Счетчики импульсов: схемы, назначение, применение, устройство

Что такое счетчик импульсов?
Счетчик импульсов — это последовательностное цифровое устройство, обеспечивающее хранение слова информации и выполнение над ним микрооперации счета, заключающейся в изменении значения числа в счетчике на 1. По существу счетчик представляет собой совокупность соединенных определенным образом триггеров. Основной параметр счетчика — модуль счета. Это максимальное число единичных сигналов, которое может быть сосчитано счетчиком. Счетчики обозначают через СТ (от англ. counter).

Суммирующий счетчик импульсов

Рассмотрим суммирующий счетчик (рис. 3.67, а). Такой счетчик построен на четырех JK-триггерах, которые при наличии на обоих входах логического сигнала «1» переключаются в моменты появления на входах синхронизации отрицательных перепадов напряжения.

Временные диаграммы, иллюстрирующие работу счетчика, приведены на рис. 3.67, б. Через Кси обозначен модуль счета (коэффициент счета импульсов). Состояние левого триггера соответствует младшему разряду двоичного числа, а правого — старшему разряду.

В исходном состоянии на всех триггерах установлены логические нули. Каждый триггер меняет свое состояние лишь в тот момент, когда на него действует отрицательный перепад напряжения.

Таким образом, данный счетчик реализует суммирование входных импульсов. Из временных диаграмм видно, что частота каждого последующего импульса в два раза меньше, чем предыдущая, т. е. каждый триггер делит частоту входного сигнала на два, что и используется в делителях частоты.

Как их классифицируют?

  1. По количеству устойчивых состояний, в которых может быть триггер:
      двоичный;
  2. троичный;
  3. н-ичный.
  4. В зависимости от модуля счёта:
      двоичные;
  5. использующие переменный модуль счета;
  6. двоично-десятичные;
  7. использующие произвольный постоянный модуль.
  8. В зависимости от направления счёта:
      вычитающие;
  9. суммирующие;
  10. реверсивные.
  11. В зависимости от особенности создания внутренних связей:
      ускоренные: i. параллельные;
  12. ii. сквозные.
  13. последовательные;
  14. комбинированные;
  15. кольцевые.
  16. В зависимости от того, как переключается триггер:
      синхронные;
  17. асинхронные.
  18. И отдельно выделяют счётчик Джонсона.

И чтобы вам лучше было понять особенности работы данных механизмов, предлагаем ознакомиться с несколькими представителями, которые будут рассмотрены далее.

Трехразрядный вычитающий счетчик с последовательным переносом

Рассмотрим трехразрядный вычитающий счетчик с последовательным переносом, схема и временные диаграммы работы которого приведены на рис. 3.68.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

В счетчике используются три JK-триггера, каждый из которых работает в режиме Т-триггера (триггера со счетным входом).

На входы J и К каждого триггера поданы логические 1, поэтому по приходу заднего фронта импульса, подаваемого на его вход синхронизации С, каждый триггер изменяет предыдущее состояние. Вначале сигналы на выходах всех триггеров равны 1. Это соответствует хранению в счетчике двоичного числа 111 или десятичного числа 7. После окончания первого импульса F первый триггер изменяет состояние: сигнал Q1 станет равным 0, a ¯Q1 − 1.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

Остальные триггеры при этом свое состояние не изменяют. После окончания второго импульса синхронизации первый триггер вновь изменяет свое состояние, переходя в состояние 1, (Qx = 0). Это обеспечивает изменение состояния второго триггера (второй триггер изменяет состояние с некоторой задержкой по отношению к окончанию второго импульса синхронизации, так как для его опрокидывания необходимо время, соответствующее времени срабатывания его самого и первого триггера).

После первого импульса F счетчик хранит состояние 11О. Дальнейшее изменение состояния счетчика происходит аналогично изложенному выше. После состояния 000 счетчик вновь переходит в состояние 111.

От чего питаются устройства

Разные типы счетчиков импульсов могут питаться разным напряжением, в основном это:

  • переменное либо постоянное электричество величиной от 18.0 до 36.0 вольт;
  • переменное либо постоянное электричество величиной от 85.0 до 240.0 вольт.

Сигналы, приходящие на вход устройств, могут иметь амплитуды в тех же пределах, что и питающее напряжение.

Касаемо выходного контакта счетчика, напряжение на нем может доходить до 250.0 вольт с силой тока до 3.0 ампер. Это не относится к счетчикам, имеющим высокое быстродействие. У них выходом есть электронный ключ, собранный на транзисторной логике.

Трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом

Рассмотрим трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом (рис. 3.69).

После перехода счетчика в состояние 000 на выходах всех триггеров возникает сигнал логического 0, который подается через логический элемент ИЛИ на входы J и К первого триггера, после чего этот триггер выходит из режима Т-триггера и перестает реагировать на импульсы F.

Установка показаний

Чтобы ввести установку подсчета на типовом счетчике импульсов, необходимо произвести следующие действия:

  • включить кнопку «ввод» — прибор перейдет в состояние мигающего наименьшего разряда установки;
  • выбрать нужную величину числа;
  • перейти на следующую позицию разряда при помощи кнопки «выбор»;
  • так устанавливая величины каждой позиции дойти до самого наивысшего разряда.

Трехразрядный реверсивный счетчик с последовательным переносом

Рассмотрим трехразрядный реверсивный счетчик с последовательным переносом (рис. 3.70).

В режиме вычитания входные сигналы должны подаваться на вход Тв. На вход Тс при этом подается сигнал логического 0. Пусть все триггеры находятся в состоянии 111. Когда первый сигнал поступает на вход Тв, на входе Т первого триггера появляется логическая 1, и он изменяет свое состояние. После этого на его инверсном входе возникает сигнал логической 1.

При поступлении второго импульса на вход Тв на входе второго триггера появится логическая 1, поэтому второй триггер изменит свое состояние (первый триггер также изменит свое состояние по приходу второго импульса). Дальнейшее изменение состояния происходит аналогично. В режиме сложения счетчик работает аналогично 4-разрядному суммирующему счетчику. При этом сигнал подается на вход Тс. На вход Тв подается логический 0. В качестве примера рассмотрим микросхемы реверсивных счетчиков (рис: 3.71) с параллельным переносом серии 155 (ТТЛ):

  • ИЕ6 — двоично-десятичный реверсивный счетчик;
  • ИЕ7 — двоичный реверсивный счетчик.

Направление счета определяется тем, на какой вывод (5 или 4) подаются импульсы. Входы 1, 9, 10, 15 — информационные, а вход 11 используется для предварительной записи. Эти 5 входов позволяют осуществить предварительную запись в счетчик (предустановку). Для этого нужно подать соответствующие данные на информационные входы, а затем подать импульс записи низкого уровня на вход 11, и счетчик запомнит число.

Вход 14 — вход установки О при подаче высокого уровня напряжения. Для построения счетчиков большей разрядности используются выходы прямого и обратного переноса (выводы 12 и 13 соответственно). С вывода 12 сигнал должен подаваться на вход прямого счета следующего каскада, а с 13 — на вход обратного счета.

Счетчики электроэнергии. Часть 1. Индукционные и электронные

В современном мире без этих приборов уже не обойтись. Ведь у каждого в доме есть электропроводка, следовательно, и электросчетчик должен быть. Но вот проблема.
Как только приходит время заменить или установить счетчик, мы идем в магазин и на нас обрушивается шквал разнообразия выбора. Мы начинаем теряться и в итоге выбираем не то, что нам нужно.

Чтобы такого не происходило, давайте разберемся, какие бывают счетчики, и какой подходит именно вам. На сегодня существует два основных типа счетчиков: индукционные (механические) и электронные.

Индукционные (механические) электросчетчики

Рис.1. Индукционный однофазный электросчетчик

Счетчики с вращающимся диском знакомы практически каждому. Это те, за прозрачной панелью которых есть вращающееся колесико. Наверняка многие не раз наблюдали за скоростью его вращения — чем выше скорость, тем больше расход энергии. А показания счетчика обозначаются цифрами на специальных барабанах.

Принцип работы таких счетчиков заключается в следующем. В электрическом счетчике имеется 2 катушки (рис. 2 — 1 и 4 указатели) — катушка напряжения (служит ограничителем переменного тока, преградой для помех и пр., создает магнитный поток, соразмерный напряжению) и токовая катушка (создает переменный магнитный поток, соразмерный току).

Рис.2. Принцип работы индукционного электросчетчика

Магнитные потоки, создаваемые катушками, проникают сквозь алюминиевый диск (рис.2, указатель 5). При этом потоки, которые создает токовая катушка, пронизывают диск несколько раз за счет своей U-образной формы. Как следствие, появляются электромеханические силы, которые и вращают диск.

Далее ось диска взаимодействует со счетным механизмом в виде червячной (зубчато-винтовой) передачи (Рис. 3), которая передает необходимые сигналы и информацию на цифровые барабаны. Чем выше крутящий момент диска, тем выше мощность подаваемого сигнала (крутящий момент равнозначен мощности сети), а значит и расход электроэнергии больше.

Рис.3. Червячная передача

Обратите внимание

Когда мощность подаваемого электромагнитного сигнала снижается, в действие приходит постоянный магнит торможения (Рис.2, указатель 3). Он и выравнивает колебания частоты вращения диска за счет взаимодействия с вихревыми потоками. Магнит создает электромеханическую силу, обратную кручению диска. Это заставляет диск снизить скорость или вообще остановиться.

Эта группа счетчиков наиболее дешевая и простая. Широко использовались индукционные электросчетчики в советское время (и по нынешнее время у большинства в квартирах установлены именно такие приборы).

Но постепенно на смену им приходят электронные счетчики за счет ряда недостатков индукционных приборов.

Например, индукционный электросчетчик не может снять показания автоматически, а также в показаниях зачастую присутствует погрешность.

Достоинства и недостатки индукционных счетчиков

Достоинства

  1. Надежны в использовании
  2. Многoлетний срок эксплуатации счетчика
  3. Независимость от перепадов электрoэнергии
  4. Дешевле электронных

Недостатки

  1. Класс точнoсти достаточно низок — 2,0; 2,5
  2. Практически oтсутствует защищенность от хищения электрической энергии
  3. Высокое собственное потребление тока
  4. При малых нагрузках вырастает погрешность (чем меньше класс точности, тем больше погрешность)
  5. При учете нескольких типов электроэнергии (активной и реактивной) возникает необходимость использования нескольких приборов учета энергии
  6. Энергоучет ведется в одном направлении
  7. Крупные габариты приборов

Электронные электросчетчики

Рис.4. Электронный электросчетчик

Эти приборы несколько дороже индукционных, но на сегодняшний день это наиболее выгодные и приоритетные в использовании счетчики. Они имеют более высокий класс точности и позволяют учитывать многотарифность.

Электронные электросчетчики работают за счет преобразования входного аналогового сигнала с датчика тока в цифровой код, равнозначный потребляемой мощности. Этот код отправляется расшифровываться на специальный микроконтроллер. После чего на дисплей (или цифровой барабан) выводится количество расходуемой электроэнергии.

Самая главная составляющая этих счетчиков — это микроконтроллер. Именно он производит анализ сигнала и рассчитывает количество расходуемой электроэнергии. А также передает информацию на выводящие, электромеханические устройства и дисплей.

Рис.5. Принцип работы электронного электросчетчика

Сам прибор состоит из корпуса, трансформатора тока, преобразователя сигнала и тарификационного модуля. Если же разбирать более подробно, в состав счетчика входят еще и:

  • ЖК-дисплей (или цифровой барабан)
  • источник вторичного питания (преобразует переменное напряжение)
  • микроконтроллер (просчитывает входные импульсы, рассчитывает расходуемую электроэнергию, обменивается данными с другими узлами и схемами счетчика)
  • преобразователь (преобразует аналоговый сигнал в цифровой с последующим преобразованием его в импульсный сигнал, равнозначный потребляемой энергии)
  • супервизор (формирует сигнал сброса при перебоях с питанием, выводит аварийный сигнал при снижении входного напряжения)
  • память (хранит данные об электроэнергии)
  • телеметрический выход (принимает импульсный сигнал об энергопотреблении)
  • часы реального времени (отсчитывают текущее время и дату)
  • оптический порт (считывает показания счетчика, а также программирует его)

Достоинства и недостатки электронных электросчетчиков

Достоинства

  1. Класс тoчности — от 1,0 — высокий
  2. Многотарифность (от 2)
  3. Достаточно одного счетчика при учете нескольких типов электрической энергии
  4. Энергоучет ведется в 2 направлениях
  5. Ведут измерение качества и объема мощности
  6. Хранят данные учета электроэнергии
  7. Данные легко доступны
  8. В случае хищения электроэнергии осуществляется фиксация несанкционированного доступа
  9. Возмoжность дистанциoнно снимать пoказатели
  10. Возможно применение при автоматизированном техническом учёте и контроле учета электроэнергии (АСТУЭ и АСКУЭ)
  11. Длительный срок метрологического интервала (МПИ)
  12. Малые по размеру

Недостатки

  1. Очень чувствительны к перепадам напряжения
  2. Дороже индукционных
  3. Достаточно сложно отремонтировать

Маркировка на электросчетчиках

Помимо видов счетчиков существует еще несколько нюансов, которые следует знать. На любом электросчетчике имеется определенная маркировка, условно обозначающаяся буквами и цифрами.

Рис.6. Обозначения на электросчетчике

ОбозначениеПояснение

СТип устройства (счетчик)
А, РВид учитываемой энергии (активная энергия/реактивная энергия)
ООднофазный счетчик
3, 4Число фазовых проводов в сети (четырёхпроводная/трёхпроводная)
УУниверсальность
ИТип измерительной системы (индукционный счетчик). Далее может стоять трёхзначное число, которое означает конструктивное исполнение счетчика (конструкция счетчика может быть индукционной или электронной).
ТТип счетчика в тропическом исполнении
П, МТип исполнения (прямоточный — если нет подключения к трансформатору/модернизированный). Далее могут быть такие сокращения, как «380/220 17А, 2001», что означает рабочие напряжения в проводах, максимальный поток тока и год изготовления. Также в конце надписи может стоять заводской номер.

Что касается класса точности электросчетчика, то по этим параметрам определяется точность показаний расходуемой электроэнергии. В квартирах, как правило, установлены счетчики класса 2,0, но могут быть и выше.

Что это означает? А то, что ваш электросчетчик может учесть на 2% больше или меньше электроэнергии от своей собственной мощности. Или проще говоря — погрешность счетчика. Чем меньше цифра, тем меньше погрешность. В целом, в бытовых условиях достаточно электросчетчика класса 2,0.

Более высокие классы точности необходимы скорее на предприятиях, где нужна большая мощность энергии.

Важно

Итак, на сегодняшний день мы можем себя не ограничивать в выборе электросчетчиков. Каждый из них имеет свои определенные особенности и функции. В этой статье мы разобрали основные особенности этих приборов и принципы их работы, что поможет вам сориентироваться в многообразии выбора.

Источник: https://www.diy.ru/post/6730/

Принцип работы электросчетчика

Счетчик электроэнергии есть в доме у каждого. И не найдется такого человека, который бы не задавался вопросом о том, как устроен, из чего состоит этот неведомый черный ящик и действительно ли можно заставить его крутиться в обратную сторону. Сегодня мы удовлетворим ваше любопытство и заглянем под пломбу, закрывающую доступ к внутреннему устройству этого очень интересного прибора.

Какими бывают электрические счетчики

По принципу работы счетного механизма эти устройства бывают трех типов:

  1. Механические – в их основе шестеренчатый редуктор, который приводит в движение тот самый загадочный вращающийся диск.
  2. Электронные – подсчет ведет генератор импульсов, результаты отображаются на жидкокристаллическом дисплее.
  3. Гибридные – генератор импульсов работает в паре с шаговым электродвигателем, аналогичным тем, что работают в кварцевых часах. Результаты выдаются тем же способом, что и у механических приборов – цифрами на разрядных кольцах, приводимых в движение шестеренчатым редуктором.

Самое интересное в том, что принцип работы электросчетчика основан на одном и том же явлении – электромагнитной индукции.

И все-таки оно вертится!

Наиболее наглядно устройство электросчетчика видно на примере однофазного бытового устройства механического типа. Его принципиальная схема приведена на рисунке ниже.

  1. Ш-образный сердечник
  2. П-образный сердечник
  3. Редуктор
  4. Постоянный магнит
  5. Диск

К клеммам 1 и 2, в которые зажимается фазный провод, подключена катушка с небольшим количеством витков, установленная на П-образный металлический сердечник. Она называется токовой, поскольку включение последовательное. К клемме 1 также подключен еще один провод, идущий на другую катушку с большим количеством витков и установленную на Ш-образный металлический сердечник.

Место соединения разъемное, крепежом является винт, называемый «винт напряжения», поскольку второй конец катушки соединен с клеммой 3, к которой подключается нулевой провод и соединение параллельное. Сердечники катушек расположены под углом 900 друг к другу, а в разрыве между ними находится край алюминиевого диска.

При прохождении переменного электрического тока через катушки в сердечниках наводится пульсирующее магнитное поле. Их произведением является вихревой магнитный поток, вращающийся всегда в одну сторону.

Совет

По закону электромагнитной индукции этот вихрь наводит электрический ток в алюминиевом диске и понуждает его вращаться вслед за собой.

Поскольку учитывается и напряжение в сети, и сила тока, то измеряется расход именно электрической мощности, которая является произведением этих величин.

Все это очень напоминает устройство асинхронного однофазного электродвигателя с пусковой и рабочей обмотками. Различие только в том, что счетчик электроэнергии является измерительной машиной, поэтому для точности показаний в нем надо исключить все факторы, которые могут их изменить.

Например, момент инерции. Именно поэтому ротор, роль которого играет диск, выполняется из алюминия – наиболее легкого электропроводящего материала, не подверженного вторичному намагничиванию. Дисковидная форма выбрана по той причине, что побочным явлением электромагнитной индукции является нагревание металлов так называемыми токами Фуко.

В проводниках плоской формы они быстрее затухают. Это свойство используется, например, в высоковольтных трансформаторах большой мощности, первичная обмотка которых выполняется проводником прямоугольного сечения.

Вторым отличием механического счетчика от асинхронного двигателя является наличие в его конструкции тормоза – постоянного магнита, расположенного у края диска.

Он нужен для того, чтобы вращение было равномерным, без ускорения, а остановка происходила мгновенно, без выбега.

Положение этого магнита можно менять, меняя величину электрической мощности, на которую устройство не реагирует. Обычной заводской настройкой является 25 Вт.

Диск насажен на ось, на одном конце которой находится червячная шестерня. Через нее и приводится в действие редуктор счетного механизма. Смена положений обмоток действительно может привести к реверсированию.

Обратите внимание

Для этого надо лишь изменить порядок подключения: фазу подать на клемму 3 и снять ее с четвертой. Для борьбы с мошенничеством в редукторе установлен храповой механизм, блокирующий вращение в обратную сторону.

Трехфазные счетные механические устройства устроены подобным же образом.

Но есть тонкости: если схема построена с глухозаземленной нейтралью – фазы на выходе силового трансформатора подстанции соединены звездой и линия состоит из трех проводников, то в счетчике два диска на одной оси.

Как самостоятельно проверить счетчик

Чтобы проверить работоспособность счетчика, нужно провести несколько шагов:

  1. Нужно убедиться, что прибор правильно подключен к сети 220 или 380 В в соответствии со схемой.
  2. Проверить, что диск не вращается произвольно. Для этого нужно отключить все автоматы в щитке и подождать некоторое время. Если счетчик все равно вращается, то он неисправен.
  3. Проверка намагниченности. Влияние магнита также меняет работу прибора. Проверить его наличие можно с помощью небольшой металлической иголкой или специальным прибором.

Вам это будет интересно Регулятор мощности нагрузки

Асинхронные или пульсирующие счетчики

Логическая схема 2-битного счетчика пульсаций показана на рисунке. Триггер (T) используется. Но мы можем использовать триггер JK также с J и K, постоянно подключенными к логике 1. Внешние часы применяются к тактовому входу триггера A, а выход Q A применяется к тактовому входу следующего триггера, т.е. FF-B.

Логическая Диаграмма

операция

SNСостояниеоперация
1Сначала позвольте обоим FF быть в состоянии сбросаQ B Q A = 00 изначально
2После 1-го отрицательного фронта часов Как только первый отрицательный тактовый импульс будет применен, FF-A переключится и Q A будет равно 1.

Q A подключен к тактовому входу FF-B. Поскольку Q A изменилось с 0 на 1, FF-B рассматривает его как положительный фронт тактового сигнала. В Q B нет никаких изменений, потому что FF-B является FF, вызванным отрицательным фронтом.

Q B Q A = 01 после первого тактового импульса.

3После 2-го отрицательного фронта часов По прибытии второго отрицательного тактового фронта FF-A снова переключается и Q A = 0.

Изменение Q A действует как отрицательный фронт тактовой частоты для FF-B. Так что он также будет переключаться, и Q B будет 1.

Q B Q A = 10 после второго тактового импульса.

4После 3-го отрицательного тактового фронта По достижении 3-го отрицательного тактового фронта FF-A снова переключается, и Q A становится 1 из 0.

Поскольку это положительное изменение, FF-B не реагирует на него и остается неактивным. Таким образом, Q B не изменяется и продолжает оставаться равным 1.

Q B Q A = 11 после третьего тактового импульса.

5После 4-го отрицательного тактового фронта По достижении 4-го отрицательного тактового фронта FF-A снова переключается, и Q A становится 1 из 0.

Это отрицательное изменение Q A действует как тактовый импульс для FF-B. Следовательно, он переключается, чтобы изменить Q B с 1 на 0.

Q B Q A = 00 после четвертого тактового импульса.

Как только первый отрицательный тактовый импульс будет применен, FF-A переключится и Q A будет равно 1.

Q A подключен к тактовому входу FF-B. Поскольку Q A изменилось с 0 на 1, FF-B рассматривает его как положительный фронт тактового сигнала. В Q B нет никаких изменений, потому что FF-B является FF, вызванным отрицательным фронтом.

Q B Q A = 01 после первого тактового импульса.

По прибытии второго отрицательного тактового фронта FF-A снова переключается и Q A = 0.

Изменение Q A действует как отрицательный фронт тактовой частоты для FF-B. Так что он также будет переключаться, и Q B будет 1.

Q B Q A = 10 после второго тактового импульса.

По достижении 3-го отрицательного тактового фронта FF-A снова переключается, и Q A становится 1 из 0.

Поскольку это положительное изменение, FF-B не реагирует на него и остается неактивным. Таким образом, Q B не изменяется и продолжает оставаться равным 1.

Q B Q A = 11 после третьего тактового импульса.

По достижении 4-го отрицательного тактового фронта FF-A снова переключается, и Q A становится 1 из 0.

Это отрицательное изменение Q A действует как тактовый импульс для FF-B. Следовательно, он переключается, чтобы изменить Q B с 1 на 0.

Q B Q A = 00 после четвертого тактового импульса.

Таблица правды

Рейтинг моделей

За то время, пока электронные водомеры находятся на рынке, покупатели успели составить свое мнение по поводу самых удачных моделей. Ниже представлены лучшие из них.

АКВА 2 с радиомодулем

выпустила модель, которая работает по встроенному протоколу Nina, NB-IoT, LTE-M, GSM и предназначена для измерения ГВС и ХВС. Прибор может использоваться как самостоятельно, так и в составе комплекса автоматизированных систем. Примерная рыночная стоимость 2300 руб.

СКВ 15-3-7 с радиомодемом «СТРИЖ»

Прибор имеет функцию удаленного мониторинга показаний через интернет. Межповерочный интервал составляет 6 лет, а максимальное давление выдерживает до 1 МПа. Используется для измерения как холодной, так и горячей воды. Передает показания в личный кабинет потребителя или напрямую в водопоставляющую компанию. Примерная стоимость на рынке 3350 руб.

ЭЛЕХАНТ СВД-15 с монтажным комплектом

Прибор производится в Омске и имеет ряд преимуществ. Показания передаются через радиоканал на смартфон потребителя, могут выводиться на внешний дисплей. Без дополнительного оборудования можно выводить данные также в управляющую компанию.

Низкая стоимость (около 1000руб.) и легкость в установке. Нет потребности в установке обратного клапана, что дает возможность сэкономить и избежать очередного соединения. Подходит для холодной и горячей воды.

Плюсы и минусы

Электронный водомер имеет следующие преимущества:

  1. Точность показаний, которая со временем не снижается.
  2. Оплата только за горячую воду, поставленную «по факту». Благодаря встроенному термометру, потребитель платит только за ту горячую воду, которая действительно была ему поставлена.
  3. Большой интервал поверки. Электронные водомеры поверяются, в основном, каждые 8-10 лет. Для этого можно снять всего лишь верхнюю, электронную часть механизма, а не разбирать все устройство.
  4. Возможность установки прибора как горизонтально, так и вертикально.
  5. Идеальный вариант для «умного дома», где функции в доме максимально автоматизированы. Предупреждает возникновение утечек: когда устройство фиксирует беспрерывный поток воды в течение часа, оно автоматически перекрывает электроклапан и оповещает об утечке.
  6. Электропитание водосчетчика автономное, поэтому перепады напряжения не дадут механизму прийти в негодность.
  7. Электронный водомер считается более долговечным и качественным прибором, чем механический.
  8. С помощью дополнительных систем можно не только следить за расходом воды, но и регулировать ее подачу, снизив ее потребление.

Кроме преимуществ, перед приобретением электронного водомера, стоит ознакомиться и с недостатками:

  1. Высокая стоимость прибора.
  2. Потребность в источнике питания. Для бесперебойной работы устройства требуется организация постоянной работы от сети или же периодическая замена аккумулятора. Качественные элементы питания могут прослужить без замены до 3 лет.

Инструкция по применению

Инструкция по эксплуатации и монтажу содержит следующие пункты:

  • Прибор может устанавливать персонал, прошедший инструктаж по мерам безопасности и имеющий квалификационную группу по электробезопасности не ниже уровня III (электрическая установка до 1000 В).
  • Перед установкой надо извлечь прибор из транспортной упаковки и провести внешний осмотр.
  • Убедиться, что корпус и защитная крышка распределительной коробки не имеют значительных повреждений.
  • Установить счетчик на рабочем месте, снять защитную крышку распределительной коробки и подключить к цепи напряжения

Важно! Подключение к сети проводить только с отключением питания

  • Установить крышку распределительной коробки и закрепить ее двумя винтами.
  • Включить питание и убедиться, что счетчик включен: индикатор показывает значение энергии, учитываемое в текущей зоне.
  • Отметить в таблице дату установки и дату ввода в эксплуатацию.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]