Общая электротехника и электроника. Основные определения

Теоретические основы электротехники (ТОЭ) являются дисциплиной, обязательной к изучению электриками. Прежде всего, на занятиях по ней изучаются общие представления об электрическом токе, его свойствах, параметрах и основных направлениях использования. Другим предметом изучения являются феномен электромагнетизма и способы его применения на практике. Ученики узнают, как построить электрическую цепь, как выполнять простые электромонтажные работы в квартире или частном доме, как устроены механизмы, использующие электроэнергию.

1.1. Основные пояснения и термины

Электротехника

— это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях получения, преобразования, передачи и потребления электрической энергии.

Электроника

— это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях получения, преобразования, передачи и потребления информации.

Каждая наука имеет свою терминологию. Запомним термины, понятия электротехники и электроники.

Электрическая цепь

— это совокупность устройств, предназначенных для производства, передачи, преобразования и использования электрического тока.

Все электротехнические устройства по назначению, принципу действия и конструктивному оформлению можно разделить на три большие группы.

Источники энергии, т.е. устройства, вырабатывающие электрический ток (генераторы, термоэлементы, фотоэлементы, химические элементы).

Электродвижущая сила

— электрическая разность потенциалов, создаваемая источником электрической энергии (электрохимическим элементом, механическим генератором, термоэлементом, фотоэлементом и пр.).

Приемники, или нагрузка, т.е. устройства, потребляющие электрический ток (электродвигатели, электролампы, электрические механизмы и т.д.).

Проводники, а также различная коммутационная аппаратура (выключатели, реле, контакторы и т.д.).

Направленное движение электрических зарядов называют электрическим током. Электрический ток может возникать в замкнутой электрической цепи. Электрический ток, направление и величина которого неизменны, называют постоянным током и обозначают прописной буквой I

.

Электрический ток, величина и направление которого не остаются постоянными, называется переменным током. Значение переменного тока в рассматриваемый момент времени называют мгновенным и обозначают строчной буквой i

.

Для работы электрической цепи необходимо наличие источников энергии. В любом источнике за счет сторонних сил неэлектрического происхождения создается электродвижущая сила. На зажимах источника возникает разность потенциалов или напряжение, под воздействием которого во внешней, присоединенной к источнику части цепи, возникает электрический ток. Различают активные и пассивные цепи, участки и элементы цепей. Активными называют электрические цепи, содержащие источники энергии, пассивными — электрические цепи, не содержащие источников энергии.

Линейная электрическая цепь

— это такая цепь, в которой ни один параметр цепи не зависит от величины или направления тока, или напряжения.

Нелинейная электрическая цепь

— это такая электрическая цепь, которая содержит хотя бы один нелинейный элемент. Параметры нелинейных элементов зависят от величины или направления тока, или напряжения.

Электрическая схема

— это графическое изображение электрической цепи, включающее в себя условные обозначения устройств и показывающее соединение этих устройств. На рис. 1.1 изображена электрическая схема цепи, состоящей из источника энергии, электроламп 1 и 2, электродвигателя 3.

Рис. 1.1

Для облегчения анализа электрическую цепь заменяют схемой замещения.

Схема замещения

— это графическое изображение электрической цепи с помощью идеальных элементов, параметрами которых являются параметры замещаемых элементов.

На рисунке 1.2 показана схема замещения.

Рис. 1.2

Безопасность и практика

Осваивая курс электротехники для начинающих, необходимо уделить особое внимание вопросам безопасности, поскольку несоблюдение определенных правил может привести к трагическим последствиям.

Первое правило, которому необходимо следовать, – обязательно знакомиться с инструкцией. У всех электроприборов в руководстве по эксплуатации всегда имеется раздел, который посвящен вопросам безопасности.

Важно! Выполнение рекомендаций позволит избежать травм и нанесения вреда имуществу.

Второе правило заключается в контроле состояния изоляции проводников. Все провода обязательно должны покрываться специальными материалами, не проводящими электричество (диэлектриками). Если изоляционный слой нарушен, в первую очередь, следует его восстановить, иначе возможно нанесение вреда здоровью. Кроме того, работу в целях безопасности с проводами и электрооборудованием следует производить только в специальной одежде, которая не проводит электричество (резиновые перчатки и диэлектрические боты).

Третье правило состоит в использовании для диагностики параметров электросети только специальных приборов. Ни в коем случае не стоит делать этого голыми руками или пробовать «на язык».

Обратите внимание! Пренебрежение данными элементарными правилами является основной причиной травм и несчастных случаев в работе электриков и электромонтеров.

1.2. Пассивные элементы схемы замещения

Простейшими пассивными элементами схемы замещения являются сопротивление, индуктивность и емкость. В реальной цепи электрическим сопротивлением обладают не только реостат или резистор, но и проводники, катушки, конденсаторы и т.д. Общим свойством всех устройств, обладающих сопротивлением, является необратимое преобразование электрической энергии в тепловую. Тепловая энергия, выделяемая в сопротивлении, полезно используется или рассеивается в пространстве. В схеме замещения во всех случаях, когда надо учесть необратимое преобразование энергии, включается сопротивление.

Сопротивление проводника определяется по формуле

(1.1)

где l — длина проводника; S — сечение; ρ — удельное сопротивление.

Проводимость

— это величина, обратная сопротивлению.

Сопротивление измеряется в омах (Ом), а проводимость — в сименсах (См).

Сопротивление пассивного участка цепи в общем случае определяется по формуле

где P — потребляемая мощность; I — ток. Сопротивление в схеме замещения изображается следующим образом:

Индуктивность

— это идеальный элемент схемы замещения, характеризующий способность цепи накапливать магнитное поле. Полагают, что индуктивностью обладают только индуктивные катушки. Индуктивностью других элементов электрической цепи пренебрегают.

Индуктивность катушки, измеряемая в генри [Гн], определяется по формуле

где W — число витков катушки; Ф — магнитный поток катушки, возбуждаемый током i.

На рисунке показано изображение индуктивности в схеме замещения.

Емкость

— это идеальный элемент схемы замещения, характеризующий способность участка электрической цепи накапливать электрическое поле. Полагают, что емкостью обладают только конденсаторы. Емкостью остальных элементов цепи пренебрегают.

Емкость конденсатора, измеряемая в фарадах (Ф), определяется по формуле:

где q — заряд на обкладках конденсатора; Uс — напряжение на конденсаторе.

На рисунке показано изображение емкости в схеме замещения

Электрический ток

Электрический ток (I) это направленное движение свободных носителей электрического заряда. В металлах свободными носителями заряда являются электроны, в плазме, электролите — ионы.
Единица измерения силы тока – ампер (А). Условно за положительное направление тока во внешней цепи принимают направление от положительно заряженного электрода (+) к отрицательно заряженному (-).

Получить решение по ТОЭ

Если направление тока в ветви неизвестно, то его выбирают произвольно. Если в результате расчета режима цепи, ток будет иметь отрицательное значение, то действительное направление тока противоположно произвольно выбранному.

Активные элементы схемы замещения

Любой источник энергии можно представить в виде источника ЭДС или источника тока. Источник ЭДС — это источник, характеризующийся электродвижущей силой и внутренним сопротивлением.Идеальным называется источник ЭДС, внутреннее сопротивление которого равно нулю.

На рис. 1.3 изображен источник ЭДС, к зажимам которого подключено сопротивление R. Ri — внутреннее сопротивление источника ЭДС. Стрелка ЭДС направлена от точки низшего потенциала к точке высшего потенциала, стрелка напряжения на зажимах источника U12 направлена в противоположную сторону от точки с большим потенциалом к точке с меньшим потенциалом.

Рис. 1.3

Ток

(1.2)

(1.3)

У идеального источника ЭДС внутреннее сопротивление Ri = 0, U12 = E. Из формулы (1.3) видно, что напряжение на зажимах реального источника ЭДС уменьшается с увеличением тока. У идеального источника напряжение на зажимах не зависит от тока и равно электродвижущей силе. Возможен другой путь идеализации источника: представление его в виде источника тока. Источником тока называется источник энергии, характеризующийся практически постоянной величиной тока и низкой внутренней проводимостью.

Идеальным называется источник тока, внутренняя проводимость которого равна нулю, а сопротивление — бесконечности.

Поделим левую и правую части уравнения (1.2) на Ri и получим

,

где — ток источника тока;

— внутренняя проводимость.

У идеального источника тока gi = 0 и J = I.

Ток идеального источника не зависит от сопротивления внешней части цепи. Он остается постоянным независимо от сопротивления нагрузки. Условное изображение источника тока показано на рис. 1.4.

Любой реальный источник ЭДС можно преобразовать в источник тока и наоборот. Источник энергии, внутреннее сопротивление которого мало по сравнению с сопротивлением нагрузки, приближается по своим свойствам к идеальному источнику ЭДС.

Рис. 1.4

Если внутреннее сопротивление источника велико по сравнению с сопротивлением внешней цепи, он приближается по своим свойствам к идеальному источнику тока.

1.4.Основные определения, относящиеся к схемам

Различают разветвленные и неразветвленные схемы. На рис. 1.5 изображена неразветвленная схема. На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений. Сопротивления соединительных проводов принимают равными нулю.

Разветвленная схема — это сложная комбинация соединений пассивных и активных элементов. На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений. Сопротивления соединительных проводов принимают равными нулю.

Рис. 1.5

Ветвь

— это участок электрической цепи, по которому проходит один и тот же ток.

узел

— это место соединения трех и более ветвей электрической цепи.

Узел, в котором сходятся две ветви, называется устранимым, то есть топологически это не узел. Топологическим, настоящим или неустранимым узлом является такой, в котором соединены три и большее число ветвей. Узел в схеме обозначается точкой.

Последовательным называют такое соединение участков цепи, при котором через все участки проходит одинаковый ток. При параллельном соединении все участки цепи присоединяются к одной паре узлов, находятся под одним и тем же напряжением. Любой замкнутый путь, включающий в себя несколько ветвей, называется контуром.

Рис. 1.6

Закон Ома

Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и мощность. Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.

Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:

  1. Сила тока: I = U/R (ампер).
  2. Напряжение: U = I x R (вольт).
  3. Сопротивление: R = U/I (ом).

Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким – на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов – напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.

Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.

1.5. Режимы работы электрических цепей

В зависимости от нагрузки различают следующие режимы работы: номинальный, режим холостого хода, короткого замыкания, согласованный режим. При номинальном режиме электротехнические устройства работают в условиях, указанных в паспортных данных завода-изготовителя. В нормальных условиях величины тока, напряжения, мощности не превышают указанных значений. Режим холостого хода возникает при обрыве цепи или отключении сопротивления нагрузки. Режим холостого хода является аварийным для источников тока. Режим короткого замыкания получается при сопротивлении нагрузки, равном нулю. Ток короткого замыкания в несколько раз превышает номинальный ток. Режим короткого замыкания является аварийным для источников напряжения. Согласованный режим — это режим передачи от источника к сопротивлению нагрузки наибольшей мощности. Согласованный режим наступает тогда, когда сопротивление нагрузки становится равным внутреннему сопротивлению источника. При этом в нагрузке выделяется максимальная мощность.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]