Электродвижущая сила. Закон Ома для полной цепи

Для поддержания электрического тока в проводнике длительное время, необходимо чтобы от конца проводника, имеющего меньший потенциал (учтем, что носители тока предполагаются положительными зарядами) постоянно убирались доставляемые током заряды, при этом к концу с большим потенциалом заряды постоянно подводились. То есть следует обеспечить круговорот зарядов. В этом круговороте заряды должны перемещаться по замкнутому пути. Движение носителей тока при этом реализуется при помощи сил неэлектростатического происхождения. Такие силы именуются сторонними. Получается, что для поддержания тока нужны сторонние силы, которые действуют на всем протяжении цепи или на отдельных участках цепи.

Определение и формула ЭДС

Определение

Скалярная физическая величина, которая равна работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС)

, действующей в цепи или на участке цепи. ЭДС обозначается $\varepsilon$ . Математически определение ЭДС запишем как:
$$\varepsilon=\frac{A}{q}(1)$$
где A – работа сторонних сил, q – заряд, над которым производится работа.

Электродвижущая сила источника численно равна разности потенциалов на концах элемента, если он разомкнут, что дает возможность измерить ЭДС по напряжению.

ЭДС, которая действует в замкнутой цепи, может бытьопределена как циркуляция вектора напряжённости сторонних сил:

$$\varepsilon=\oint_{L} \bar{E}^{*} d \bar{l}(2)$$

где $\bar{E}^{*}$ — напряженность поля сторонних сил. Если напряженность поля сторонних сил не равна нулю только в части цепи, например, на отрезке 1-2, тогда интегрирование в выражении (2) можно вести только по данному участку. Соответственно, ЭДС, действующая на участке цепи 1-2 определяется как:

$$\varepsilon=\int_{1}^{2} \bar{E}^{*} d \bar{l}(3)$$

Формула (2) дает самое общее определение ЭДС, которое можно использовать для любых случаев.

ИНФОФИЗ

Кратковременный ток в проводнике можно получить, если соединить этим проводником два заряженных проводящих тела, которые имеют различный потенциал. Ток в проводнике исчезнет, когда потенциал тел станет одинаковым. Для существования электрического тока
в проводнике необходимо создать в немидлительное время поддерживатьэлектрическое поле.
Постоянный электрический ток может быть создан только в замкнутой цепи

, в которой свободные носители заряда циркулируют по замкнутым траекториям. При перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю. Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил
неэлектростатического происхождения
. Поле внутри проводников, составляющих замкнутую цепь должен поддерживать источник электрической энергии.

Устройства, способные создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. называются
источниками постоянного тока
.

Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются
сторонними силами
.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против

сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

В цепь включают также потребители

электрической энергии,
в которых ток выполняет полезную работу.
Кроме того, в цепь включают
соединительные провода
и
выключатель (рубильник)
для замыкания и размыкания цепи. Простая электрическая цепь состоит из источника тока, потребителя, подводящих проводов и выключателя.

Цепь постоянного тока можно разбить на определенные участки. Те участки, на которых не действуют сторонние силы (то есть участки, не содержащие источников тока), называются однородными

. Участки, включающие источники тока, называются
неоднородными
.

На рисунке изображена замкнутая цепь постоянного тока. Участок цепи (cd

) является однородным.

Часть цепи, в которой заряды движутся по направлению действия электрических сил (a-d-c-b)

называют
внешней
, а часть цепи, в которой заряды движутся в сторону действия сторонних сил (
a-b
), называют
внутренней
.

Те точки, в которых внешняя цепь граничит с внутренней называют полюсами.

У одного из полюсов имеется самый большой потенциал, а у другого самый маленький потенциал по сравнению с другими точками цепи. Полюс с наибольшим потенциалом называют
положительным
и обозначают знаком «+», а полюс с наименьшим потенциалом называют
отрицательным
и обозначают знаком «-».

При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы.

Для существования постоянного тока необходимо наличие в электрической цепи источника постоянного тока —

устройства, способного создавать и поддерживать разности потенциалов на участках цепи. Возникновение разности потенциалов на полюсах любого источника является результатом разделения в нем положительных и отрицательных зарядов. Это разделение происходит благодаря работе, совершаемой сторонними силами. При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется
электродвижущей силой источника (ЭДС):
ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда.

Электродвижущая сила, как и разность потенциалов, измеряется в вольтах

[В].

Чтобы измерить ЭДС источника, надо присоединить к нему вольтметр при разомкнутой цепи.

Источник тока является проводником и всегда имеет некоторое сопротивление, поэтому ток выделяет в нем тепло. Это сопротивление называют внутренним сопротивлением источника

и обозначают
r
.

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Работа сторонних сил по перемещению единичного заряда равна по определению электродвижущей силе ε12, действующей на данном участке. Поэтому полная работа по перемещению единичного заряда равна

Величину U

12 , равную работе по перемещению единичного заряда, принято называть
напряжением
на участке цепи 1–2.

Если цепь состоит из внешней части сопротивлением R и внутренней сопротивлением r, то, согласно закону сохранения энергии, ЭДС источника будет равна сумме напряжений на внешнем и внутреннем участках цепи, т.к. при перемещении по замкнутой цепи заряд возвращается в исходное положение , где IR – напряжение на внешнем участке цепи, а Ir — напряжение на внутреннем участке цепи.

Таким образом, для участка цепи, содержащего ЭДС:

Эта формула выражает закон Ома для полной цепи

:
сила тока в полной цепи прямо пропорциональна электродвижущей силе источника и обратно пропорциональна сумме сопротивлений внешнего и внутреннего участков цепи.
На рисунке изображена замкнутая цепь постоянного тока.

Продолжение лекции

Закон Ома для произвольного участка цепи

Участок цепи, на котором действуют сторонние силы, называют неоднородным. Для него выполняется равенство:

$$U_{12}=\varphi_{1}-\varphi_{2}+\varepsilon_{12}(4)$$

где U12=IR21 – падение напряжения (или напряжение) на участке цепи 1-2 (I-сила тока); $\varphi_{1}-\varphi_{2}$ – разность потенциалов концов участка; $\varepsilon_12$ – электродвижущая сила, которую содержит участок цепи. $\varepsilon_12$ равна алгебраической сумме ЭДС всех источников, которые находятся на данном участке.

Следует учитывать, что ЭДС может быть положительной и отрицательной. ЭДС называют положительной, если она увеличивает потенциал в направлении тока (ток течет от минуса к плюсу источника).

Источник тока. Сторонние силы. ЭДС источника тока

Остановимся на отдельных закономерностях тока проводи­мости. Пусть на концах проводника длиной l

имеется разность по­тенциалов

Δφ=φ1–φ2=U, которая создает внутри него электри­ческое поле напряженностью Е, направленное в сторону падения потенциала (рис. 92).

j
l

Рис. 92

.

При этом в проводнике возникнет ток от большего потен­циала φ1 к меньшему φ2.

Движение зарядов от φ1 к φ2 приводит к снижению большего (φ1) и повышению меньшего (φ2) потенциала, т.е. к выравниванию потенциалов. Как только потенциалы выравниваются, электрическое поле в проводнике исчезнет и ток прекратится. Таким образом, для поддержания электрического тока необходимо иметь специальные устройства, которые бы поддерживали на его концах разность по­тенциалов. Такое устройство называется источником тока. Источ­никами тока являются электрические генераторы, гальванические и термоэлементы, аккумуляторы. Направление тока в устройстве про­тивоположно направлению тока в проводнике. Источник тока вы­полняет и другую роль – он замыкает цепь, по которой осуществля­ется непрерывное движение зарядов. Ток течет по внешней части цепи – проводнику и по внутренней – источнику тока. Источник тока имеет два полюса: положительный с более высоким потенциа­лом и отрицательный – с более низким. При разомкнутой цепи на отрицательном полюсе (выводе) источника тока образуется избыток электронов, а на положительном – недостаток. Разделение зарядов в источнике тока производится с помощью внешних сил, так назы­ваемых сторонних, направленных против кулоновских сил, дейст­вующих на разноименные заряды в проводниках самого источника тока. Природа этих сторонних сил может быть самой различной (химической, механической, электромагнитной).

Рис.93

Если цепь, со­стоящая из проводника и источника тока, замкнута, то по ней про­ходит ток и при этом совершается работа сторонних сил Аст. (рис. 93). Эта работа складывается из работы, совершаемой против сил электрического поля внутри источника тока ( Аист.) и работы, совершаемой против механических сил сопротивления среды ис­точника ( А’ ), т.е. Аст. = Аист + А’.

Величина, равная отношению работы, которую совершают сторон­ние силы при перемещении точечного положительного заряда Q вдоль всей цепи, (включая и источник тока), к величине заряда Q называют ЭДС источника тока ε

ε

= .

Работа против сил электрического поля (по определению) равна

Аист. = Q ( φ1 – φ2).

Если полюсы источника разомкнуты, то А’ = 0, и тогда из формулы ε

следует ε

= φ1 – φ2, т.е. ЭДС источника тока при разомкнутой внешней цепи равна раз­ности потенциалов, которая создается на его полюсах.

Остановимся на отдельных закономерностях тока проводи­мости. Пусть на концах проводника длиной l

имеется разность по­тенциалов

Δφ=φ1–φ2=U, которая создает внутри него электри­ческое поле напряженностью Е, направленное в сторону падения потенциала (рис. 92).

j
l

Рис. 92

.

При этом в проводнике возникнет ток от большего потен­циала φ1 к меньшему φ2.

Движение зарядов от φ1 к φ2 приводит к снижению большего (φ1) и повышению меньшего (φ2) потенциала, т.е. к выравниванию потенциалов. Как только потенциалы выравниваются, электрическое поле в проводнике исчезнет и ток прекратится. Таким образом, для поддержания электрического тока необходимо иметь специальные устройства, которые бы поддерживали на его концах разность по­тенциалов. Такое устройство называется источником тока. Источ­никами тока являются электрические генераторы, гальванические и термоэлементы, аккумуляторы. Направление тока в устройстве про­тивоположно направлению тока в проводнике. Источник тока вы­полняет и другую роль – он замыкает цепь, по которой осуществля­ется непрерывное движение зарядов. Ток течет по внешней части цепи – проводнику и по внутренней – источнику тока. Источник тока имеет два полюса: положительный с более высоким потенциа­лом и отрицательный – с более низким. При разомкнутой цепи на отрицательном полюсе (выводе) источника тока образуется избыток электронов, а на положительном – недостаток. Разделение зарядов в источнике тока производится с помощью внешних сил, так назы­ваемых сторонних, направленных против кулоновских сил, дейст­вующих на разноименные заряды в проводниках самого источника тока. Природа этих сторонних сил может быть самой различной (химической, механической, электромагнитной).

Рис.93

Если цепь, со­стоящая из проводника и источника тока, замкнута, то по ней про­ходит ток и при этом совершается работа сторонних сил Аст. (рис. 93). Эта работа складывается из работы, совершаемой против сил электрического поля внутри источника тока ( Аист.) и работы, совершаемой против механических сил сопротивления среды ис­точника ( А’ ), т.е. Аст. = Аист + А’.

Величина, равная отношению работы, которую совершают сторон­ние силы при перемещении точечного положительного заряда Q вдоль всей цепи, (включая и источник тока), к величине заряда Q называют ЭДС источника тока ε

ε

= .

Работа против сил электрического поля (по определению) равна

Аист. = Q ( φ1 – φ2).

Если полюсы источника разомкнуты, то А’ = 0, и тогда из формулы ε

следует ε

= φ1 – φ2, т.е. ЭДС источника тока при разомкнутой внешней цепи равна раз­ности потенциалов, которая создается на его полюсах.

Электродвижущая сила как мера сторонних сил

Итак, действие источника тока заключается в том, чтобы с помощью сторонних сил производить работу по переносу электрических зарядов между полюсами против действия электрического поля. Для характеристики этой работы существует специальная мера, называемая электродвижущей силой (ЭДС, обозначается буквой $\mathscr{E}$). Ее физический смысл состоит в том, что это работа сторонних сил по переносу единицы заряда. То есть, ЭДС равна отношению работы, произведенной сторонними силами по переносу заряда против действия электрического поля, к величине этого заряда:

$$\mathscr{E} = {A_{ст}\over q}$$

Из данной формулы можно получить единицу измерения ЭДС. Она такая же, как у напряжения – Вольт (напомним, 1 В = 1 Дж / 1 Кл).

ЭДС обычной пальчиковой батарейки 1.5В. То есть, в ней сторонние силы химической природы для переноса 1Кл заряда совершают работу 1.5 Дж.

Электродвижущая сила. Закон Ома для полной цепи

Как вы знаете, для существования электрического тока, необходимо наличие электрического поля. Причем, это поле должно постоянно поддерживаться неким источником тока. Сегодня мы поговорим об основной характеристике источника тока, которая называется электродвижущей силой (или, сокращенно, ЭДС). Для начала рассмотрим простой опыт: возьмем два противоположно заряженных шарика и соединим их проводником. В этом случае, в проводнике возникнет электрический ток, но он будет очень кратковременным. Дело в том, что очень скоро произойдет перераспределение заряда, и потенциалы шариков уравняются. Значит, перестанет существовать электрическое поле.

Из этого можно сделать вывод, что для поддержания постоянного тока необходимо наличие неких сил неэлектрического происхождения, чтобы эти силы могли перемещать заряды против поля. Такие силы называются сторонними силами. То есть, сторонние силы — это любые силы, которые действуют на электрические заряды, но при этом не являются силами электрического происхождения

. Например, это могут быть силы, действующие на заряды со стороны магнитного поля — это используется в генераторах.

В батареях или аккумуляторах работу по разделению электрических зарядов выполняют химические реакции.

Еще один аргумент, который мы можем привести — это то, что работа кулоновских сил при перемещении заряда по замкнутому контуру, равна нулю

. А это значит, что какие-то другие силы должны обеспечивать ненулевую работу для поддержания разности потенциалов.

Устройство для поддержания электрического тока, называется источником тока.

В любом источнике тока сторонние силы действуют на заряды, совершая работу против кулоновских сил. Стало быть, характеристикой источника должна быть величина, не зависящая от величины заряда. Эта величина называется электродвижущей силой.
Электродвижущая сила равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру, к величине этого заряда:
Из формулы видно, что электродвижущая сила, как и напряжение, измеряется в вольтах:

Теперь, когда мы познакомились с ЭДС, мы можем перейти к изучению закона Ома для полной цепи. Полной цепью называется замкнутая цепь, включающая в себя источник тока.

Для удобства, мы рассмотрим простейшую электрическую цепь, состоящую только из источника тока, резистора и соединительных проводов:

Как мы уже сказали, источник тока характеризуется ЭДС. Тем не менее, любой источник тока обладает определенным сопротивлением, которое называется внутренним сопротивлением

. Закон Ома для полной цепи представляет собой связь между ЭДС, внутренним и внешним сопротивлением и силой тока в цепи. Для того, чтобы установить эту связь, воспользуемся законом сохранения энергии. Запишем, что работа сторонних сил равна произведению ЭДС источника и величины заряда:

Как вы знаете, каждый участок цепи выделяет то или иное количество теплоты. По закону Джоуля-Ленца, это количество теплоты вычисляется по формуле:

Исходя из закона сохранения энергии, мы можем приравнять это количество теплоты к работе сторонних сил:

Закон Ома для полной цепи звучит так: сила тока в замкнутой цепи равна отношению ЭДС источника к полному сопротивлению цепи:

Вывести закон Ома для полной цепи можно, рассуждая несколько иначе. Как мы знаем, при последовательном соединении полное напряжение цепи равно сумме падений напряжений на всех участках цепи:

Мы видим, что произведение силы тока и сопротивления резистора есть не что иное, как напряжение на этом резисторе. А произведение силы тока и внутреннего сопротивления — это падение напряжения на самом источнике:

Надо сказать, что внутреннее сопротивление источника во многих случаях пренебрежимо мало по сравнению с сопротивлением внешней части цепи. В этом случае, мы можем считать, что напряжение на зажимах источника примерно равно ЭДС (то есть падение напряжения на источнике считается приблизительно равным нулю):

Тем не менее, именно внутренним сопротивлением определяется сила тока в цепи при коротком замыкании. Напомним, что при коротком замыкании, внешнее сопротивление становится почти нулевым, поэтому в цепи резко возрастает сила тока:

Рассмотрим теперь цепь, содержащую несколько последовательно соединенных источников тока.

В этом случае, ЭДС всей цепи равна алгебраической сумме ЭДС отдельных источников.

В таких случаях необходимо выбрать так называемое «направление обхода тока». Это направление выбирается условно (в нашем случае — против часовой стрелки). Тогда, ,поскольку они стремятся вызвать ток в направлении обхода.

А,поскольку они стремятся вызвать ток в направлении, противоположном направлению обхода. Отрицательная ЭДС означает, что сторонние силы внутри источника совершают отрицательную работу. Таким образом, ЭДС нашей цепи будет равна:

В соответствии с правилами последовательного соединения, суммарное сопротивление цепи равно сумме внешнего сопротивления и внутренних сопротивлений всех источников тока:

Пример решения задачи.

Задача.

К источнику тока с внутренним сопротивлением 1 Ом подключили резистор с сопротивлением 15 Ом. После этого в цепь включили амперметр, который показал, что сила тока равна 5 А. Найдите работу сторонних сил внутри источника, совершенную за 2 минуты.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]