки.

Теоретически да, прибору всё равно, откуда берётся напряжение 220В. А на практике, например, вместо измерения сигнала 4-20 мА какую-то ересь начинают показывать, при том, что датчики заведомо рабочие. Включаешь в обыкновенное фазное напряжение – всё работает. Видимо, что-то с архитектурой конкретных приборов не то. Не часто бывает, но мне пару раз попадалось.

Что это такое

Определение понятия «изолированная нейтраль» приведено в главе 1.7. ПУЭ, в пункте 1.7.6. и ГОСТ Р 12.1.009-2009. Где сказано, что изолированной называется нейтраль у трансформатора или генератора, не присоединенная к заземляющему устройству вообще, или, когда она присоединена через приборы защиты, измерения, сигнализации.

Нейтралью называется точка, в которой соединены обмотки у трансформаторов или генераторов при включении по схеме «звезда».

Среди электриков есть заблуждение о том, что сокращенное название изолированной нейтрали – это система IT, по классификации п. 1.7.3. Что не совсем верно. В этом же пункте сказано, что обозначения TN-C/C-S/S, TT и IT приняты для сетей и электроустановок напряжением до 1 кВ.

В той же главе 1.7 ПУЭ есть пункт 1.7.2. где сказано, что в отношении мер электробезопасности электроустановки делятся на 4 типа — изолированную или глухо заземленную до 1 кВ и выше 1 кВ.

Таким образом есть некоторые отличия в безопасности и применении такой сети в разных классах напряжения и называть линию 10 кВ с изолированной нейтралью «система IT» по меньше мере неправильно. Хотя схематически – почти тоже самое.

Пример схемы IT

Как пример практической схемы смотрите фрагмент схемы подключения шкафа выпрямителей постоянного тока. Обратите внимание, что питание осуществляется из сети 3 фазы 230 В, каждый из трех выпрямителей включён между фазами, в линейное напряжение.

Пример построения схемы с системой заземления IT

Фактически, провод защитного заземления есть, он приходит со стороны питающего генератора, но он служит только для заземления корпусов блоков питания.

В данном случае выходное напряжение – постоянное 12 В, но может быть любым! А “минус” всех блоков питания заземлён. Выходы каждого БП через защитные автоматы (не показаны) поступают на нагрузки.

Надеюсь, стало понятней как практически устроено подключение потребителей к системе IT. Спасибо за внимание.

Голосование за эту и другие статьи будет открыто примерно через месяц, следите за новостями в группе ВК СамЭлектрик.ру! Если кто не подписан – рекомендую, нас ждёт ещё много интересного!

Василий Васильевич, автор статьи про систему заземления IT

Почему нулевой провод тоньше фазных?

Нулевой провод делается тоньше фазных, потому что ток, который по нему протекает, меньше тока, протекающего по фазным проводам.

Если нагрузка по фазам в сети распределена (строго) равномерно, токи в ней бегут от фазных проводов к другим фазным проводам. Падение напряжение в сети будет таким, что на нулевой шине окажется потенциал нейтрали и ток в нулевом проводе будет равен нулю. При неравномерности нагрузок в нулевом проводе появляется ток. Он тем больше, чем больше неравномерность.

Трехфазные сети с эффективно-заземленными нейтралями

В сетях 110 кВ и выше определяющим в выборе способа заземления нейтралей является фактор стоимости изоляции. Здесь применяется эффективное заземление нейтралей, при котором во время однофазных замыканий напряжение на неповрежденных фазах относительно земли равно примерно 0,8 междуфазного напряжения в нормальном режиме работы. Это основное достоинство такого способа заземления нейтрали.

Рис.6. Трехфазная сеть с эффективно-заземленной нейтралью

Однако рассматриваемый режим нейтрали имеет и ряд недостатков. Так, при замыкании одной фазы на землю образуется короткозамкнутый контур через землю и нейтраль источника с малым сопротивлением, к которому приложена ЭДС фазы (рис.6). Возникает режим КЗ, сопровождающийся протеканием больших токов. Во избежание повреждения оборудования длительное протекание больших токов недопустимо, поэтому КЗ быстро отключаются релейной защитой. Правда, значительная часть однофазных повреждений в электрических сетях напряжением 110 кВ и выше относится к самоустраняющимся, т.е. исчезающим после снятия напряжения. В таких случаях эффективны устройства автоматического повторного включения (АПВ), которые, действуя после работы устройств релейной защиты, восстанавливают питание потребителей за минимальное время.

Второй недостаток — значительное удорожание выполняемого в распределительных устройствах контура заземления, который должен отвести на землю большие токи КЗ и поэтому представляет собой в данном случае сложное инженерное сооружение.

Третий недостаток — значительный ток однофазного КЗ, который при большом количестве заземленных нейтралей трансформаторов, а также в сетях с автотрансформаторами может превышать токи трехфазного КЗ. Для уменьшения токов однофазного КЗ применяют, если это возможно и эффективно, частичное разземление нейтралей (в основном в сетях 110-220 кВ). Возможно применение для тех же целей токоограничивающих сопротивлений, включаемых в нейтрали трансформаторов.

Трехфазные сети с резонансно-заземленными (компенсированными) нейтралями

В сетях 3-35 кВ для уменьшения тока замыкания на землю с целью удовлетворения указанных выше норм применяется заземление нейтралей через дугогасящие реакторы.

В нормальном режиме работы ток через реактор практически равен нулю. При полном замыкании на землю одной фазы дугогасящий реактор оказывается под фазным напряжением и через место замыкания на землю протекает наряду с емкостным током IC также индуктивный ток реактора IL (рис. 3). Так как индуктивный и емкостный токи отличаются по фазе на угол 180°, то в месте замыкания на землю они компенсируют друг друга. Если IC=IL (резонанс), то через место замыкания на землю ток протекать не будет. Благодаря этому дуга в месте повреждения не возникает и устраняются связанные с нею опасные последствия.

Рис.3. Трехфазная сеть с резонансно-заземленной нейтралью

Суммарная мощность дугогасящих реакторов для сетей определяется из выражения

Q = n IC UФ, (6)

где n — коэффициент, учитывающий развитие сети; ориентировочно можно принять n = 1,25; IC — полный ток замыкания на землю, А; UФ — фазное напряжение сети, кВ.

По рассчитанному значению Q в каталоге подбираются реакторы требуемой номинальной мощности. При этом необходимо учитывать, что регулировочный диапазон реакторов должен быть достаточным для обеспечения возможно более полной компенсации емкостного тока при вероятных изменениях схемы сети (например, при отключении линий и т.п.). При IC ≥ 50 А устанавливают два дугогасящих реактора с суммарной мощностью по (6).

Рис. 4. Устройство дугогасящих реакторов а — типа РЗДСОМ, б — типа РЗДПОМ

В России применяют дугогасящие реакторы разных типов. Наиболее распространены реакторы типа РЗДСОМ (рис.4,а) мощностью до 1520 кВ А на напряжение до 35 кВ с диапазоном регулирования 1:2. Обмотки этих реакторов располагаются на составном магнитопроводе с чередующимися воздушными зазорами и имеют отпайки для регулирования тока компенсации. Реакторы имеют масляное охлаждение.

Более точно, плавно и автоматически можно производить настройку компенсации в реакторах РЗДПОМ, индуктивность которых изменяется с изменением немагнитного зазора в сердечнике (рис.4,б) или путем подмагничивания стали магнитопровода от источника постоянного тока.

Дугогасящие реакторы должны устанавливаться на узловых питающих подстанциях, связанных с компенсируемой сетью не менее чем тремя линиями. При компенсации сетей генераторного напряжения реакторы располагают обычно вблизи генераторов. Наиболее характерные способы присоединения дугогасящих реакторов показаны на рис.5.

Рис.5. Размещение дугогасящих реакторов в сети

На рис.5,а показаны два дугогасящих реактора, подключенных в нейтрали трансформаторов подстанции, на рис.5.б — реактор, подключенный к нейтрали генератора, работающего в блоке с трансформатором. В схеме на рис.5, в показано подключение дугогасящего реактора к нейтрали одного из двух генераторов, работающих на общие сборные шины. Следует отметить, что при этом цепь подключения реактора должна проходить через окно сердечника трансформатора тока нулевой последовательности (ТНП), что необходимо для обеспечения правильной работы защиты генератора от замыканий на землю.

При подключении дугогасящих реакторов через специальные трансформаторы и трансформаторы собственных нужд, по мощности соизмеримые с мощностью реакторов, необходимо учитывать их взаимное влияние.

В первую очередь это влияние сказывается в уменьшении действительного тока компенсации по сравнению с номинальным из-за наличия последовательно включенного с реактором сопротивления обмоток трансформатора

(7)

где Iном,р — номинальный ток дугогасящего реактора; Uк% — напряжение КЗ трансформатора; Sном,т — номинальная мощность трансформатора.

Особенно резко ограничивающее действие обмоток трансформатора сказывается при использовании схемы соединения обмоток звезда-звезда, так как при однофазных замыканиях на землю индуктивное сопротивление у них примерно в 10 раз больше, чем при междуфазных КЗ. По этой причине для подключения реакторов предпочтительнее трансформаторы со схемой соединения обмоток звезда-треугольник. В свою очередь наличие дугогасящего реактора в нейтрали трансформатора обусловливает при однофазных замыканиях на землю дополнительную нагрузку на его обмотки, что приводит к повышенному нагреву. Это особенно важно учитывать при использовании для подключения реактора трансформаторов, имеющих нагрузку на стороне низшего напряжения, например трансформаторов собственных нужд электростанций и подстанций. Допустимая мощность реактора, подключаемого к нагруженному трансформатору, определяется из выражения

(8)

где Sном,т — номинальная мощность трансформатора; Smax — максимальная мощность нагрузки.

Выражение (8) справедливо с учетом того, что значение cosφ нагрузки обычно близко к единице, а активное сопротивление реактора мало.

С учетом перегрузки трансформатора, допустимой на время работы сети с заземленной фазой и определяемой коэффициентом перегрузочной способности kпер, допустимая мощность реактора, подключаемого к данному трансформатору, равна

(9)

При подключении реактора к специальному ненагруженному трансформатору необходимо выдержать условие (если перегрузка трансформатора допустима).

В сетях с резонансно-заземленной (компенсированной) нейтралью, так же как и в сетях с незаземленными нейтралями, допускается временная работа с замкнутой на землю фазой до тех пор, пока не представится возможность произвести необходимые переключения для отделения поврежденного участка. При этом следует учитывать также допустимое время продолжительной работы реактора 6ч.

Наличие дугогасящих реакторов особенно ценно при кратковременных замыканиях на землю, так как при этом дуга в месте замыкания гаснет и линия не отключается. В сетях с нейтралями, заземленными через дугогасящий реактор, при однофазных замыканиях на землю напряжения двух неповрежденных фаз относительно земли увеличиваются в √3 раз, т.е. до междуфазного напряжения. Следовательно, по своим основным свойствам эти сети аналогичны сетям с незаземленными (изолированными) нейтралями.

Особенности глухого заземления

Заземление нейтрали в глухом режиме предусмотрено для четырехпроводных сетей переменного тока. В таких случаях выполняется глухое заземление нулевых выводов силовых трансформаторов. Соединяются все части, подлежащие заземлению и нулевой заземленный вывод. Нулевой провод должен быть цельным, без предохранителей и каких-либо разъединяющих приспособлений.

В качестве глухозаземленной нейтрали воздушных линий с напряжением до 1 киловольта используется нулевой провод, прокладываемый вместе с фазными линиями на тех же опорах.

Все ответвления или концы воздушных линий, длиной свыше 200 метров подлежат повторному заземлению нулевого провода. То же самое касается вводов в здания, где имеются установки, подлежащие заземлению. В качестве естественных заземлителей могут использоваться железобетонные опоры, а также заземляющие устройства, защищающие от грозовых перенапряжений.

Таким образом, изолированная и глухозаземленная нейтраль обеспечивает нормальную работу релейной защиты генераторов и трансформаторов. Кроме того, они надежно защищают людей от поражения электрическим током.

Достоинства и недостатки

Одним из важнейших преимуществ режима таких сетей является наличие небольшого тока при однофазных замыканиях на землю. Этот факт позволяет гораздо увеличить эксплуатацию автоматических выключателей. Дело в том, что замыкание на землю составляет на практике 90% от общего числа аварийных ситуаций.

Кроме того, наличие малого тока позволяет снизить требования к заземляющему оборудованию. Такой режим нейтрали обладает и массой недостатков. Например, однофазное замыкание на землю может вызвать феррорезонансные явления, которые зачастую приводят к выходу из строя электрооборудования.

Могут возникнуть дуговые перенапряжения, приводящие однофазное замыкание в двух- и трехфазное. Кроме того, конструкция защит от замыкания довольно сложная, что приводит к ее недостаточной работоспособности и эффективности. Бытует мнение, что при однофазном коротком замыкании возможна дальнейшая эксплуатация электрооборудования.

Но практика показывает, что практически сразу происходят двух- и трехфазное короткие замыкания, которые в итоге приводят к отключению электрооборудования. При падении провода у опор линий электропередач, когда сохраняется короткое замыкание, появляются опасные напряжения прикосновения. Большинство смертельных случаев происходят именно в таких ситуациях.

Поэтому для бесперебойной работы электроснабжения в сетях с изолированными нейтралями используют автоматические включения резервных питаний.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]