Как подключить светодиоды к 220 В электрической сети

Самое правильное подключение нескольких светодиодов — последовательное. Сейчас объясню почему.

Дело в том, что определяющим параметром любого светодиода является его рабочий ток. Именно от тока через светодиод зависит то, какова будет мощность (а значит и яркость) светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя — быстрому перегоранию либо постепенному необратимому разрушению (деградации).

Ток — это главное. Он указан в технических характеристиках светодиода (datasheet). А уже в зависимости от тока, на светодиоде будет то или иное напряжение. Напряжение тоже можно найти в справочных данных, но его, как правило, указывают в виде некоторого диапазона, потому что оно вторично.

Для примера, заглянем в даташит светодиода 2835:

Как видите, прямой ток указан четко и определенно — 180 мА. А вот напряжение питания светодиодов при таком токе имеет некоторый разброс — от 2.9 до 3.3 Вольта.

Получается, что для того, чтобы задать требуемый режим работы светодиода, нужно обеспечить протекание через него тока определенной величины. Следовательно, для питания светодиодов нужно использовать источник тока, а не напряжения.

Источник тока (или генератор тока) — источник электрической энергии, который поддерживает постоянное значение силы тока через нагрузку с помощью изменения напряжения на своем выходе. Если сопротивление нагрузки, например, возрастает, источник тока автоматически повышает напряжение таким образом, чтобы ток через нагрузку остался неизменным и наоборот. Источники тока, которыми запитывают светодиоды, еще называют драйверами.

Конечно, к светодиоду можно подключить источник стабилизированного напряжения (например, выход лабораторного блока питания), но тогда нужно точно знать какой величины должно быть напряжение для получения заданного тока через светодиод.

Например, в нашем примере со светодиодом 2835, можно было бы подать на него где-то 2.5 В и постепенно повышать напругу до тех пор, пока ток не станет оптимальным (150-180 мА).

Так делать можно, но в этом случае придется настраивать выходное напряжение блока питания под каждый конкретный светодиод, т.к. все они имеют технологический разброс параметров. Если, подключив к одному светодиоду 3.1В, вы получили максимальный ток в 180 мА, то это не значит, что поменяв светодиод на точно такой же из той же партии, вы не сожжёте его (т.к. ток через него при напряжении 3.1В запросто может превысить максимально допустимое значение).

К тому же необходимо очень точно поддерживать напряжение на выходе блока питания, что накладывает определенные требования к его схемотехнике. Превышение заданного напряжения всего на 10% почти гарантированно приведет к перегреву и выходу светодиода из строя, так как ток при этом превысит все мыслимые значения.

Вот прекрасная иллюстрация к вышесказанному:

А самое неприятное то, что проводимость любого светодиода (который по сути является p-n-переходом) находится в очень сильной зависимости от температуры. На практике это приводит к тому, что по мере разогрева светодиода, ток через него начинает неумолимо возрастать. Чтобы вернуть ток к требуемому значению, придется понижать напряжение. В общем, как ни крути, а без контроля тока никак не обойтись.

Поэтому самым правильным и простым решением будет использовать для подключения светодиодов драйвера тока (он же источник тока). И тогда будет совершенно неважно, какой вы возьмете светодиод и каким будет прямое напряжение на нем. Нужно просто найти драйвер на нужный ток и дело в шляпе.

Теперь, возвращаемся к главному вопросу статьи — почему все-таки последовательное подключение, а не параллельное? Давайте посмотрим, в чем разница.

Распиновка светодиода

Прежде чем перейти к рассмотрению вопроса о правильном подключении светодиода, необходимо научиться определять его полярность. Чаще всего индикаторные светодиоды имеют два вывода: анод и катод. Гораздо реже в корпусе диаметром 5 мм встречаются экземпляры, имеющие 3 или 4 вывода для подключения. Но и с их распиновкой разобраться тоже несложно.

Всего существует 3 надёжных способа определения полярности: визуальный, с помощью мультиметра и путём подключения к источнику напряжения. Каждый из них по-своему уникален и интересен, в связи с чем данная тема вынесена в отдельную статью: «Где плюс, а где минус?»

SMD-светодиоды могут иметь 4 вывода (2 анода и 2 катода), что обусловлено технологией их производства. Третий и четвёртый выводы могут быть электрически незадействованными, но использоваться в качестве дополнительного теплоотвода.

Приведенное расположение выводов не является стандартом. Для вычисления полярности лучше сначала заглянуть в datasheet, а затем подтвердить увиденное мультиметром. Визуально определить полярность SMD-светодиода с двумя выводами можно по срезу. Срез (ключ) в одном из углов корпуса всегда расположен ближе к катоду (минусу).

Как определить полярность диода

При правильном подключении светодиодов электроток течет в верном направлении, лампочка светится. Если подключить контакты на оборот, свечения нет, возможен выход LED-лампочки из строя. Для предотвращения перед созданием схемы обязательно следует определить полярность.

Использование тестирующих устройств

Мультиметр (тестер) обладает некоторыми преимуществами:

  • определяется плюс и минус;
  • можно узнать цвет света;
  • определяется работоспособность чипа.

Чтобы узнать полярность, нужно:

  • установить прибор на проверку при 2 кОм и коснуться выводов щупами (если на экране значение число 1600–1800, LED-лампочку можно подключать);
  • установить прибор на прозвон, коснуться черным щупом минуса, красным – плюса (на экране должно появиться число);
  • использовать в PNP гнезда C (коллектор) и E (эмиттер) – если в C вставить минус, в E – плюс, исправная лампочка светится.

Внимание! При использовании для тестирования NPN исправный источник света будет работать, если плюс и минус поменять местами.

Визуальное определение полярности

Если лампочка новая, плюсовой контакт всегда длиннее. Некоторые производители помечают минусовой контакт срезом на корпусе или точкой. У б/у диода контакты одной длины. В подобной ситуации может помочь осмотр кристалла. У плюса внутри линзы контакт меньших размеров, минус внешне похож на флажок.

Подключение к источнику питания

Для проверки подходит источник тока на 3-6 В (простая батарейка или аккумулятор). К одному контакту припаивается резистор на 300–470 Ом. Если коснуться анодом плюса, а катодом минуса, исправный диод светится.

В ремонтных мастерских лучшими источниками питания считают батарейки из настенных часов или плат компьютеров на 3 вольта (если электроток до 30 мА). Их на короткое время вставляют между ножками (резистор не нужен). Плюс и минус определяются по свечению.

Простейшая схема подключения светодиода

Нет ничего проще, чем подключить светодиод к низковольтному источнику постоянного напряжения. Это может быть батарейка, аккумулятор или маломощный блок питания. Лучше, если напряжение будет не менее 5 В и не более 24 В. Такое подключение будет безопасным, а для его реализации понадобится лишь 1 дополнительный элемент – маломощный резистор. Его задача – ограничить ток, протекающий через p-n-переход на уровне не выше номинального значения. Для этого резистор всегда устанавливают последовательно с излучающим диодом.

Всегда соблюдайте полярность при подключении светодиода к источнику постоянного напряжения (тока).

Если из схемы исключить резистор, то ток в цепи будет ограничен только внутренним сопротивлением источника ЭДС, которое очень мало. Результатом такого подключения станет мгновенный выход из строя излучающего кристалла.

Как подключить светодиод к 220 В используя конденсатор

Выше мы посмотрели, как легко, используя только диоды и резисторы, подключить к сети 220 В любой светодиод. Это были простые схемы. Сейчас посмотрим на более сложные, но лучшие в плане реализации и долговечности. Для этого нам понадобится уже конденсатор.

Токоограничивающий элемент — конденсатор. На схеме — C1. Конденсатор должен быть рассчитан на работу с напряжением не менее 400 В. После зарядки последнего ток через него будет ограничивать резистор.

Расчёт ограничительного резистора

Взглянув на вольт-амперную характеристику светодиода, становится понятно: насколько важно не ошибиться при расчёте ограничительного резистора.

Даже небольшой рост номинального тока приведёт к перегреву кристалла и, как следствие, к снижению рабочего ресурса. Выбор резистора производят по двум параметрам: сопротивлению и мощности. Сопротивление рассчитывают по формуле:

  • U – напряжение питания, В;
  • ULED – прямое падение напряжения на светодиоде (паспортное значение), В;
  • I – номинальный ток (паспортное значение), А.

Полученный результат следует округлить до ближайшего номинала из ряда Е24 в большую сторону, а затем рассчитать мощность, которую должен будет рассеивать резистор:

R – сопротивление резистора, принятого к установке, Ом.

Более подробную информацию о расчётах с практическими примерами можно получить в статье о расчете резистора для светодиода. А тот, кто не желает погружаться в нюансы, может быстро рассчитать параметры резистора с помощью онлайн-калькулятора.

Включение светодиодов от блока питания

Речь пойдёт о блоках питания (БП), работающих от сети переменного тока 220 В. Но даже они могут сильно отличаться друг от друга выходными параметрами. Это могут быть:

  • источники переменного напряжения, внутри которых есть только понижающий трансформатор;
  • нестабилизированные источники постоянного напряжения (ИПН);
  • стабилизированные ИПН;
  • стабилизированные источники постоянного тока (светодиодные драйверы).

Подключить светодиод можно к любому из них, дополнив схему нужными радиоэлементами. Чаще всего в качестве блока питания применяют стабилизированные ИПН на 5 В или 12 В. Данный тип БП подразумевает, что при возможных колебаниях напряжения сети, а также при изменении тока нагрузки в заданном диапазоне напряжение на выходе изменяться не будет. Это преимущество позволяет подключать к БП светодиоды, используя только резисторы. И именно такой принцип подключения реализован в схемах с индикаторными светодиодами.

Подключение мощных светодиодов и светодиодных матриц нужно производить через стабилизатор тока (драйвер). Несмотря на их более высокую стоимость, только так можно гарантировать стабильную яркость и продолжительную работу, а также исключить преждевременную замену дорогостоящего светоизлучающего элемента. Такое подключение не требует наличия дополнительного резистора, а светодиод присоединяется непосредственно к выходу драйвера с соблюдением условия:

  • Iдрайвера – ток драйвера по паспорту, А;
  • ILED – номинальный ток светодиода, А.

При несоблюдении условия, подключенный светодиод перегорит от перегрузки по току.

В качестве источника питания можно использовать даже одну пальчиковую батарейку на 1,5 В. Но для этого придётся собрать небольшую электрическую схему, которая позволит повысить напряжение питания до нужного уровня. О том, как это сделать, можно узнать из статьи «Как подключить светодиод от батарейки на 1,5 В».

Схема лед драйвера на 220 вольт

Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.

В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность.

Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но, если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.

    Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:
  1. делитель напряжения на ёмкостном сопротивлении;
  2. диодный мост;
  3. каскад стабилизации напряжения.

Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).

При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения.

Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.

Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.

Третий каскад – сглаживающий стабилизирующий фильтр. Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.

Чтобы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки. В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.

Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт.

Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

Это нужно знать

Главное – это помнить о технике безопасности. Представленные схемы питаются от 220 В сети переменного тока, поэтому требуют во время сборки особого внимания. Подключение светодиода в сеть должно осуществляться в четком соответствии с принципиальной схемой.

Отклонение от схемы или небрежность может привести к короткому замыканию или выходу из строя отдельных деталей. При первом включении, сборки рекомендуется дать поработать некоторое время, чтобы убедиться в ее стабильности и отсутствии сильного нагрева элементов.

Для повышения надёжности устройства рекомендуется использовать заранее проверенные детали с запасом по предельно допустимым значениям напряжения и мощности. Собирать бестрансформаторные источники питания следует внимательно и помнить, что они не имеют гальванической развязки с сетью.

Готовая схема должна быть надёжно изолирована от соседних металлических деталей и защищена от случайного прикосновения. Демонтировать её можно только с отключенным напряжением питания.

Автор: Сергей Владимирович, инженер-электрик. Подробнее об авторе.

Последовательное подключение

Собрать рабочую схему на одном светодиоде – несложно. Другое дело, когда их несколько. Как правильно подключить 2, 3 … N светодиодов? Для этого нужно научиться рассчитывать более сложные схемы включения. Схема последовательного подключения представляет собой цепь из нескольких светодиодов, в которой катод первого светодиода соединен с анодом второго, катод второго с анодом третьего и так далее.

Через все элементы схемы течёт ток одинаковой величины:

А падения напряжений суммируются:

Исходя из этого, можно сделать выводы:

  • объединять в последовательную цепь целесообразно только светодиоды с одинаковым рабочим током;
  • при выходе из строя одного светодиода произойдёт обрыв цепи;
  • количество светодиодов ограничено напряжением БП.

Подробно о полярностях светодиодных ламп

Работают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.

Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «—»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.

Параллельное подключение

Если от БП с напряжением, например, 5 В, необходимо зажечь несколько светодиодов, то их придется соединить между собой параллельно. При этом последовательно с каждым светодиодом нужно поставить резистор.

Формулы для расчёта токов и напряжений примут следующий вид:

Таким образом, сумма токов в каждой ветви не должна превышать максимально допустимый ток БП. При параллельном подключении однотипных светодиодов достаточно рассчитать параметры одного резистора, а остальные – будут такого же номинала.

Все правила последовательного и параллельного подключения, наглядные примеры, а также информацию о том, как нельзя включать светодиоды, можно найти в данной статье.

Что значит подключить осветительные устройства параллельно

Что кроется в понятии «параллельного соединения»? При такой схеме лампа соединяется с фазой и нулём. Если требуется подключить сразу два источника света, то подающие на них ток провода скручиваются. Тут главное проверить, чтобы сечение проводов совпадало с идущей на них нагрузкой. Не все светильники имеют сходное напряжение, яркость их изначально закладывается производителем. Если одна из лампочек перегорает, все остальные продолжают функционировать по-прежнему.

Существует несколько разновидностей параллельного подключения:

Важно! Если требуется подсоединить галогенные светильники, обладающие трансформатором, то нужно помнить, что их подключают на вторичную обмотку преобразователя посредством клеммных колодок. Параллельное подключение зачастую используют и для исправления некоторых недостатков аппаратуры

Так, главное больное место всех люминесцентных ламп — их раздражающее мерцание. Поправить это дело может устройство, регулирующее пуск, но стоит оно дорого. Можно подключить две лампы по параллельной схеме и к одной из них подсоединить конденсатор, который будет сдвигать фазу

Параллельное подключение зачастую используют и для исправления некоторых недостатков аппаратуры. Так, главное больное место всех люминесцентных ламп — их раздражающее мерцание. Поправить это дело может устройство, регулирующее пуск, но стоит оно дорого. Можно подключить две лампы по параллельной схеме и к одной из них подсоединить конденсатор, который будет сдвигать фазу.

Включение в сеть переменного тока

Подключать светодиоды от БП не всегда целесообразно. Особенно, если речь идёт о необходимости сделать подсветку выключателя или индикатор наличия напряжения в сетевом удлинителе. Для подобных целей достаточно будет собрать одну из простых схем подключения светодиода к сети 220 В. Например, схема с токоограничительным резистором и выпрямительным диодом, защищающим светодиод от обратного напряжения.

Сопротивление и мощность резистора вычисляют по упрощённой формуле, пренебрегая падением напряжения на светодиоде и диоде, так как оно на 2 порядка меньше напряжения сети:

Из-за большой мощности рассеивания (2–5 Вт), резистор часто заменяют неполярным конденсатором. Работая на переменном токе, он как бы «гасит» лишнее напряжение и почти не нагревается.

Системы СД с напряжением 12 В

LED-устройства, рассчитанные на 12 В, как правило принадлежат к классу автомобильного света. Автомобильная сеть имеет стабилизаторы, поэтому необходимости по выравниванию напряжения нет. LED-свет в автомобилях стал популярным – многие фирмы широко применяют светодиодную подсветку в моделях для освещения дороги и работы сигнализации, подсвечивания салона, багажника и приборной панели. Однако применение в автомобилях СД привело к повышению цены световых элементов, особенно головного света и сигнальных светоблоков. В некоторых премиальных моделях стоимость блок-фары сопоставима с ценой недорогого автомобиля.

Также 12-вольтовые LED-диоды используются в строительстве и отделке жилых помещений. Часто это светодиодные ленты, которые не только освещают комнату, но и создают световые инсталляции. Для этого необходима установка понижающих трансформаторов или драйверов, подключенных к домовым электросетям и обеспечивающих долгую работу диодов.

Подключение мигающих и многоцветных светодиодов

Внешне мигающие светодиоды ничем не отличаются от обычных аналогов и могут мигать одним, двумя или тремя цветами по заданному производителем алгоритму. Внутреннее отличие состоит в наличии под корпусом ещё одной подложки, на которой расположен интегральный генератор импульсов. Номинальный рабочий ток, как правило, не превышает 20 мА, а падение напряжения может варьироваться от 3 до 14 В. Поэтому перед подключением мигающего светодиода нужно ознакомиться с его характеристиками. Если их нет, то узнать параметры можно экспериментальным путём, подключившись к регулируемому БП на 5–15 В через резистор сопротивлением 51-100 Ом.

В корпусе многоцветного RGB-светодиода расположены 3 независимых кристалла зелёного, красного и синего цвета. Поэтому при расчёте номиналов резисторов нужно помнить, что каждому цвету свечения соответствует своё падение напряжения.

По внешнему виду

Иногда можно определить полярность по внешнему виду. У некоторых типов светодиодов на корпусе есть ключ – выступ или метка. Чтобы определить, какой вывод помечен ключом, лучше ознакомиться со справочными материалами.

У бескорпусных светодиодов производства СССР можно выяснить цоколевку, присмотревшись к внутреннему устройству прибора сквозь слой компаунда. Вывод катода имеет большую площадь и сделан в виде флажка. Этот принцип мог стать стандартом, но сейчас производители его строго не соблюдают, поэтому данный способ ненадежен, особенно для элементов от неизвестного производителя. Поэтому использовать такое определение выводов можно только для предварительной ориентировки.

Цоколевку отечественных светодиодов можно узнать по длине ножек – вывод анода делается более коротким. Но это верно только для элементов, не бывших в употреблении – при установке на место выводы могут быть обрезаны произвольно.

Для наглядности рекомендуем к просмотру видео.

Ещё раз о трёх важных моментах

  1. Прямой номинальный ток – главный параметр любого светодиода. Занижая его, мы теряем в яркости, а завышая – резко сокращаем срок службы. Поэтому лучшим источником питания является светодиодный драйвер, при подключении к которому через светодиод всегда будет протекать постоянный ток нужной величины.
  2. Напряжение, приведенное в datasheet к светодиоду, не является определяющим и лишь указывает на то, сколько вольт упадёт на p-n-переходе при протекании номинального тока. Его значение необходимо знать для того, чтобы правильно вычислить сопротивление резистора, если светодиод будет работать от обычного БП.
  3. Для подключения мощных светодиодов важно не только надёжное электропитание, но и качественная система охлаждения. Установка на радиатор светодиодов с мощностью потребления более 0,5 Вт станет залогом их стабильной и продолжительной работы.

Параллельное соединение светодиодов не правильное

Параллельное соединение светодиодов используют, когда напряжение блока питания (источника) не хватает, для того, чтобы запитать ряд последовательных светодиодов. Если «конкретно теоретически», то параллельно светодиоды можно подключать и «тупо» — соединить все аноды и катоды LEDs. После чего подключить их к батарее и вуаля… Светодиоды горят! Причем единожды и на краткое время при подключении. Далее — конец им.

Такая схема подключения параллельно светоизлучающих диодов — не работоспособна, ввиду того, сопротивление диода маленькое и спокойно провоцирует режим КЗ (короткого замыкания).

Сразу откину некоторых злопыхателей. Есть, конечно, исключения… Ими грешат китайские производители дешевизны. Но это исключение из правил. Если кто-то разбирал китайские игрушки или зажигалки, то наверняка видел именно такую схему подключения. Где диоды подключены параллельно, не имея в свей цепи никаких посторонних электронных компонентов. Почему? Да все просто — в таких цепях ток ограничивается внутренним сопротивлением батареек AG1 (таблетка). Мощность в таких таблетках минимальна и не может нанести вред диоду. Т.е. мы опять приходим к выводу, что для нормального функционирования, диодам нужен резистор.

Повторюсь еще раз — параллельное соединение светодиодов используют только тогда, когда источник питания низковольтный.

Не смотря на то, что такой тип соединения не очень приветствуется, его частенько используют. В таких типах соединений есть одно правило — параллельное соединение светодиодов никогда не происходит с использованием ТОЛЬКО ОДНОГО резистора!!!

Ну или для тех, кто понимает только визуальные картинки, то не правильное параллельное соединение будет выглядеть так:

К сожалению, не смотря на то. что такое подключение не правильное, опять же, вездесущие китайцы тоже используют его во всю… Особенно в фонариках. Для этого им завышают номинал резистора, дабы не было перегрузки и товар преспокойненько может проработать год… А может и не проработать… Тут уж как повезет.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]