Частотомер. Назначение, применение, классификация.

Для фиксации частоты используют частотомер, это специальный электроизмерительный прибор, использующиеся для фиксации частоты периодического процесса либо частот гармонических составляющих спектра сигнала.

Одним из основных параметров периодических и пульсирующих токов выступает частота, определяющая количество периодических колебаний за полный цикл и являющая основной характеристикой системы единиц СИ. Потребность в точном определении частоты возникает в различных сферах научной и практической деятельности, особое значение её определение имеет в электротехнике, радиоэлектронике, телекоммуникациях и пр.

Частотомер

В настоящее время возможно измерение частоты с помощью множества приборов:

  • это и мультиметр
  • и генератор со встроенным частотомерам
  • и осциллограф

Специализированным же приборам, осуществляющим частотно-временные измерения, являются частотомер.

Классификация частотомеров

Частотомеры подразделяются в зависимости от следующих параметров:

По методу измерения:

  • частотомеры непосредственной оценки (к примеру, аналоговые)
  • частотомеры сравнения (гетеродинные, резонансные, электронно-счетные)

По физическому смыслу измеряемой величины,частотомеры предназначены:

  • для измерения синусоидальных колебаний (аналоговые)
  • измерения частот гармонических составляющих (резонансные, гетеродинные, вибрационные)
  • для измерения дискретных событий (конденсаторные, электронно-счетные)

По конструктивному исполнению их делят на:

  • щитовые
  • переносные
  • стационарные

По области применения:

  • электроизмерительные (частотомеры аналоговые стрелочные, резонансные, а также частично – частотомеры конденсаторные и электронно-счетные)
  • радиоизмерительные (частотомеры гетеродинные, резонансные, конденсаторные, электронно-счетные)

Электронно-счётные частотомеры

  • Принцип действия электронно-счетных частотомеров (ЭСЧ) основан на подсчете количества импульсов, сформированных входными цепями из периодического сигнала произвольной формы, за определенный интервал времени. Интервал времени измерения также задается методом подсчета импульсов, взятых с внутреннего кварцевого генератора ЭСЧ или из внешнего источника (например стандарта частоты). Таким образом ЭСЧ является прибором сравнения, точность измерения которого зависит от точности эталонной частоты.
  • ЭСЧ является наиболее распространенным видом частотомеров благодаря своей универсальности, широкому диапазону частот (от долей герца до десятков мегагерц) и высокой точности. Для повышения диапазона до сотен мегагерц — десятков гигагерц используются дополнительные блоки — делители частоты и переносчики частоты.
  • Большинство ЭСЧ кроме частоты позволяют измерять период следования импульсов, интервалы времени между импульсами, отношения двух частот, а также могут использоваться в качестве счетчиков количества импульсов.
  • Некоторые ЭСЧ (например Ч3-64) сочетают в себе электронно-счетный и гетеродинный методы измерения. Это не только расширяет диапазон измерения, но и позволяет определять несущую частоту импульсно-модулированных сигналов, что простым методом счета недоступно.
  • НАЗНАЧЕНИЕ:
    обслуживание, регулировка и диагностика радиоэлектронного оборудования различного назначения, контроль работы радиосистем и технологических процессов
  • ПРИМЕРЫ:
    Ч3-33, Ч3-54, Ч3-57, Ч3-63, Ч3-64, Ч3-67, Ч3-84

Что чем меряют, какие частотомеры, для чего?

С помощью резонансных частотомеров, вкупе с преобразователями механических колебаний в электрические, обычно измеряется частота механических колебаний.

Посредством электромеханических, электродинамических, электронных, электромагнитных, магнитоэлектрических частотомеров измеряется частота электрических колебаний.

Посредством электронных частотомеров (резонансные, гетеродинные, цифровые и др.) измеряется частота электромагнитных колебаний в диапазоне радиочастот и СВЧ.

В основе действия резонансного частотомера – сравнение частоты, измеряемой с частотой собственных колебаний электрического контура (либо резонатора СВЧ), который настраивается в резонанс с измеряемой частотой. В частотомерах гетеродинных производится сравнение измеряемой величины с известной частотой (либо ее гармониками) гетеродина (образцового генератора). Принцип действия цифровых частотомеров – в подсчете за определенный промежуток времени числа периодов измеряемых колебаний.

При добавлении к электронно-счетному частотомеру соответствующих приставок возможно измерение практически любых электрических величин (напряжения, тока, сопротивления, емкости, индуктивности и др.).

Устройство и узлы цифрового частотомера

Определение 2

Цифровой частотомер – это частотомер, при помощи которого можно измерять период и частоту электрических сигналов различной формы, а также длительность импульсов и отношение частот двух электрических сигналов.

Цифровой частотомер используется для определения частоты импульсного или переменного электрического тока в процессе настройки радиоаппаратуры. Данное устройство также часто применяется на электрических станциях с целью отслеживания частоты переменного тока, который подается на линии электропередач.

Измерение параметров сигнала осуществляется при помощи сравнения одного длинного интервала времени с набором более мелких. В этом случае один интервал — измеряемый, а другой — образцовый. Квантование (сравнение и замена длительного интервала времени набором более коротких) происходит автоматически.

Для измерения разных параметров в цифровых частотомерах используются одни и те же узлы, коммутируемые переключателем рода работы прибора. Благодаря этому образуются различные структурные схемы, которые делают возможным измерение выбранного параметра. К основным узлам цифрового частотомера относятся:

Готовые работы на аналогичную тему

Курсовая работа Цифровые частотомеры 430 ₽ Реферат Цифровые частотомеры 280 ₽ Контрольная работа Цифровые частотомеры 250 ₽

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

  1. Делитель частоты.
  2. Электронный ключ.
  3. Цифровое устройство отсчета.
  4. Формирователи.
  5. Генератор импульсов стабильной частоты.
  6. Устройство управления, являющееся вспомогательным.

Задачи устройства управления заключаются в подготовке основных узлов частотомера к измерениям, а также в обеспечении автоматического, ручного или дистанционного запуска устройства. Органы управления цифрового частотомера выводятся на лицевую панель. У различных модификаций и видов цифровых частотомеров органы управления различны.

Нормативно-техническая документация

ГОСТ 8.567-99 ГСИ. Измерения времени и частоты. Термины и определения ГОСТ 7590-93 Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 4. Особые требования к частотомерам ГОСТ 7590-78 Приборы электроизмерительные для измерения частоты аналоговые показывающие. Общие технические условия ГОСТ 22335-85 Частотомеры электронно-счетные. Технические требования, методы испытаний ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия ГОСТ 8.422-81 ГСИ. Частотомеры. Методы и средства поверки ГОСТ 12692-67 Измерители частоты резонансные. Методы и средства поверки ОСТ 11-272.000-80 Частотомеры резонансные. Основные параметры МИ 1835-88 Частотомеры электронно-счетные. Методика поверки

Резонансные частотомеры

Принцип действия резонансных частотомеров основан на сравнении частоты входного сигнала с собственной резонансной частотой перестраиваемого резонатора. В качестве резонатора может быть использован колебательный контур, отрезок волновода (объемный резонатор) или четвертьволновой отрезок линии. Контролируемый сигнал через входные цепи поступает на резонатор, с резонатора сигнал через детектор подается на индикаторное устройство (гальванометр). Для повышения чувствительности в некоторых частотомерах применяются усилители. Оператор настраивает резонатор по максимальному показанию индикатора и по лимбу настройки отсчитывает частоту.

  • НАЗНАЧЕНИЕ:
    настройка, обслуживание, контроль работы приемопередающих устройств, измерение несущей частоты модулированных сигналов
  • ПРИМЕРЫ:
    Ч2-33, Ч2-34, Ч2-45, Ч2-55

Конденсаторные частотомеры

Электронные конденсаторные частотомеры применяются для измерения частот в диапазоне от 10Гц до 1МГц. Принцип таких частотомеров основывается на попеременном заряде конденсаторов от батареи с последующим его разрядом через магнитоэлектрический механизм. Этот процесс осуществляется с частотой, равной измеряемой частоте, поскольку переключение производится под воздействием самого исследуемого напряжения. За время одного цикла через магнитоэлектрический механизм будет протекать заряд Q =CU, следовательно, средний ток, протекающий через индикатор, будет равен I_ср=Qf_x=CUf_x. Таким образом, показания магнитоэлектрического амперметра оказывается пропорциональны измеряемой частоте. Основная приведенная погрешность таких частотомеров лежит в пределах 2-3%.

  • НАЗНАЧЕНИЕ:
    настройка и обслуживание низкочастотной аппаратуры
  • ПРИМЕРЫ:
    Ф5043

Радиолюбительские измерения: когда нет частотомера

путём обработки входного сигнала от опорного генератора с частотой
Fxo
:
В качестве частотозадающего элемента опорного генератора был использован недорогой кварцевый резонатор с маркировкой на корпусе «TXC 25.0F6QF
». Точное значение частоты сигнала опорного генератора известно не было. В настройках синтезатора опорная частота была указана константой
25000000 Hz
. Сам синтезатор частоты был запрограммирован на вывод сигнала частотой
9996 kHz
. Для проверки работоспособности синтезатора был использован цифровой осциллограф Rigol DS1102E. В настройках канала было включено измерение частоты.

Осциллограф на выводах кварцевого резонатора показал измеренное значение 25.00 MHz, а на выходе синтезатора – 10.00 MHz. В принципе, это уже было неплохо: схема работала.

Аналогом калибровки частотозадающих цепей методом биений является методика настройки музыкальных инструментов по камертону. Звук, извлекаемый из инструмента, накладывается на звук камертона. Если тоны не совпадают, возникают хорошо заметные на слух «биения» частоты. Подстройка тона музыкального инструмента производится до появления «нулевых биений», т.е. состояния, когда частоты совпадают. Проще всего калибровку синтезатора частоты методом биений было провести с использованием радиоприёмника с панорамным индикатором и сигнала радиостанции RWM в качестве контрольного сигнала.

В качестве контрольного приёмника использовался SoftRock RX Ensemble II с программой HDSDR. Шкала приёмника была ранее откалибрована по сигналам радиостанции RWM на всех трёх частотах: 4996000, 9996000 и 14996000 Hz. В качестве контрольного сигнала использовался сигнал радиостанции RWM на частоте 9996000 Hz

.

На скриншоте виден приём секундных меток RWM на частоте 9996000 Hz

и приём выходного сигнала синтезатора на частоте, примерно,
9997970 Hz
. При задании частоты синтезатора использовалась константа
25000000 Hz
(номинальная частота кварцевого резонатора). При проведении калибровки эта константа была умножена на отношение частот
9997970 Hz
и
9996000 Hz
. В результате было получено значение реальной частоты запуска кварцевого резонатора
25004927 Hz
. Это значение было занесено константой в прошивку устройства. На скриншоте показан результат проведения калибровки:

Частота выходного сигнала синтезатора 9996 kHz

точно соответствует частоте приёма секундных меток RWM на частоте
9996000 Hz
.

После проведения калибровки осциллограф показал на выводах кварцевого резонатора – 25.00 MHz, а на выходе синтезатора – 10.00 MHz, т.е. те же самые значения, что и до калибровки.

В Перми в светлое время суток стабильно принимается сигнал RWM на частоте 9996 kHz, а в тёмное время суток – на частоте 4996 kHz. Если прохождение радиоволн нестабильно, и сигналы RWM не принимаются, на сайте hfcc.org можно найти частоты и расписание работы вещательных радиостанций.

Несущие сигналы вещательных станций тоже можно, при необходимости, использовать в качестве контрольных, т.к. они обычно имеют отклонение частоты не более 10 Hz от частоты вещания.

Краткие выводы

Наиболее простой и точный способ измерения частоты сигнала в радиодиапазоне — измерение частоты электронно-счётным частотомером.
Получить приблизительное значение частоты сигнала можно, приняв его на контрольный приёмник с калиброванной шкалой.

Получить при использовании контрольного приёмника точное значение частоты сигнала можно по «нулевым биениям» измеряемого сигнала с контрольным сигналом, полученным от эталонного источника.

Необходимые дополнения:

Калибровку синтезатора можно было бы провести:

  1. Конечно же, с помощью ЭСЧ.
  2. Методом биений с помощью профессионального приёмника без панорамного индикатора, например, Р-326, Р-326М, Р-250М2 и т.п. и сигналов RWM «на слух». Это было бы не так наглядно, как с панорамным индикатором, и заняло бы больше времени.
  3. С помощью калиброванного генератора и осциллографа по фигурам Лиссажу. Выглядит очень эффектно, но требует дополнительного недешёвого оборудования.

И ещё, область применения радиолюбителями радиоприёмников, упомянутых выше, очень широка. Они применяются для наблюдения за эфиром, для контроля прохождения радиоволн, для контрольного прослушивания сигналов при настройке радиостанций и т.п.

Аналоговые стрелочные частотомеры

Аналоговые частотомеры по применяемому измерительному механизму бывают электромагнитной, электродинамической и магнитоэлектрической систем. В основе работы их лежит использование частотозависимой цепи, модуль полного сопротивления которой зависит от частоты. Измерительным механизмом, как правило, является логометр, на одно плечо которого подается измеряемый сигнал через частотонезависимую цепь, а на другое — через частотозависимую, ротор логометра со стрелкой в результате взаимодействия магнитных потоков устанавливается в положение, зависящее от соотношений токов в обмотках. Бывают аналоговые частотомеры работающие по другим принципам.

  • НАЗНАЧЕНИЕ:
    контроль сети электропитания
  • ПРИМЕРЫ:
    Д416, Э353, Ц1736, М800, С 300 М1-1

Вибрационные (язычковые) частотомеры

Приборная панель аэродромного кондиционера с частотомером, показывающим 49,5 Гц
Представляет собой прибор с подвижной частью в виде набора упругих элементов (пластинок, язычков), приводимых в резонансные колебания при воздействии переменного магнитного или электрического поля. Чаще всего используется электромагнит для возбуждения колебаний и стальные пластины в роли элементов. Элемент, собственная частота которого ближе всего к частоте тока, текущего по обмотке электромагнита, входит в резонанс и колеблется с наибольшим размахом, что отображается визуально.

  • НАЗНАЧЕНИЕ:
    контроль сети электропитания
  • ПРИМЕРЫ:
    В80, В87

Наименования и обозначения

  • Устаревшие наименования Волномер
    — для резонансных и гетеродинных частотомеров
  • Герцметр
    — для щитовых аналоговых и язычковых частотомеров
  • Для обозначения типов электроизмерительных (низкочастотных) частотомеров традиционно используется отраслевая система обозначений, в которой приборы маркируются в зависимости от системы (основного принципа действия)
      В
      хх — вибрационные частотомеры
  • Д
    хх — приборы электродинамической системы
  • Э
    хх — приборы электромагнитной системы
  • М
    хх — приборы магнитоэлектрической системы
  • Ц
    хх — приборы выпрямительной системы
  • Ф
    хх,
    Щ
    хх — приборы электронной системы
  • Н
    хх — самопишущие приборы
  • Частотомеры радиодиапазона маркируются по ГОСТ 15094
      Ч2-
      хх — резонансные частотомеры
  • Ч3-
    хх,
    РЧ3-
    хх — Электронно-счетные частотомеры
  • Ч4-
    хх — гетеродинные, конденсаторные и мостовые частотомеры
  • Рейтинг
    ( 2 оценки, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]