10 способов применения графена, которые изменят вашу жизнь


18K 2 7 мин.

В 2010 году за новаторские эксперименты по исследованию двумерного материала — графена — были удостоены Нобелевской премии Константин Новоселов и Андрей Гейм. Графен — это двумерная структура, в которой атомы углерода выстроены в вершины правильных шестиугольников. Графен является составной единицей графита и используется как теоретическая модель для описания других аллотропных форм углерода, таких как фуллерены и нанотрубки. Хотя первые лабораторные экспериментальные образцы графена были получены относительно недавно, существует уже немало исследований по применению графена в различных областях. «Ъ-Наука» рассказывает о некоторых из них.

Фото: Предоставлено «Графенокс»

Фото: Предоставлено «Графенокс»

Графен имеет уникальные электронные и оптические свойства, связанные с его зонной структурой. В первой зоне Бриллюэна графена существуют особые точки К и К`, вблизи которых энергия электронов линейно зависит от волнового вектора. Таким образом, графен — полупроводник с нулевой запрещенной зоной, а движение электронов в нем описывается не уравнением Шредингера, как в объемных полупроводниках, а уравнением Дирака для безмассовых квазичастиц. Вследствие этого в графене наблюдается полуцелый квантовый эффект Холла и сверхвысокая подвижность электронов. Графен имеет также выдающиеся оптические характеристики. Например, величина оптического поглощения света в нем составляет 2,3% от интенсивности падающего излучения и не зависит от длины волны.

В последние два года совершен прорыв в понимании свойств неупорядоченного графена. Например, в 2022 году было сделано фундаментальное открытие — сверхпроводимость в скрученном графене. Американские физики предложили модель, которая качественно объясняет явление сверхпроводимости.

Интервью Нобелевского лауреата Константина Новоселова

Алексей Арсенин, заместитель директора центра фотоники и двумерных материалов МФТИ, обратил наше внимание на работы с гибридными структурами, которые сочетают два и более двумерных материалов, в том числе слои двумерных материалов, повернутые друг относительно друга. Если мы сделаем полость в материале толщиной в один слой, то это еще один объект для исследований — 2D nothing. В 2019 году в Черноголовке защищена докторская диссертация по графену Павла Островского из Института теоретической физики им. Л. Д. Ландау. Им, в частности, построена полная симметрийная классификация возможных типов примесей в графене. Профессор Олег Язев из EPFL (Федеральная политехническая школа Лозанны, Швейцария) так охарактеризовал нам работу Островского: «Диссертация объединяет серию теоретических работ, направленных на понимание электронной проводимости в графене с учетом двумерности и уникальной электронной структуры, свойств, которые делают его столь непохожим на известные металлы и проводники. Особое внимание уделено электронной проводимости в присутствии примесей».

Дефекты

Кажущаяся лёгкость получения графена неразрывно связана с фундаментальной проблемой – термодинамической устойчивостью двумерных проводников. Новый наноматериал, представленный слоистыми кристаллами, относится к 2D системам. Двумерные слоистые структуры, обладая металлическими свойствами, термодинамически крайне неустойчивы.

В условиях понижения окружающей температуры графеновые материалы теряют свойства металлов. То есть происходит переход из металла в диэлектрик. Проблема требует дальнейших исследований.

Применения графена

Нобелевский лауреат Константин Новоселов (Манчестер) в эксклюзивном интервью для «Ъ-Науки» рассказал, что ему трудно оценить мировое производство графена в тоннах или деньгах. Что касается крупнейших потребителей графена, то он отметил следующие (далеко не все!):

  • Huawei использует графен для терморегуляции смартфонов;
  • BYD (Китай) применяет графен в аккумуляторных батареях;
  • Samsung планирует (или уже использует) графен в кремниевых чипах для контроля контактного сопротивления;
  • в автомобилестроении ряд компаний, например Ford Motor, применяют полимерные композиты с графеновым наполнителем;
  • канадская Ora Graphene Audio Inc. производит композиционный материал для беспроводных акустических наушников GRAPHENEQ TM.

Как довести характеристики уже существующих электронакопителей до совершенства?

Если к обыкновенным материалам для изготовления электродов батареи добавлять графен, то их характеристики будут улучшены в значительной степени. Аккумуляторы изготовленные с применением графеновой технологии, могут порадовать потребителя низкой массой, долговечностью, а также впечатляющей ёмкостью. Не может не восхищать и скоротечность зарядки такого оборудования.

Графен имеет возможность обеспечить улучшение свойств электронакопителя разными методами. Конкретно, речь идёт о плотности энергии и форме. Итогом становится то, что литий-ионные электробатареи, да и другие разновидности АКБ, могут быть усовершенствованы посредством внедрения графена в анод электроаккумулятора. Также, учёные выяснили, что разработка гибридных материалов, может иметь важность для повышения качества накопителя. К примеру, симбиоз графена и катализа оксида ванадия, можно применять на Li-ion катодах. Он способен обеспечить ускоренный процесс зарядки, а также высокую устойчивость цикла зарядки. В этой ситуации, гибрид будет обладать повышенной энергоёмкостью, не слабой электропроводностью и именно графен служит основой для всего этого.

Учёные затрачивают не малые ресурсы на поиск новых типов активного материала для электродов, так как это поможет вывести аккумуляторы на совершенно иной уровень продуктивности и живучести. Кроме того, подобное оборудование хотят лучше приспособить для устройств больших размеров. Наноструктурированные материалы ионно-литиевых АКБ, могут быть стать удачным решением.

К примеру, работники Венского университета в сотрудничестве с международными учёными создали новое наноструктурированное анодное вещество для ионно-литиевых аккумуляторов, увеличивающее срок эксплуатации и ёмкость электронакопителей.

Нанокомпозит 2D/3D на основе смешанного оксида металла и графена, изобретённый парой учёных и их коллегами, может в значительной степени улучшить электрохимические характеристики Li-ion АКБ. Данный материал вполне способен организовать новый подход к более рациональному применению накопителей в больших устройствах — это электрические либо гибридные средства передвижения. Естественно, более совершенный материал, как всегда, переигрывает литий-ионное исполнение: батареи на его основе стабильно удерживают свою функциональность на протяжении 3000 циклов заряда/разряда, а вот Li-ion электронакопители утрачивают свою эффективную работоспособность уже после примерно 1000 циклов зарядки.

Интервью профессора, доктора химических наук Дарьи Андреевой

«Сейчас одно из наиболее востребованных применений графена — это теплоотвод в электронных устройствах. В нашей лаборатории сейчас есть проект, направленный на решение этой задачи. Мы разрабатываем теплопроводную пасту для микроэлектроники на основе наших графеновых нанопластин»,— рассказал нам генеральный директор ООО «Русграфен» (Протвино) Максим Рыбин. Кроме того, в ООО «Русграфен» совместно с ООО «ГрафенОкс» (Черноголовка) научились делать различные виды графеновых красок и чернил для гибкой электроники. «Мы можем наносить тонким слоем чернила в качестве активного элемента сенсора и электропроводящие краски в качестве электродов»,— пояснил Максим Рыбин.

По словам генерального директора ООО «Актив-нано» (Санкт-Петербург) Галины Черник, компания разработала тонкорасщепленный графит (few-layer graphene, малослойный графен). Продукт изготавливают с помощью механических методов, без химических реагентов и высоких температур. Окисления углеродного материала не происходит. Удельная площадь поверхности малослойного графена составляет 250–500 кв. м/г, что соответствует средней толщине в пять-десять слоев атомов углерода. Удельная электропроводность материала достигает 100–200 сименс на сантиметр, что в несколько раз выше, чем у электропроводящих саж. Порошок малослойного графена можно применять в электропроводящих и теплопроводящих материалах и в качестве твердой смазки в порошковой металлургии.

Получение графена методом скотча

Чтобы повторить эксперимент Нобелевских лауреатов, понадобится скотч и кусочек графита. Скотч нужно приклеить на графит. Когда вы отдерете пленку от материала, на ней останется слой вещества. Но, он будет еще недостаточно тонким, чтобы называться графеном и получить уникальные свойства. Этот слой нужно еще несколько раз снять другой лентой скотча, пока не останется слой вещества толщиной в 1 атом, рассмотреть который можно лишь в микроскоп.

Позиция правительства РФ

Смотреть
В 2022 году сформирована группа проектов Graphene Technology Group, сооснователями которой являются Максим Гудков Максим и Максим Рабчинский. В группу входят проекты Graphene Technology, GraphSensors и GraphApta (ООО «Граф-СК», ООО «ГрафСенсорс»). Группа разработала дешевый и масштабируемый метод синтеза оксида графена, который позволяет получить оксид графена высокой чистоты (доля примесей не превышает 0,1 ат.%) с требуемыми размерами монослойных частиц в диапазоне от 500 нм до 100 мкм. Также разработаны масштабируемые методы получения набора функционализированных графенов с контролируемым составом функциональных групп. По словам руководителя проекта Максима Гудкова, производимые материалы представляют большой интерес для электронной промышленности (сенсорные экраны, суперконденсаторы, различные датчики и микроэлектронные чипы), отрасли композитных материалов (аэрокосмическая промышленность, медицинские имплантаты, инженерные материалы), для каталитической отрасли (носители для водородных энергетических катализаторов) и других. За ближайший год компания планирует нарастить объем производства до 10 кг оксида графена в месяц, что позволит снизить цену с текущих 695 руб. за 1 г до 280 руб.

Получение в бытовых условиях

Можно ли изготовить графен в домашних условиях? Оказывается, да! Необходимо просто взять кухонный блендер мощностью не менее 400 Вт, и следовать методике, разработанной ирландскими физиками.

Как же изготовить графен в домашних условиях? Для этого в чашу блендера выливают 500 мл воды, добавляя в жидкость 10-25 миллилитров любого моющего вещества и 20-50 грамм толченого грифеля. Далее прибор должен поработать от 10 минут до получаса, вплоть до появления взвеси из чешуек графена. Полученный материал будет обладать высокой проводимостью, что позволит использовать его в электродах фотоэлементов. Также произведенный в бытовых условиях графен способен улучшить свойства пластика.

Рынок графена в США

Проект GraphSensors направлен на разработку и производство высокоселективных мультисенсорных газовых чипов на основе графена, обладающих рядом уникальных характеристик: большой набор диагностируемых и идентифицируемых газов (сенсор способен распознавать до семи газов в смеси), низкое энергопотребление (5–10 мВт), возможность работы в бескислородной атмосфере и отсутствие необходимости нагрева чипа. Руководитель проекта Максим Рабчинский прокомментировал: «Наши чипы можно использовать как для диагностики содержания компонентов в газовых смесях, так и для более комплексных задач: диагностики заболеваний человека (Breath Biopsy), идентификации различных запахов, например кофе, табака, вин, мяса, список практически не ограничен. Чипы могут быть интегрированы как в системы «Электронный нос» (Electronic nose), так и в классические многоканальные газоанализаторы».

Проект GraphApta направлен на разработку портативных тест-систем персонального использования для регулярной диагностики течения инфекционных заболеваний, таких как ВИЧ, гепатит, заболевания, передаваемые половым путем. Тест-системы представлены одноразовыми тест-полосками на основе графеновых покрытий и компактного измерительного блока, гепатометра, с доступом к облачному сервису для хранения данных о динамике заболевания. Использование системы позволит проводить диагностику в любое время и в любом месте по аналогии с обычным глюкометром при высокой селективности, чувствительности, а также простоте и дешевизне прибора. По словам руководителя проекта Ивана Комарова, планируется создание как персональных устройств, так и коммерческих решений с расширенными эксплуатационными характеристиками для компаний, занимающихся мониторингом здоровья и анализом вирусных заболеваний.

Использование в автомобилестроении

Согласно данным исследователей, удельная энергоемкость графена приближается к 65 кВт*ч/кг. Данный показатель в 47 раз превышает тот, который имеют столь распространенные ныне литий-ионные аккумуляторы. Этот факт ученые использовали для создания зарядных устройств нового поколения.

Графен-полимерный аккумулятор — прибор, при помощи которого максимально эффективно удерживается электрическая энергия. В настоящее время работа над ним ведется исследователями многих стран. Значительных успехов достигли в этом вопросе испанские ученые. Графен-полимерный аккумулятор, созданный ими, имеет энергоемкость, в сотни раз превышающую подобный показатель у уже существующих батарей. Используют его для оснащения электромобилей. Машина, в которой установлен графеновый аккумулятор, может проехать без остановки тысячи километров. На подзарядку электромобиля при исчерпании энергоресурса понадобится не более 8 минут.

Джеймс Бейкер, директор Graphene Engineering Innovation Centre

— Господин Бейкер, какие технологии применяются в Евросоюзе для производства графена?
— Существуют две основные методики (но в них много вариаций) получения графена. Методика «сверху вниз» (Top-down) начинается с графита, который через различные способы расщепляют на слои или пластинки графена. Методика «снизу вверх» (Bottom-up) начинается с атомов углерода или углеродсодержащего газа, например CH4 (метан), и с помощью таких процессов, как CVD (химическое осаждение из газовой фазы), образуется пленка графена на листе подложки (например, меди).

Читать

Смотреть

В активе АО «НИИграфит» (Москва) разработка гибких пьезодатчиков с графеновыми контактами, графенсодержащие высокоанизотропные теплорассеивающие пластмассы, имеющие коэффициент теплопроводности свыше 200 Вт/мК в одном направлении и 10–20 Вт/мК в другом, с теплостойкостью до 180оС и прочностью более 50 МПа. Реализуемые проекты сосредоточены в области разработки конкурентоспособного технологического процесса получения графена из природного графита методом жидкофазной эксфолиации. Результатом должна стать коммерческая линейка суспензий графеновых препаратов, которые можно использовать для модификации полимеров и композиционных материалов, для получения жидких теплоносителей, смазывающих материалов, проводящих контактов, чернил, оптических покрытий.

Графен: мифы и реальность

От редакции: затрагивая тему модернизации экономики России и развития высоких технологий в нашей стране, мы ставили задачу не только обратить внимание читателей на недостатки, но и рассказать о положительных примерах. Тем более что таковые есть, и немало. На минувшей неделе мы рассказывали о разработке в России топливных элементов, а сегодня поговорим о графене, за изучение свойств которого «бывший наш народ» недавно получил Нобелевскую премию. Оказывается, и в России, а точнее — в Новосибирске, над этим материалом работают весьма серьезно.

Кремний как основа микроэлектроники прочно завоевал позиции в пространстве высоких технологий, и произошло это не случайно. Во-первых, кремнию относительно легко придать нужные свойства. Во-вторых, он известен науке давно, и изучен «вдоль и поперек». Третья причина заключается в том, что в кремниевые технологии вложены поистине гигантские средства, и делать сейчас ставки на новый материал, пожалуй, мало кто решится. Ведь для этого придется перестраивать огромную промышленную отрасль. Вернее, строить ее почти с нуля.

Тем не менее, есть и другие претенденты на лидерство в качестве полупроводникового материала. Например, графен, который после вручения Нобелевской премии за изучение его свойств, стал очень моден. Для перехода на него с кремния действительно есть основания, так как графен обладает рядом существенных преимуществ. Но получим ли мы в итоге «электронику на графене» — еще не ясно, потому что рядом с достоинствами притаились и недостатки.

Чтобы поговорить о перспективах графена в микроэлектронике и о его уникальных свойствах, мы встретились в Новосибирске с главным научным сотрудником Института неорганической химии им. А. В. Николаева СО РАН, доктором химических наук, профессором Владимиром Федоровым.

Алла Аршинова: Владимир Ефимович, каковы современные позиции кремния в микроэлектронике?

Владимир Федоров: Кремний очень давно используется в отрасли в качестве основного полупроводникового материала. Дело в том, что он легко легируется, то есть, в него можно добавлять атомы различных элементов, которые направленным образом изменяют физические и химические свойства. Подобная модификация высокочистого кремния позволяет получать полупроводниковые материалы n- или р-типа. Таким образом, направленным легированием кремния регулируют важные для микроэлектроники функциональные свойства материалов.

Кремний — действительно уникальный материал, и именно это является причиной того, что в него вложено столько сил, средств и интеллектуальных ресурсов. Фундаментальные свойства кремния изучены настолько детально, что есть распространенное мнение о том, что ему просто не может быть замены. Однако недавние исследования графена дали зеленый свет другой точке зрения, которая заключается в том, что новые материалы могут быть доведены до такой степени, что смогут заменить кремний.

Кристаллическая структура кремния

Подобные дискуссии возникают в науке периодически, и разрешаются они, как правило, только после серьезных исследований. Например, недавно была схожая ситуация с высокотемпературными сверхпроводниками. В 1986 году Беднорц и Мюллер открыли сверхпроводимость в барий-лантан-медном оксиде (за это открытие им была присуждена Нобелевская премия уже в 1987 году – через год после открытия!), которая обнаруживалась при температуре, значительно превышающей значения, характерные для известных к тому времени сверхпроводящих материалов. При этом по строению купратные сверхпроводящие соединения значительно отличались от низкотемпературных сверхпроводников. Затем лавинообразные исследования родственных систем привели к получению материалов с температурой сверхпроводящего перехода 90 К и выше. Это означало, что в качестве хладоагента можно использовать не дорогой и капризный жидкий гелий, а жидкий азот — в газообразном виде его в природе очень много, и к тому же он существенно дешевле гелия.

Но, к сожалению, эта эйфория вскоре прошла после тщательных исследований новых высокотемпературных сверхпроводников. Эти поликристаллические материалы, как и другие сложные оксиды, подобны керамике: они хрупкие и непластичные. Оказалось, что внутри каждого кристалла сверхпроводимость имеет хорошие параметры, а вот в компактных образцах критические токи достаточно невысокие, что обусловлено слабыми контактами между зернами материала. Слабые Джозефсоновские переходы (Josephson junction) между сверхпроводящими зернами не позволяют изготовить материал (например, сделать провод) с высокими сверхпроводящими характеристиками.

Солнечная батарея на основе поликристаллического кремния

С графеном может получиться такая же ситуация. В настоящее время у него найдены очень интересные свойства, но еще предстоит провести широкие исследования для окончательного ответа на вопрос о возможности получения этого материала в промышленном масштабе и использования его в наноэлектронике.

Алла Аршинова: Объясните, пожалуйста, что такое графен, и чем он отличается от графита?

Владимир Федоров: Графен – это моноатомный слой, образованный из атомов углерода, который, как и графит, имеет решетку в форме сот. А графит это, соответственно, уложенные друг на друга в стопочку графеновые слои. Слои графена в графите связаны между собой очень слабыми Ван-дер-Ваальсовыми связями, потому и удаётся, в конце концов, оторвать их друг от друга. Когда мы пишем карандашом, это пример того, что мы снимаем слои графита. Правда, след карандаша, остающийся на бумаге, это еще не графен, а графеновая мультислойная структура.

Теперь каждый ребенок может на полном серьезе утверждать, что он не просто переводит бумагу, а создает сложнейшую графеновую мультислойную структуру

А вот если удается расщепить такую структуру до одного слоя, тогда получается истинный графен. Подобные расщепления и провели Нобелевские лауреаты по физике этого года Гейм и Новоселов. Им удалось расщепить графит с помощью скотча, и после исследования свойств этого «графитового слоя» выяснилось, что у него очень хорошие параметры для использования в микроэлектронике. Одним из замечательных свойств графена является высокая подвижность электронов. Говорят, графен станет незаменимым материалом для компьютеров, телефонов и прочей техники. Почему? Потому что в этой области идет тенденция на ускорение процедур обработки информации. Эти процедуры связаны с тактовой частотой. Чем выше рабочая частота, тем больше можно обработать операций в единицу времени. Поэтому скорость носителей заряда очень важна. Оказалось, что у графена носители заряда ведут себя как релятивистские частицы с нулевой эффективной массой. Такие свойства графена действительно позволяют надеяться, что можно будет создать устройства, способные работать на терагерцовых частотах, которые недоступны кремнию. Это одно из наиболее интересных свойств материала.

Нобелевские лауреаты по физике 2010 года Андрей Гейм и Константин Новоселов

Из графена можно получить гибкие и прозрачные пленки, что также очень интересно для целого ряда применений. Еще одним плюсом является то, что это очень простой и очень легкий материал, легче кремния; к тому же в природе углерода предостаточно. Поэтому если действительно найдут способ использовать этот материал в высоких технологиях, то, конечно, он будет иметь хорошие перспективы и, возможно, заменит в коне концов кремний.

Но есть одна фундаментальная проблема, связанная с термодинамической устойчивостью низкоразмерных проводников. Как известно, твердые тела подразделяются на различные пространственные системы; например, к системе 3D (three-dimensional) относят объемные кристаллы. Двумерные (2D) системы представлены слоистыми кристаллами. А цепочечные структуры относятся к одномерной (1D) системе. Так вот низкоразмерные – 1D цепочечные и 2D слоистые структуры с металлическими свойствами с термодинамической точки зрения не устойчивы, при понижении температуры они стремятся превратиться в систему, которая теряет металлические свойства. Это так называемые переходы «металл-диэлектрик». Насколько устойчивы будут графеновые материалы в каких-то устройствах, еще предстоит выяснить. Конечно, графен интересен, как с точки зрения электрофизических свойств, так и механических. Считается, что монолитный слой графена очень прочен.

Алла Аршинова: Прочнее алмаза?

Владимир Федоров: Алмаз обладает трехмерными связями, механически он очень прочный. У графита в плоскости межатомные связи такие же, может, и прочнее. Дело в том, что с термодинамической точки зрения алмаз должен превращаться в графит, потому что графит стабильнее алмаза. Но в химии есть два важных фактора, которые управляют процессом превращения: это термодинамическая стабильность фаз и кинетика процесса, то есть скорость превращения одной фазы в другую. Так вот, алмазы в музеях мира лежат уже столетиями и в графит не хотят превращаться, хотя должны. Может быть, через миллионы лет они все-таки превратятся в графит, хотя было бы очень жалко. Процесс перехода алмаза в графит при комнатной температуре протекает с очень медленной скоростью, но если вы нагреете алмаз до высокой температуры, тогда кинетический барьер преодолеть будет легче, и это точно произойдет.

Графит в первозданном виде

Алла Аршинова: То, что графит можно расщеплять на очень тонкие чешуйки, известно уже давно. В чем же тогда было достижение нобелевских лауреатов по физике 2010 года?

Владимир Федоров: Вы, наверное, знаете такого персонажа, как Петрик. После вручения Нобелевской премии Андрею Гейму и Константину Новоселову он заявил, что у него украли Нобелевскую. В ответ Гейм сказал, что, действительно, подобные материалы были известны очень давно, но им дали премию за изучение свойств графена, а не за открытие способа его получения как такового. На самом деле, их заслуга в том, что они смогли отщепить от высоко ориентированного графита очень хорошие по качеству графеновые слои и детально изучить их свойства. Качество графена очень важно, как и в кремниевой технологии. Когда научились получать кремний очень высокой степени чистоты, только тогда и стала возможна электроника на его основе. Такая же ситуация и с графеном. Гейм и Новоселов взяли очень чистый графит с совершенными слоями, сумели отщепить один слой и изучили его свойства. Они первые доказали, что этот материал обладает набором уникальных свойств.

Алла Аршинова: В связи с вручением Нобелевской премии ученым с русскими корнями, работающим заграницей, наши соотечественники, далекие от науки, задаются вопросом, можно ли было прийти к таким же результатам здесь, в России?

Владимир Федоров: Наверное, можно было. Просто они в свое время уехали. Их первая статья, опубликованная в Nature, написана в соавторстве с несколькими учеными из Черноголовки. По-видимому, наши российские исследователи тоже вели работу в этом направлении. Но завершить ее убедительным образом не получилось. Жалко. Возможно, одной из причин являются более благоприятные условия для работы в зарубежных научных лабораториях. Я недавно приехал из Кореи и могу сравнить условия работы, которые мне были там предоставлены, с работой дома. Так вот там я ничем не был озабочен, а дома – полно рутинных обязанностей, которые отнимают много времени и постоянно отвлекают от главного. Меня обеспечивали всем, что было необходимо, причем исполнялось это с поразительной быстротой. Например, если мне нужен какой-то реактив, я пишу записку — и на следующий день мне его привозят. Подозреваю, что у нобелевских лауреатов тоже очень хорошие условия для работы. Ну и им хватило упорства: они многократно пытались получить хороший материал и, наконец, достигли успеха. Они действительно потратили большое количество времени и сил на это, и премия в этом смысле вручена заслуженно.

Алла Аршинова: А какие именно преимущества дает графен по сравнению с кремнием?

Владимир Федоров: Во-первых, мы уже сказали, что он обладает высокой подвижностью носителей, как говорят физики, носители заряда не обладают массой. Масса всегда тормозит движение. А в графене электроны движутся таким образом, что можно считать их не обладающими массой. Такое свойство уникально: если и есть другие материалы и частицы со схожими свойствами, то встречаются они крайне редко. Этим графен оказался хорош, этим же он выгодно отличается от кремния.

Во-вторых, графен обладает высокой теплопроводностью, и это очень важно для электронных устройств. Он очень легкий, а графеновый лист — прозрачный и гибкий, его можно свернуть. Графен может быть и очень дешевым, если разработают оптимальные методы его получения. Ведь «скотч-метод», который продемонстрировали Гейм и Новоселов, не является промышленным. Этим методом получают образцы действительно высокого качества, но в очень малых количествах, только для исследований.

И сейчас химики разрабатывают другие способы получения графена. Ведь нужно получать большие листы, чтобы поставить производство графена на поток. Этими вопросами занимаемся и мы здесь, в Институте неорганической химии. Если научатся синтезировать графен с помощью таких методов, которые бы позволили получать материал высокого качества в промышленных масштабах, тогда есть надежда, что он произведет революцию в микроэлектронике.

Алла Аршинова: Как, наверное, все уже знают из СМИ, графеновую мультислойную структуру можно получить с помощью карандаша и липкой ленты. А в чем заключается технология получений графена, применяемая в научных лабораториях?

Владимир Федоров: Существует несколько методов. Один из них известен очень давно, он основан на использовании оксида графита. Его принцип довольно прост. Графит помещают в раствор высоко окисляющих веществ (например, серная, азотная кислота и др.), и при нагревании он начинает взаимодействовать с окислителями. При этом графит расщепляется на несколько листочков или даже на одноатомные слои. Но полученные монослои не являются графеном, а представляют собой окисленный графен, в котором есть присоединенный кислород, гидроксильные и карбоксильные группы. Теперь главная задача заключается в том, чтобы эти слои восстановить до графена. Поскольку при окислении получаются частички небольшого размера, то надо их каким-то образом склеить, чтобы получить монолит. Усилия химиков направлены на то, чтобы понять, как можно из оксида графита, технология получения которого известна, сделать графеновый лист.

Есть еще один метод, также достаточно традиционный и известный уже давно — это химическое осаждение из газовой фазы с участием газообразных соединений. Его суть заключается в следующем. Сначала реакционные вещества возгоняют в газовую фазу, потом их пропускают через нагретую до высоких температур подложку, на которой и осаждаются нужные слои. Когда подобран исходный реагент, например, метан, его можно разложить таким способом, чтобы водород отщепился, а углерод остался на подложке. Но эти процессы трудно контролируемы, и идеальный слой получить сложно.

Графен— одна из аллотропных модификаций углерода

Существует и другой метод, который сейчас начинает активно применяться, – метод использования интеркалированных соединений. В графит, как и в другие слоистые соединения, можно помещать между слоями молекулы различных веществ, которые называются «молекулы гостя». Графит – это матрица «хозяина», куда мы поставляем «гостей». Когда происходит интеркаляция гостей в решетку хозяина, естественно, слои разъединяются. Это как раз то, что и требуется: процесс интеркаляции расщепляет графит. Интеркалированные соединения являются очень хорошими предшественниками для получения графена — нужно только вынуть оттуда «гостей» и не дать слоям снова схлопнуться в графит. В этой технологии важным этапом является процесс получения коллоидных дисперсий, которые можно превращать в графеновые материалы. Мы в нашем институте поддерживаем именно такой подход. На наш взгляд, это самое продвинутое направление, от которого ожидаются очень хорошие результаты, потому что из различного рода интеркалированных соединений можно наиболее просто и эффективно получать изолированные слои.

По структуре графен похож на соты. И с недавних пор он стал очень «сладкой» темой

Выделяют и еще один способ, который называют тотальный химический синтез. Он заключается в том, что из простых органических молекул собирают нужные «соты». Органическая химия обладает очень развитым синтетическим аппаратом, который позволяет получать огромное разнообразие молекул. Поэтому методом химического синтеза пытаются получить графеновые структуры. Пока что удалось создать графеновый лист, состоящий примерно из двухсот атомов углерода.

Разрабатываются и другие подходы к синтезу графена. Несмотря на многочисленные проблемы, наука в этом направлении успешно продвигается вперед. Есть большая доля уверенности в том, что существующие препятствия будут преодолены, и графен приблизит новую веху в развитии высоких технологий.

Импорт графеновых продуктов

В 2022 году началось продвижение импортных графеновых продуктов на российский рынок. Так, ООО «Альфарок Материалс» (Москва) ввезло из Испании фотокаталитическую краску Graphenstone. Андрей Буслаев, исполнительный директор ООО «ГК Генезис ГНП» (Москва), сообщил «Ъ-Науке» о выводе в августе нынешнего года на рынок России и СНГ швейцарского моторного масла «Genesis GNP Engine Oil» и масла трансмиссионного «Genesis GNP Gear Oil» с присадками графена.

Испытания показали, что коэффициент трения в новом машинном масле снижен с 0,12 до 0,02, коэффициент износа двигателя уменьшается в два-три раза, а расход топлива автомобиля падает на 30% на атмосферных двигателях и на 15% для турбомоторов.

Новый материал

Нанотехнологии позволили ученым изготовить углеродную пластину более твердую, чем алмаз, толщина которой составляет всего один атом. Состоит она из графена. Это самый тонкий и прочный материал во всей Вселенной, который пропускает электричество намного лучше кремния компьютерных чипов.

Открытие графена считается настоящим революционным событием, которое позволит многое изменить в нашей жизни. Этот материал обладает настолько уникальными физическими свойствами, что в корне меняет представление человека о природе вещей и веществ.

Лю Чжуньфань, Пекинский графеновый институт

— Укажите, пожалуйста, ведущие компании по производству графена в Китае.
— Согласно Глобальному индексу графена, опубликованному китайской службой экономической информации (CEIS) в 2022 году, Китай и США лидируют в графеновой промышленности. В целом производство графена можно классифицировать как CVD-метод получения графеновой пленки и методы получения графеновых порошков. Некоторые примеры китайских производителей графена: CVD-пленки (Beijing Graphene Institute, Chongqing Graphene Technology Co., Ltd.,2D Carbon (Changzhou) Tech Inc., Ltd., Wuxi Graphene film Co., Ltd., Nanjing Ji Cang Nano Tech Co., Ltd.); графеновых порошков (SuperC (Dongguan) New Materials Technology Co., Ltd., Ningbo Morsh Co., Ltd., Qingdao Haoxin Technology Co., Ltd., Xiamen Knano Graphene Technology Co., Ltd., Baotailong Co. Ltd., The Sixth Elements (Changzhou) Materials Technology Co., Ltd., Shandong Leadernano Technology Co., Ltd.).

Читать

Смотреть

Финансовые затруднения при реализации проектов

На сегодняшний день имеет место такая проблема, как огромное количество фирм занимающихся исследованиями в области источников питания. Новые разработки появляются как грибы после дождя, а очевидного фаворита среди всей этой братии — не наблюдается. Подобное положение дел влияет и на инвесторов, которые явно не спешат расставаться со своими капиталами, при вложении денежных средств в новые затеи.

Денег кстати, нужно довольно много: для организации небольшой производственной линии по выпуску высокотехнологичных батарей, потребуется что-то около 500 млн. долларов. Кроме того, создать перспективный источник энергии — это только половина дела, научный проект нужно ещё поставить на «коммерческие рельсы», что не является лёгким манёвром.

Создатели мобильных девайсов или производители электрокаров, будут подвергать тестам новое оборудование годами, перед тем как утвердить выгодный для себя вариант. Инвестиции за этот период не окупятся, а фирма-разработчик будет работать в убыток. Думаете, если свежая технология оказалась на рынке — всё, успех, удача, дело сделано и игра сыграна? Как бы не так — этого оказывается тоже ещё мало. Дело в том, что разработчику новинки, предстоит претерпеть сложный период адаптации и поиска потребителей. Однако таких обстоятельств, на данный момент, всё-равно, пока ни у кого не было, поэтому до покупателей дело не доходило!

К примеру, вот две фирмы, Leyden Energy и A123 Systems, создавшие новые, вполне себе многообещающие технологии, которые так и не добрались до рынка. Почему? Причина оказалась банальной: не потянули по денежным средствам! Можно вспомнить и ещё парочку подающих надежду «аккумуляторных стартапов» — Seeo и Sakti3. Их прикупили сторонние фирмы, причём суммы сделок были намного ниже тех, на которые изначально надеялись первые инвесторы.

Такие электронные гиганты как Samsung, LG и Panasonic, на самом деле больше поощряют модернизацию уже имеющихся у них технологий, чем создание АКБ с нуля. Так что, на данный момент эти производители занимаются оптимизацией литий-ионных электронакопителей разработанных ещё в 70-х годах прошлого столетия. Остаётся только надеяться, что «чудо-графену» всё-таки удастся внести серьёзные коррективы в эти обстоятельства.

И много еще

Есть и другие применения графена, такие как добавки в бетон, антибактериальные ткани, фильтрующие и адсорбирующие графеновые материалы и прочее. Изучается применение графена в полевых транзисторах, в лазерах в качестве насыщающихся поглотителей для реализации режима пассивной самосинхронизации мод при генерации ультракоротких импульсов. Так как все эти применения были разработаны всего за несколько лет, то можно говорить о необходимости более подробного изучения свойств графена и наблюдаемых в нем эффектов для полного раскрытия потенциала этого углеродного наноматериала, который, по прогнозам, весьма велик.

История открытия

Графен – это пластина, представляющая собой кристаллическую решётку из двухмерных кристаллов углерода. Автором нового материала, учёным Уоллесом, в 1947 году были замечены необычные свойства графена. Он утверждал, что вещество по своим характеристикам аналогично металлам.

Невозможность получения углерода в чистом виде в те времена объяснялось отсутствием должного оборудования. С появлением нанотехнологии в 2004 году учёными Новосёловым и Геймом был получен этот материал. Выходцам из России, работающим в Манчестерском университете, за графен присуждена Нобелевская премия.

Q-углерод

Среди недавно открытых форм углерода можно отметить так называемый Q-углерод. Впервые он был синтезирован американскими материаловедами из Университета Северной Каролины в 2015 году. Ученые облучали аморфный углерод с помощью мощного лазера, локально разогревая материал до 4000 градусов Цельсия. В результате примерно четверть всех атомов углерода в веществе принимала sp2-гибридизацию, то есть то же электронное состояние, что и в графите. Остальные атомы Q-углерода сохраняли гибридизацию, характерную для алмаза.

Q-углерод

ncsu.edu

Поделиться

В отличие от алмаза, графита и других форм углерода, Q-углерод оказался ферромагнетиком, таким как магнетит или железо. При этом его температура Кюри составила около 220 градусов Цельсия — только при таком нагреве материал терял свои магнитные свойства. А при допировании Q-углерода бором физики получили еще один углеродный сверхпроводник, с температурой перехода уже около 58 кельвинов.

Двумерный мир

Материалы на основе графена изменят мир, потому что они сами по себе — это уже другой мир, двумерный. Хотя будет это не революционным новшеством, а, как подчеркивает Андрей Гейм, медленной диффузией материала в нашу повседневную жизнь. Рисуя эти картины светлого будущего, нужно ответить на неизбежный вопрос: где же во всем этом Россия, родина нобелевских лауреатов, получивших премию за передовые опыты с графеном? Если в области фундаментальных исследований у нас есть определенные результаты, то о лидерстве в области прикладных разработок говорить пока не приходится, хотя именно конкретные технологические решения будут формировать основную часть рынка графена в ближайшем будущем. О том, что поможет нашей стране не упустить место под солнцем графеновых технологий — в следующем материале серии.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]