Время токовая характеристика для предохранителей и выключателей.

Здравствуйте, дорогие читатели! Сегодня узнаем, что такое время токовая характеристика (ВТХ), рассмотрим ВТХ на примере предохранителей и выключателей. И так…

Электрический ток обладает одной отличительной чертой: он способен протекать только по замкнутому контуру. Если же эту цепь разорвать, то его действие сразу прекращается. Это свойство нашло воплощение в работе максимальных токовых защит, основанных на использовании предохранителей и автоматических выключателей.

Они подбираются таким образом, чтобы могли длительное время выдерживать номинальное значение протекающего через них тока. Этим обеспечивается надёжность электроснабжения потребителей. В то же время предохранители и автоматические выключатели обладают защитными функциями: во время возникновения аварийных режимов в контролируемой схеме они разрывают проходящий через них опасный ток.

При этом в комплексе учитываются два фактора:

  1. величина протекающего тока нагрузки
  2. продолжительность его воздействия

Плавкая вставка предохранителя перегорает от теплового воздействия, созданного проходящим по ней током.

Автоматический выключатель тоже учитывает температурный перегрев схемы и размыкает свои силовые контакты за счет работы теплового расцепителя. В то же время в его составе имеется еще одно устройство — электромагнитный расцепитель, который реагирует на превышение электромагнитной энергии, возникающей даже в импульсном режиме.

Подробнее про устройство, принцип действия и особенности эксплуатации автоматических выключателей и предохранителей рассказано здесь:

Автоматический выключатель. Внутреннее устройство, характеристики.

Виды предохранителей. Тип, устройство и конструкция.

О работе всех этих устройств судят по определенным техническим характеристикам, которые принято называть время токовыми потому, что они точно определяют время срабатывания защит, учитывая его зависимость от кратности превышения тока аварийного режима относительно номинального состояния.

Время токовая характеристика (ВТХ) выражает графиками в декартовых координатах. По оси ординат располагают время, отсчитываемое в секундах, а абсцисс — отношение протекающего тока аварийного режима I к номинальной величине Iн коммутационного аппарата.

Для чего создается защитная характеристика у плавкой вставки

В целях правильной работы предохранителя внутри электрической схемы необходимо учитывать его:

  • технические возможности
  • условия проверок
  • назначение

Основные параметры защитной характеристики предохранителя

График срабатывания предохранителей при различных токах выражается кривой линией, разделяющей рабочее пространство координат на две части:

  1. рабочую область, в которой плавкая вставка остается целой и надежно обеспечивает протекание тока по защищаемой схеме
  2. зону протекания токов предельного отключения, в которой происходит разрыв электрической цепи

Первая часть на графике показана светло-зелёным цветом, а вторая выделена бежевым.

Защитная характеристика плавкой вставки предохранителя

Защитная характеристика у плавкой вставки лежит на границе этих двух зон. В пространстве рабочих токов предохранитель остается целым, а при увеличении их значений выше критического состояния перегорает.

Зона токов предельного отключения опасна для оборудования и должна быть отключена максимально быстро.

Защитная характеристика плавкой вставки выражает продолжительность отрезка времени от начала создания аварийного режима до момента его отключения, представленную в зависимости к превышения величины опасного тока над номинальным значением предохранителя.

Плавкая вставка характеризуется тремя видами токов:

  1. номинальным, который она способна выдерживать практически неограниченное время
  2. минимальным испытательным, под действием которого может проработать более одного часа
  3. максимальным испытательным, которое вызывает ее перегорание менее чем за один час

Плавкая вставка предохранителя защищает подключенную к ней схему от двух видов аварийных режимов:

  1. перегрузов повышенными нагрузками, которые отключаются с задержкой
  2. коротких замыканий — КЗ, требующих максимально быстрой ликвидации

Все эти режимы и виды токов учитываются при выборе предохранителя и плавкой вставки. Для этого разработаны математические соотношения, преобразованные графиками и таблицами в удобной форме.

Как создается защитная характеристика предохранителя

Плавкая вставка способна работать защитой только один раз. После этого она сгорает. Поэтому ее характеристику можно создать только косвенным путем.

Для этого на заводе выбирают случайным образом определённое количество образцов из каждой партии готовой продукции. Их используют для проведения дальнейших электрических испытаний под действием различных токов. По их результатам составляют таблицы и графики, которые позволяют судить о качестве выпущенной серии предохранителей.

Назначение защитной характеристики предохранителя

Плавкая вставка оценивается электрическими параметрами для решения чисто практической задачи: обеспечения правильного ее выбора по рабочим и защитным свойствам.

Для этого учитывают:

  • величину рабочего напряжения схемы, в которой должен работать предохранитель
  • предельный отключаемый ток у плавкой вставки, способный ее разорвать (отключить)
  • значение номинального тока предохранителя с учетом коэффициентов его нагрузки и отстройки от перегрузок.

Без использования защитной характеристики плавкой вставки правильно выбрать предохранитель для его надежной работы в электрической схеме невозможно.

Выбор предохранителя

Выбор предохранителя определяется исходными данными и особенностями конкретного приложения [1]:

  • Номинальный ток. Номинальный ток цепи определяет рейтинг тока предохранителя. Чтобы защититься от незапланированных срабатываний, рекомендуют использовать запас по току 25%. Например, если номинальный ток цепи составляет 7,5 А, то, с учетом запаса, следует выбирать предохранитель, ориентируясь на величину тока 10 А.
  • Рабочая температура также сильно влияет на выбор рейтинга тока предохранителя, поэтому для нормальной работы необходимо делать дополнительный запас. Например, если предполагается работа предохранителей серии 438 при температуре 75°С, то запас должен составлять около 15% (см. рисунок 2).

Рассмотрим пример. Допустим, предохранитель серии 438 должен работать при температуре 75°С и номинальном токе 1,5 А. Очевидно, что с учетом пунктов 1 и 2 для нормальной работы будет недостаточно предохранителя с рейтингом 1,5 А. Необходимый рейтинг тока с запасом составляет: 1,5 А/(0,75 × 0,85) ≈ 2,4 А → 2,5 А (наиболее близкий номинал).

  • Рабочее напряжение. Рейтинг напряжения предохранителя должен быть больше, чем максимально возможное напряжение в схеме.
  • Скорость срабатывания. По скорости срабатывания предохранители делятся на пять типов (FF – сверхбыстродействующие, F – быстродействующие, М – полузамедленные, Т – замедленные, ТТ – сверхзамедленные). Выбор конкретного предохранителя следует делать с учетом ампер-секундных характеристик, предоставляемых производителем.
  • Максимальный ток КЗ. Для предотвращения расплавления или взрыва предохранителя необходимо, чтобы его отключающая способность была выше максимального тока КЗ.
  • Требования к габаритам, типоразмеру и способу монтажа. В настоящее время существует широкий выбор предохранителей для поверхностного монтажа, монтажа в отверстия и для установки в специальные держатели. Выбор конкретной серии определяется особенностями каждого конкретного приложения.
  • Соответствие требованиям стандартов. Использование того или иного предохранителя допускается только в том случае, если он сертифицирован и соответствует требованиям установленных стандартов. Кроме группы стандартов ГОСТ Р МЭК 60127, существуют и другие стандарты. Например, для работы в условиях взрывоопасных сред предохранитель должен отвечать положениям ГОСТ 31610.11-2014 (IEC 60079-11:2011) «Взрывоопасные среды. Часть 11. Оборудование с видом взрывозащиты «искробезопасная электрическая цепь «i» (с Поправкой)».
  • Устойчивость к импульсным воздействиям. На этом пункте следует остановиться подробнее.

Этих данных хватит для выбора предохранителя, работающего в цепи с постоянной или переменной синусоидальной токовой нагрузкой, если эта нагрузка не превышает рейтинг тока предохранителя. Однако существует множество приложений, в которых нагрузка носит импульсный характер. Речь идет о пусковых токах и различных переходных процессах. В таких приложениях предохранитель должен выдерживать кратковременные импульсы тока, превышающие его рейтинг тока, и при этом не срабатывать.

Чтобы определить, сработает или не сработает предохранитель при возникновении заданного числа токовых импульсов, используют интеграл Джоуля I2t, который можно рассчитать вручную или с помощью специальных утилит. Рассмотрим каждый из способов отдельно.

Как работает время токовая характеристика у автоматического выключателя

На выбор время токовой характеристики оказывают влияние:

  • конструктивные особенности встроенных защит
  • конфигурация выбранного графика

Влияние конструкции защит автомата на форму его характеристики срабатывания

Обеспечением защитных свойств в автоматическом выключателе занимаются два встроенных устройства, работающие по принципам реле прямого действия. Они расцепляют силовые контакты автомата при превышении номинальных значений по критериям ограничения:

  1. тепловой нагрузки
  2. электромагнитного воздействия

Биметаллическая пластина теплового расцепителя воспринимает нагрев проводов обмотки. При его превышении она изгибается, выводя из удержания узел сцепления.

Принцип работы теплового расцепителя

Под действием усилия натяжения пружины поворачивается освобожденное от удержания подвижное коромысло, а его силовые контакты разрывают цепь питания.

У электромагнитного расцепителя отключение силовых контактов происходит за счет выбивания удерживающего рычага пружины ударом толкателя, которое происходит под воздействием тока аварийного режима.

Принцип работы электромагнитного расцепителя

В отличие от предохранителя с перегораемой плавкой вставкой оба этих устройства созданы для многоразового использования. Они позволяют оперативно восстанавливать отключения схемы после предотвращения ненормальных ситуаций.

Работа теплового расцепителя и электромагнитной отсечки входит в алгоритм отключения автоматического выключателя и комплексно учитывается при его срабатывании во время токовой характеристике.

Поскольку температура окружающей среды и биметаллической пластины влияют на скорость работы защит, то все измерения принято проводить при +30 градусах Цельсия.

График время токовой характеристики для автоматического выключателя представляет собой сложную линию, выделенную буквами АВС. Верхний участок АВ соответствует работе теплового расцепителя, а его нижняя часть ВС — электромагнитной отсечке.

Время токовая характеристика автоматического выключателя

Кварцевые предохранители

Кварцевые предохранители изготовляют для напряжений 6, 10 и 35 кВ для внутренней и наружной установки. Они относятся к группе токоограничивающих предохранителей.

Рис.4. Патрон кварцевого предохранителя типа ПКТ-10

Патрон предохранителя типа ПКТ для напряжений 3-35 кВ (рис.4) представляет собой фарфоровую или стеклянную трубку 1, плотно закрытую металлическими колпачками 2. Внутри трубки помещена плавкая вставка 3 в виде одной или нескольких параллельно включенных тонких медных проволок. В нижнем колпачке предусмотрен указатель срабатывания предохранителя 4. Патрон заполнен мелким кварцевым песком.

Длина проволок и, следовательно, длина патрона определяются номинальным напряжением. Поскольку градиент восстанавливающейся электрической прочности промежутка в кварцевом песке относительно невелик, длина проволоки должна быть велика. Чтобы поместить ее в патроне, приходится навивать проволоку винтообразно.

Характеристики тугоплавких вставок из меди (температура плавления 1080°С) могут быть улучшены напайкой капель олова или свинца, температура плавления которых значительно ниже (соответственно 200 и 327°С). При расплавлении металла напайки он растворяет в себе медь, вследствие чего вставка быстро разрушается при температуре значительно более низкой, чем температура плавления основного материала вставки.

Свойства материала, наполняющего патрон токоограничивающего предохранителя, существенно влияет на работу последнего.

Наполнитель должен удовлетворять следующим требованиям:

  • отводить тепло от плавкой вставки в нормальном рабочем режиме;
  • не выделять газа под действием высокой температуры дуги;
  • обладать достаточной электрической прочностью после разрыва цепи.

Как показал опыт, этим требованиям в наибольшей мере отвечает кварцевый песок.

Процесс отключения цепи токоограничивающим предохранителем при КЗ протекает следующим образом. При большом токе тонкая проволока плавится и испаряется в течение долей полупериода почти одновременно по всей длине. Зажигается дуга. Вследствие высокой температуры газа в канале дуги образуется местное давление (давление в патроне практически не повышается).

Ионизованные частички металла выбрасываются в радиальном направлении в зазоры между песчинками кварца. Здесь они быстро охлаждаются и деионизуются. Сопротивление дуги увеличивается настолько быстро, что ток резко снижается, не достигнув своего максимального значения, а напряжение на дуговом промежутке повышается (рис.5).

Рис.5. Осциллограммы тока и напряжения при отключении предохранителем типа ПКТ тока 20 кА при напряжении 6 кВ

Как видно из осциллограммы, напряжение у зажимов предохранителя превышает напряжение сети вследствие появления ЭДС самоиндукции, направленной согласно с напряжением сети. Коммутационные перенапряжения, возникающие при отключении цепи плавкими предохранителями, не должны превышать следующих значений:

Номинальное напряжение, кВ……3..6..10..20..35

Наибольшее допустимое перенапряжение по отношению к земле, кВ……16..26..40..82..126

Для ограничения перенапряжений принимают различные меры: применяют вставки ступенчатого сечения по длине, что затягивает процесс их плавления и удлинения дуги; параллельно основным рабочим вставкам включают вспомогательные вставки с искровым промежутком. В последнем случае при расплавлении рабочих вставок и резком повышении напряжения пробивается искровой промежуток вспомогательной вставки, которая также сгорает. Максимальное напряжение при этом уменьшается.

Токоограничивающая способность кварцевых предохранителей

Токоограничивающая способность кварцевых предохранителей характеризуется зависимостью наибольшего мгновенного значения пропускаемого предохранителем тока от периодической составляющей тока КЗ. Характер этой зависимости показал на рис.6.

Рис.6. Характеристики токоограничения кварцевых предохранителей

Наклонная прямая iуд дает значение ударного тока, соответствующего току Iп0 при отношении X/R=15,7 (Тa=0,05с). Наклонные прямые, обозначенные imax, определяют наибольшие мгновенные значения тока, пропускаемого предохранителями с номинальными токами плавких вставок Iном1, Iном2, Iном3 и т.д. Как видно из рисунка, ограничение тока имеет место при отключаемом токе Iп0, превышающем некоторое минимальное значение, зависящее от номинального тока вставки. Чем меньше последний, тем заметнее токоограничивающее действие предохранителя.

Кварцевые предохранители для защиты измерительных трансформаторов напряжения типа ПКН имеют неограниченную отключающую способность и могут быть установлены в РУ 6, 10, 35 кВ станций, подстанций большой мощности. Они отличаются от обычных кварцевых предохранителей типа ПК материалом плавкой вставки, изготовляемой из константановой проволоки с четырехступенчатым сечением. При КЗ плавление проволоки происходит ступенями. При этом сопротивление четвертой ступени (относительно большого сечения) служит в основном для ограничения тока КЗ до значений, соответствующих номинальному току отключения предохранителей типа ПК.

Время токовая характеристика, основные параметры графика

Учет влияния температуры

В отличие от защитной характеристики плавкой вставки предохранителя у автоматического выключателя график ВТХ представлен двумя линиями:

  1. верхней, учитывающей срабатывание защит непосредственно из холодного состояния +30О С
  2. нижней, созданной после повторного включения, когда конструкция автомата не успела остыть

Зона между этими двумя крайними графиками выделена цветом. При работе автоматического выключателя следует учитывать, что он может находиться где-то внутри показанной зоны. В этом случае время отключения аварийных токов несколько сокращается в прогретом состоянии и увеличивается в холодном. За счет этого создается разброс параметров срабатывания.

Температура конструктивных элементов может оказывать значительное влияние на время срабатывания автомата. Особенно актуальным это становится при проведении электрических проверок, требующих нескольких измерений. Для их повторов необходимо обеспечивать время на остывание защит до +30 градусов.

Деление ВТХ на зоны

Автоматические выключатели строго разделяют по зонам время токовой характеристики для выделения эксплуатационных областей:

  • внутри первой должно обеспечиваться надежное протекание рабочих токов
  • а во второй — происходить отключения аварийных режимов

Линия токов условного нерасцепления

С целью обозначения первой области на оси абсцисс графика выбрано значение 1,13 I/I ном. Его называют точкой условного нерасцепления. Ниже этих токов отключение автоматического выключателя не должно происходить.

При ее достижении автоматические выключатели с номинальным значением токов до 63 ампер должны отключаться через 1 час, а с большими номиналами — через два.

Время токовая характеристика автоматического выключателя

Местоположение точки условного расцепления в обязательном порядке указывается на графике ВТХ.

Линия токов условного расцепления

Точка на оси абсцисс с величиной 1,45 I/I ном — это второе граничное значение зоны токов условного расцепления и нерасцепления силовых контактов.

Время токовая характеристика автоматического выключателя

Точка 1,45 I/I ном характеризует токи условного расцепления, она тоже обозначается на всех графиках ВТХ. При достижении подключенной к автомату нагрузки такой величины он должен отключиться за время:

  • меньшее, чем 1 час, если его номинал до 63 ампер
  • не дольше двух часов, когда номинальный ток превышает эту величину в 63 ампера

Вышеприведённый график показывает, что у выбранного автоматического выключателя время отключения аварийного режима из холодного состояния составляет 1 час, а при его нагреве может уменьшиться вплоть до 40 секунд.

Газогенерирующие плавкие предохранители

Газогенерирующие плавкие предохранители (их называют также стреляющими предохранителями) предназначены для наружной установки в устройствах 35 и 110 кВ.

Рис.2. Патрон газогенерирующего плавкого предохранителя типа ПВТ-35

На рис.2 показан патрон предохранителя типа ПВТ-35 (предохранитель выхлопной для защиты силовых трансформаторов и линий напряжением 35 кВ). В корпус патрона 1 помещены трубки 2 и 3 из винипласта, соединенные между собой стальным патрубком 4, а также плавкая вставка 5, прикрепленная одним концом к токоведущему стержню 6, а вторым — к гибкому проводнику 7 с наконечником 8.

Рис.3. Газогенерирующий плавкий предохранитель типа ПВТ-35

Патрон устанавливается на основании предохранителя (рис.3), состоящем из цоколя 1, двух опорных изоляторов 2 с головками — верхней 3 и нижней 4 с зажимами для крепления проводников. На нижней головке укреплен контактный нож 5, снабженный пружиной и сцепленный с наконечником патрона. При перегорании плавкой вставки контактный нож освобождается и, откидываясь под действием пружины, тянет за собой гибкий проводник. Под действием дуги стенки винипластовых трубок выделяют газ, давление в патроне повышается и дуга гасится в потоке газа, вытекающего из патрона через нижнее отверстие, а также через клапан бокового отверстия патрубка. Срабатывание предохранителя сопровождается звуковым эффектом, похожим на ружейный выстрел. Гибкий проводник выбрасывается из патрона. Между контактным ножом и концом трубки образуется воздушный промежуток, обеспечивающий изоляцию в месте разрыва. Номинальный ток отключения предохранителя типа ПВТ-35 составляет 3,2 кА.

Практическое применение параметров ВТХ

Анализ использования время токовой характеристики автоматических выключателей по токам условного расцепления силовых контактов позволяет учитывать длительность протекания перегрузок в подключенной электрической схеме. Это важно делать потому, что они могут повредить оборудование.

Например, при выборе автомата с номиналом на 16 ампер и нахождении его в холодном состоянии ток условного расцепления в 1,45∙16=23,2 ампера будет действовать на подключенную электропроводку в течение одного часа. Этого времени вполне достаточно для того, чтобы перегреть изоляцию медных проводов сечением 1,5 мм кв и вывести ее из строя, создать условия для возникновения пожара. А случаи защиты таких жил, да и алюминиевых на 2,5 мм кв, подобными автоматами еще часто встречаются на практике.

Чтобы исключить подобные ситуации рекомендуется внимательно анализировать время токовую характеристику автоматических выключателей применительно к подключенной к ним нагрузке. Для облегчения их выбора создана таблица соответствия номинальных токов и площадей поперечного сечения медных жил кабелей и проводов.

Таблица выбора автоматических выключателей по номинальному току и сечению жил кабельной линии

Производители автоматических выключателей всю свою продукцию проверяют на соответствие с принятыми стандартами. Основные требования к автоматам изложены в ГОСТ Р 50345—2010. Однако на некоторых участках время токовые характеристики у каждого завода могут незначительно отличаться. Эту особенность необходимо учитывать при выборе определенной модели и ее проверках.

Нормативные документы

Безопасность является важнейшим фактором как в производственных процессах, так и в повседневной жизни людей. Поэтому предохранители должны в обязательном порядке отвечать жестким требованиям существующих стандартов безопасности. Любой официальный производитель указывает, каким стандартам безопасности отвечает его продукция.

В различных странах существуют собственные регулирующие органы и нормативные акты. Для отечественного рынка интерес представляют в первую очередь стандарты МЭК. В частности:

  • ГОСТ Р МЭК 60127-1-2005 Миниатюрные плавкие предохранители. Часть 1. Терминология для плавких предохранителей и общие требования к миниатюрным плавким вставкам;
  • ГОСТ МЭК 60127-2-2013 Предохранители миниатюрные плавкие. Часть 2. Трубчатые плавкие вставки;
  • ГОСТ МЭК 60127-3-2013 Предохранители миниатюрные плавкие. Часть 3. Субминиатюрные плавкие вставки;
  • ГОСТ МЭК 60127-4-2011 Миниатюрные плавкие предохранители. Часть 4. Универсальные модульные плавкие вставки для объемного и поверхностного монтажа;
  • ГОСТ 30801.5-2012 (МЭК 60127-5:1989) Миниатюрные плавкие предохранители. Руководство по сертификации миниатюрных плавких вставок;
  • ГОСТ МЭК 60127-6-2013 Предохранители миниатюрные плавкие. Часть 6. Держатели предохранителей с миниатюрной плавкой вставкой.

Согласно ГОСТ Р МЭК 60127-1-2005, предохранитель представляет собой устройство, которое за счет расплавления одной или нескольких его деталей, имеющих определенную конструкцию и размеры, размыкает цепь, в которую оно включено, прерывая ток, если он превышает заданное значение в течение определенного времени. В этом же стандарте представлены характеристики предохранителей и общие требования к ним.

Типы время токовых характеристик автоматических выключателей

Защиты автоматов могут создаваться с различным назначением для условий эксплуатации. По этим показателям графики их ВТХ обладают разными границами срабатывания по времени. Это позволяет их отстраивать по селективности, избегать ложных отключений оборудования. Автоматические выключатели выпускаются для бытового или промышленного использования.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]