Устройство и сборка своими руками инфракрасной паяльной станции

В настоящее время все электронные устройства содержат в конструкции сложную начинку из множества компонентов. Время от времени возникает необходимость в ремонте таких устройств.

Ремонт обычно заключается в замене неисправных деталей на новые. И если раньше возможно было просто обойтись для этого паяльником, то с появлением компонентов в корпусах BGA, даже использование термовоздушной пайки не всегда успешно.

Специалисты применяют ик паяльник или паяльную станцию, излучающую инфракрасные волны.

Описание процесса ИК-пайки

Проблема при работе с компонентами в корпусах BGA заключается в необходимости нагреть и расплавить сразу большое количество шариков припоя.

При нагревании их, некоторое количества тепла за счет теплопроводности материалов отдается на монтажную плату. Того тепла, которое дает паяльная станция, становится недостаточно.

Увеличение времени нагрева или повышение температуры не лучшим образом сказывается на микросхеме. Она может перегреться и выйти из строя.

Решение напрашивается само собой – нужно предварительно разогреть монтажную плату снизу, не воздействуя теплом на микросхему. Разогревать можно как потоком воздуха, так и спокойным инфракрасным излучением.

В результате, когда температура материала платы поднимется, уменьшится теплоотвод с ножек контактов и понадобится меньшая температура и меньшее время воздействия для того, чтобы расплавить шарики припоя.

Инфракрасная пайка заключает в себе множество преимуществ перед термовоздушной. Если при термовоздушной пайке возможно контролировать только скорость истечения воздуха из сопла и температуру нагревательного элемента, и совершенно невозможно управлять оттоком воздуха, то при инфракрасной пайке контролю поддается температура припоя на протяжении всего цикла работ.

Применение инфракрасной паяльной станции позволяет более точное воздействие на определенную область платы, что затруднительно при пайке горячим воздухом.

А при ремонтных работах задача как раз и состоит в том, чтобы заменить один или несколько компонентов схемы, совершенно не воздействуя на другие.

Цель и задачи применения

Паяльные станции используются в радиотехнике и сопутствующих направлениях производства и творчества. Пользователи применяют инструмент для выполнения разных видов работ.

  1. Пирография – выполнение рисунков с помощью тепловых приспособлений. Нагревая отдельные участки заготовок, добиваются изменения положения термопластичных элементов. Создаются композиции из пластиков одного цвета или многоцветные композиции.
  2. Сваривать пластики, при изготовлении корпусов, шкатулок или иных плоских и пространственных изделий.
  3. Выполнение монтажа, ремонта и иные целевые работы. Некоторые виды работ возможны только при использовании фенов, плавящих частицы пластика, не перегревая его.
  4. Для сборки электронных устройств и приборов.
  5. Пайки и монтажа электронных схем в электронике.
  6. Лужение и подготовка для сложного монтажа массивных деталей и узлов, соединяемых при расплавлении припоя.
  7. Для сварки в ограниченном пространстве.
  8. Пайкой SMD-компонентов, их монтажа и демонтажа на платах.
  9. Для усадки термоусадочной изоляции по завершении работ.

Модель ИК-650 ПРО

Одной из наиболее распространенных инфракрасных паяльных станций профессионального уровня является ИК-650 ПРО. В России это устройство стало одним из первых, способных с успехом производить ремонт техники с BGA схемами.

Пайка производится настолько качественно, что возникло устойчивое мнение об абсолютной надежности устройств, платы которых монтировались при помощи этой инфракрасной паяльной станции.

Программное обеспечение позволяет очень точно выдерживать температурный профиль, что немаловажно для создания прочных, надежных контактов. Ведь для качественной пайки необходимо не просто создать температуру достаточную для плавления припоя, а нужно еще поднять ее плавно и затем плавно понизить, не допуская резкого охлаждения контакта.

Только тогда будет создана прочная кристаллическая решетка в капле припоя, соединяющей контакт микросхемы с монтажным пятачком.

Инфракрасная станция имеет модульную конструкцию и позволяет собрать множество возможных конфигураций для производства предварительных и вспомогательных работ:

  • возможно использование различного типа термостолов;
  • подключение электронного микроскопа;
  • автоматическое регулирование температуры нагрева и остывания;
  • существуют дополнительные модули для восстановления выводов BGA (это называется реболлингом).

В комплектацию паяльной станции входит также вакуумный пинцет, которым удобно устанавливать мелкие детали на плате.

Стоимость инфракрасной паяльной станции ИК-650 ПРО в настоящее время более 150 000 рублей. Она является профессиональным оборудованием и, конечно же, для любительского использования практически недоступна.

Цифровая паяльная станция своими руками

Технические характеристики

  • Станция предназначена для ручных паяльников Hakko 907.
  • Станция совместима с ручными паяльниками аналогичного типа.
  • Температурный диапазон: от 27 до 525 °C.
  • Время прогрева: от 25 до 37 с (до 325 °C).
  • Рекомендованный источник питания: 24 В, 3 А.
  • Мощность: 50 Вт (средняя).

Полная видеоинструкция
Схема сборки, разводка печатной платы, код и файлы стандартной библиотеки шаблонов доступны по ссылке.

Шаг 1. Обычные и цифровые паяльники


Как и любой самодельщик, я взял за основу обычный паяльник. Эти паяльники отлично проявляют себя в работе, однако у них есть ряд недостатков. Любому домашнему мастеру, кто хоть однажды паял, известно, что нагрев таких паяльников занимает от 7 до 15 минут и только после этого их можно использовать по назначению. После нагревания такие паяльники продолжают работать в максимальном температурном диапазоне. В некоторых случаях такие паяльники при длительном контакте с электронными компонентами могут их повредить. Я на своём опыте знаю, что, если неудачно дотронуться сильно разогретым наконечником паяльника до перфорированной макетной платы, можно повредить приклеенный на плату медный слой. Вообще говоря, таких ошибок можно избежать, и для этого существуют свои способы и приёмы, но, стоит только попробовать пайку с цифровой паяльной станцией, у вас никогда не возникнет желания вернуться к старым методам.

Обычные паяльники с регулятором температуры

Для регулирования температуры нагрева обычных паяльников существует простой и распространённый способ – подключить в цепь питания регулятор температуры, ограничивающий мощность, подаваемую на нагревательный элемент. Такие регуляторы устанавливаются на продукты довольно часто. В своё время у меня была паяльная станция Weller с таким регулятором. И это было на самом деле очень удобно! Единственным недостатком такого способа является отсутствие замкнутого контура температурной обратной связи. В некоторых случаях температура паяльника будет меньше установленной регулятором, так как по мере пайки поглощающих тепло компонентов температура наконечника будет снижаться. Чтобы компенсировать падение температуры, можно повернуть регулятор, но, стоит прекратить пайку, температура снова повысится. Время разогрева паяльника можно несколько уменьшить, если повернуть регулятор в крайнее (максимальное) положение, а после разогрева повернуть его обратно.

Цифровая паяльная станция

Я предпочитаю третий способ – самый любимый. Он довольно схож со способом использования паяльника с регулятором температуры, но при этом все действия выполняются автоматически с помощью PID-системы (системы с пропорционально-интегрально-дифференциальным регулятором). Говоря простым языком, такая автоматизированная электронная система управления паяльной станцией «поворачивает» ручку регулятора температуры за вас. Если система обнаружит, что температура наконечника паяльника опустится ниже установленного значения, система повысит мощность до значения, необходимого для выработки тепла на наконечнике паяльника. Если температура паяльника поднимется выше установленного значения, питание на паяльник перестанет подаваться, что приведёт к снижению температуры. С помощью такой системы ускоряется весь процесс пайки – система постоянно включает и отключает нагревательный элемент паяльника и, таким образом, поддерживает постоянную температуру на его наконечнике. Поэтому при использовании цифровых паяльных станций паяльник разогревается значительно быстрее.

Шаг 2. Компоненты и материалы

В зависимости от того, где вы собираетесь купить компоненты станции, итоговая цена системы может оказаться разной (советую закупить компоненты на Aliexpress, так выйдет дешевле всего). Я ещё попробую выяснить, в каких именно интернет-магазинах можно приобрести самые дешёвые компоненты, и, возможно, внесу в ссылки некоторые изменения. Свои компоненты я приобрёл в местном магазине E-Gizmo Mechatronics Manila.Требуемые материалы:

  • Паяльник Hakko 907 (аналог за 3 доллара).
  • Программируемый контроллер Arduino Nano.
  • Понижающий преобразователь (MP2303 производства D-SUN).
  • Гнездовой 5-штырьковый DIN-разъём.
  • Гнездо для подключения внешнего источника постоянного тока (2,1 мм).
  • Источник питания 24 В, 3 A.
  • ЖК-дисплей 16X2 I2C.
  • Операционный усилитель LM358.
  • МОП-транзистор IRLZ44N (я использовал IRLB4132, он лучше).
  • Электролитический конденсатор 470 мкФ, 25 В.
  • Сопротивление 470 Ом, 1/4 Вт.
  • Сопротивление 2,7 кОм, 1/4 Вт.
  • Сопротивление 3,3 кОм, 1/4 Вт.
  • Сопротивление 10 кОм 1/4 Вт.
  • Потенциометр 10 кОм.

ЗАМЕЧАНИЕ: на принципиальной схеме и печатной плате ошибочно указан транзистор IRFZ44N. Следует использовать транзистор IRLZ44N, это версия транзистора IRFZ44N логического уровня. В моей системе я использовал транзистор IRLB4132, так как его у нас легче купить. Можно использовать и другие МОП-транзисторы. Они будут нормально работать, если их технические характеристики соответствуют приведённым ниже. В старой версии паяльной станции я использовал транзистор IRLZ44N.

Рекомендованные технические характеристики МОП-транзисторов:

  • N-канальный МОП-транзистор логического уровня – МОП-транзисторы логического уровня можно непосредственно подключать к штыревому соединителю логической платы (цифровому штырьку Arduino). Поскольку напряжение насыщения затвора ниже обычных напряжений Vgs стандартных МОП-транзисторов, на МОП-транзисторе логического уровня предусмотрен затвор для подачи напряжений насыщения 5 или 3,3 В (Vgs). Некоторые производители не указывают это в технических характеристиках. Это отражено на кривой зависимости Vgs от Id.
  • Значение Vds должно быть не менее 30 В – это предельное значение напряжения МОП-транзистора. Мы работаем на 24 В, и, в принципе, значения напряжения Vgs 24 В должно хватить, но обычно, чтобы обеспечить стабильную работу, добавляется некоторый запас. Стандартное значение напряжения Vgs для большинства МОП-транзисторов составляет 30 В. Допускается использование МОП-транзисторов с более высокими напряжениями Vgs, но только в том случае, если другие технические характеристики не выходят за пределы диапазона.
  • Сопротивление Rds(on) 0,022 Ом (22 мОм): чем ниже, тем лучше. Rds(on) – это сопротивление, формируемое на контактах стока и истока МОП-транзистора в состоянии насыщения. Проще говоря, чем ниже значения сопротивления Rds(on), тем холоднее будет МОП-транзистор. При увеличении значения Rds(on) МОП-транзистор будет при работе нагреваться благодаря рассеиванию мощности из-за – хоть и небольшой, но всё-таки присутствующей – резистивности МОП-транзистора, даже если он находится в состоянии проводимости.
  • Id не менее 3 А (я предлагаю более 20 А) – это максимальный ток, который может выдержать МОП-транзистор.

Шаг 3. Проектирование

Внутри паяльника Hakko 907 находится нагревательный элемент, рядом с которым размещается датчик температуры. Оба этих элемента имеют керамическое покрытие. Нагревательный элемент представляет собой обычную спираль, генерирующую тепло при подаче питания. Датчик температуры фактически представляет собой терморезистор. Терморезистор ведёт себя аналогично резистору – при изменении температуры сопротивление терморезистора меняется.

Таинственный терморезистор Hakko

К сожалению, Hakko не приводит практически никаких данных о терморезисторе, установленном внутри нагревательных элементов. Для меня это много лет оставалось загадкой. Ещё в 2022 году я провёл небольшое лабораторное исследование, пытаясь узнать тепловые характеристики таинственного терморезистора. Я прикрепил датчик температуры к наконечнику паяльника, подключил омметр к штырькам терморезистора и подал питание на нагревательный элемент с испытательного стенда. Увеличивая температуру паяльника, я фиксировал соответствующие сопротивления терморезистора. В итоге у меня получился график, который оказался полезным при разработке электрической схемы. Потом я выяснил, что, возможно, этот терморезистор представляет собой терморезистор с положительным температурным коэффициентом сопротивления. Другими словами, по мере повышения температуры вблизи терморезистора сопротивление терморезистора также увеличивается.(При выполнении следующих шагов рекомендую сверяться с третьим рисунком.)

Делитель напряжения для датчика

Используется для получения полезного выхода с датчика температуры терморезистора. Мне пришлось подсоединить его с помощью делителя напряжения. Здесь повторяется та же история – технические характеристики этого таинственного датчика отсутствуют, поэтому я установил верхний резистор на делитель напряжения, чтобы ограничить максимальную мощность, рассеиваемую на датчике (я установил максимальное значение 50 мВт). Теперь, когда на делителе напряжения появился верхний резистор, я вычислил максимальное выходное напряжение при максимальной рабочей температуре. Напряжение на выходе делителя напряжения составило приблизительно 1,6 В. Затем я попытался решить проблему совместимости АЦП для 10-разрядного программируемого контроллера Arduino Nano и в итоге обнаружил, что не могу подключить датчик делителя напряжения напрямую, так как значения получаются слишком малыми, и они могут оказаться недостаточными для получения нужного результата. Проще говоря, если я подключу датчик делителя напряжения непосредственно к аналоговому штырьку, то между значениями температуры могут возникать пропуски (например, 325 °C, 326 °C, 328 °C….. пропущено значение 327 °C).

Операционный усилитель

Чтобы избавиться от возможной проблемы, связанной с пропуском температурных значений, я использовал операционный усилитель, усиливающий низкое пиковое значение выходного напряжения делителя напряжения (1,6 В). Расчёты, представленные на третьем рисунке, устанавливают требуемое минимальное значение коэффициента усиления и значение коэффициента усиления, выбранное мной для рабочей системы. Я не стал доводить коэффициент усиления до значения, при котором 1,6 В на выходе делителя напряжения превращались бы в 5 В опорного напряжения АЦП в Arduino, так как мне хотелось обеспечить определённый запас, если другие паяльники Hakko, подключаемые к делителю напряжения, будут выдавать напряжения выше 1,6 В (что может привести к нелинейным искажениям). Достаточно большой запас обеспечивается при использовании коэффициента усиления 2,22, при этом система сможет работать с другими моделями паяльников.

Шаг 4. Принципиальная схема

В качестве коммутационного устройства для регулирования напряжения методом широтно-импульсной модуляции в проекте используется простой N-канальный МОП-транзистор логического уровня. Он выступает в качестве цифрового переключателя, подающего питание на нагревательный элемент. Нереверсивный операционный усилитель (LM358) используется для усиления очень малых напряжений, выдаваемых терморезистором делителя напряжения. В качестве регулятора температуры используется потенциометр 10 кОм, а светодиодный индикатор представляет собой обычный индикатор, который я подключил и запрограммировал таким образом, чтобы он отображал состояние активности нагревательного элемента. В данном проекте я использовал ЖК-дисплей 16X2 с драйвером интерфейсной шины I2C, так как новичкам в электронике в нём проще разобраться.

Шаг 5. Печатная плата

Разводку печатной платы я осуществил в программе Proteus. Плата разведена как односторонняя намеренно, чтобы ни у кого не возникали трудности в процессе сборки системы в домашних условиях. Обратите внимание, что, если все элементы устанавливаются на одной стороне печатной платы, потребуется одна перемычка. PDF-файлы можно скачать с диска Google по ссылке ниже.Файлы в формате Gerber, если потребуется, можно скачать с диска Google по ссылке ниже. Дизайн моей платы вы также можете получить непосредственно на сайте pcbway, и тогда вам не придётся вручную вводить файлы Gerber.

Шаг 6. Калибровка понижающего преобразователя.


Поскольку большинство клонов программируемого контроллера Arduino Nano способны принимать входное напряжение не более 15 В (более высокое напряжение может вывести из строя пятивольтовый регулятор AMS1117), а нагревательному элементу для оптимальной работы требуется напряжение 24 В, для совместной работы обоих этих компонентов я ввёл в схему понижающий преобразователь. Регулятор AMS1117 5 В, присутствующий в большинстве клонов программируемого контроллера Arduino Nano, имеет падение напряжения 1,5 В, другими словами, входное напряжение на VIN-контакте Arduino Nano должно составлять 6,5 В (5 В + 1,5 В).

Шаги:

  1. Установите напряжение на источнике питания 24 В.
  2. Подключите источник питания ко входу понижающего преобразователя.
  3. С помощью мультиметра отслеживайте напряжение на выходе понижающего преобразователя.
  4. Отрегулируйте подстроечный резистор до значения напряжения на выходе 6,5 В.
  5. Для обеспечения более высокой стабильности можно установить значение 7 В.

Шаг 7. Сборка системы

Для сборки системы воспользуйтесь принципиальной схемой или схемой размещения компонентов (см. предыдущие этапы).

Шаг 8. 3D-печать корпуса

Какой корпус выбрать – дешёвый пластиковый или мой, разработанный для 3D-печати, – решайте сами. Прилагаю для редактирования соответствующий файл Solidworks. Если потребуется осуществить печать заранее, можно воспользоваться файлами STL, которые можно скачать по приведённой ниже ссылке на Google-диск.

Мои настройки 3D-принтера:

  • Печать осуществляется на принтере Creality CR-10.
  • Высота уровня 0,3 мм.
  • Сопло 0,5 мм.
  • Заполнение 30 %.
  • Без поддержек.

Файлы для 3D печати (Solidworks и STL): Шаг 9. Финишная отделка корпуса (покраска и шлифовка).

После завершения печати полученный 3D-корпус корпус можно отшлифовать. Свой корпус, чтобы он выглядел более изящно, я выкрасил в чёрный цвет.Шаг 10. Установка внешних компонентов.

Закрепите на свои места в корпусе ЖК-дисплей, потенциометр 10 кОм, гнездо для подключения внешнего источника постоянного тока и плату. С помощью суперклея прикрепите DIN-разъём и ЖК-дисплей к корпусу.

Шаг 11. Разъём Hakko 907.


У вас, как и у меня, может возникнуть проблема с 5-штырьковым DIN-разъёмом для паяльника Hakko. Штырьковый разъём можно вырезать из паяльника и заменить его на 4-штырьковый разъём (возможно, у вас такой имеется). У меня нашлась пара 5-штырьковых DIN-разъёмов, однако не та, которая используется на Hakko. Третий штырёк – это обычный контакт заземления, его можно игнорировать, если не хочется возиться со схемой заземления и защитой от статического электричества.

Шаг 12. Подключение внешних компонентов

Такое подключение можно выполнить согласно принципиальной схеме (см. предыдущие шаги). Для дополнительной защиты я рекомендую добавить предохранитель в цепь от гнезда для подключения внешнего источника постоянного тока до платы. Я предохранитель не ставил, так как в моём блоке питания предохранитель уже имеется.

Шаг 13. Программирование

ШАГИ:

  1. Подключите программируемый контроллер Arduino к компьютеру.
  2. Загрузите шаблон моей программы.
  3. Внесите в шаблон необходимые изменения.
  4. Для паяльников Hakko 907 я использовал стандартные значения.
  5. После калибровки эти значения, возможно, придётся изменить.
  6. Не забудьте установить библиотеки Wire.h и LiquidCrystal_I2C.h.
  7. Tools > Boards > Arduino Nano.
  8. Tools > Port > выбрать порт, к которому подключён контроллер Arduino.
  9. Загрузить шаблон/программу.

Как работает код

Если система обнаружит, что температура наконечника паяльника опустится ниже установленного значения, система повысит мощность до значения, необходимого для выработки тепла на наконечнике паяльника. Если температура паяльника поднимется выше установленного значения, питание на паяльник перестанет подаваться, что приведёт к снижению температуры. С помощью такой системы ускоряется весь процесс пайки – система постоянно включает и отключает нагревательный элемент паяльника и, таким образом, поддерживает постоянную температуру на его наконечнике. Поэтому при использовании цифровых паяльных станций паяльник разогревается значительно быстрее.

Контроль PID

В коде не используется техника PID. В первой версии я использовал старый PID-код, и он работает практически так же, как компараторная версия кода (в этом руководстве). Я остановился на более простой версии, так как с ней легче работать (настраивать, модифицировать и пр.). Я могу отправить по электронной почте версию PID, но она мало что изменит. Код Arduino (V1.0)

Шаг 14. Отрегулируйте контрастность ЖК-дисплея и вставьте ручку потенциометра.

Если контроллер Arduino и 16×2 ЖК-дисплей ранее вами не использовались, первым делом нужно настроить подстроечный резистор контрастности ЖК-дисплея. После завершения настройки вставляется пластиковая ручка потенциометра контроля температуры.

Шаг 15. Закройте корпус и включите устройство

Теперь можно закрепить заднюю панель корпуса. Но перед этим необходимо проверить правильность калибровки паяльной станции. В качестве источника питания можно использовать аккумуляторные батареи или любой источник питания с выпрямителем из моего списка рекомендаций по источникам питания. Для получения максимальной производительности паяльной станции рекомендую использовать блок питания 24 В, 3 А. Таким блоком питания паяльной станции может быть импульсный источник питания в металлическом корпусе или, как вариант, зарядное устройство для ноутбука. Если вы не хотите покупать новый источник питания, можно приобрести б/у. Зарядные устройства для ноутбуков, как правило, имеют номинал 18 В, 2,5 A. Они работают нормально, но время разогрева паяльника может достигать 37 с.Шаг 16. Бонус: как повысить теплопередачу.

Совет: для обеспечения лучшей теплопередачи я обычно наношу на наконечник паяльника Hakko 907 термопасту. Этот приём хорошо работает и значительно улучшает теплообмен! В течение первых 30 минут работы нужно не забывать обдувать наконечник воздухом, так как паста может вскипеть и начать выделять испарения. Через 30 минут паста превратится в мелоообразное вещество. Со временем, когда нужно заменить наконечник, помните, что высушенная паста прилипнет к наконечнику и нагревательному элементу. Удалить мелоообразное вещество можно с помощью резинового молотка.

Шаг 17. Станция готова к работе!

Я пользуюсь такой станцией уже почти 5 лет, и в этой статье рассказал о том, как изготовить её доработанную версию. Я внес небольшие усовершенствования в конструкцию, чтобы каждый, кого это заинтересовало, мог сделать то же самое. Интересно, получится ли у вас собрать такую станцию Hakko?

Узнайте, как прокачаться в других специальностях или освоить их с нуля:

  • Профессия Data Scientist
  • Профессия Data Analyst
  • Курс по Data Engineering

Другие профессии и курсы
ПРОФЕССИИ

  • Профессия Fullstack-разработчик на Python
  • Профессия Java-разработчик
  • Профессия QA-инженер на JAVA
  • Профессия Frontend-разработчик
  • Профессия Этичный хакер
  • Профессия C++ разработчик
  • Профессия Разработчик игр на Unity
  • Профессия Веб-разработчик
  • Профессия iOS-разработчик с нуля
  • Профессия Android-разработчик с нуля

КУРСЫ

  • Курс по Machine Learning
  • Курс «Machine Learning и Deep Learning»
  • Курс «Математика для Data Science»
  • Курс «Математика и Machine Learning для Data Science»
  • Курс «Python для веб-разработки»
  • Курс «Алгоритмы и структуры данных»
  • Курс по аналитике данных
  • Курс по DevOps

Детали для самодельного прибора

Собрать ее можно из деталей инфракрасных станций, имеющихся в продаже, а также из подручных материалов и старых отслуживших свой срок приборов.

Термостол для паяльной станции можно изготовить из светильника или нагревателя с галогеновыми лампами, которые будут нагревать плату до необходимой температуры. Верхний нагреватель и контроллер паяльной станции придется приобрести из запасных частей, покупая их новыми или бывшими в употреблении.

Штатив для верхнего нагревательного блока можно изготовить из опоры от старой настольной лампы.

Кроме ламп, в корпусе необходимо предусмотреть место для крепления термопары, которая будет «снабжать» информацией о температуре ламп модуль управления.

Температура должна выдерживаться точно, чтобы платы не растрескивались от избыточного тепла и резких перепадов температуры.

Для чего делать станцию самому

Причин, по которым представленные на рынке станции, не вызывают доверия, несколько: никогда нельзя знать наверняка, что вы приобрели хорошее изделие, до тех пор, пока оно не пройдет полный тест-драйв; пока вы не разберёте станцию, чтобы увидеть и оценить начинку и качество сборки; и, наконец, вы не можете пообщаться с другими владельцами этой же модели, чтобы поделиться впечатлениями и обсудить плюсы и минусы станции из-за того, что многие компании выпускают свою продукцию на рынок под новыми брендами каждые пару лет.

Пару лет назад я приобрел паяльную станцию через интернет, и, хотя работает она до сих пор хорошо, я устал работать с ней из-за дурацкого дизайна (короткий шнур питания, обдув не компрессорный и короткий неотсоединяемый шнур жала). Из-за недочетов в дизайне эту станцию даже на столе переставлять неудобно, корпус крутится вслед за жалом. Нутро было залито термоклеем, неделя ушла только на очистку компонентов и устранение мелких и крупных недостатков.

Крепление шнура подставки паяльника держалось на честном слове, изоляция постоянно сбивалась, а это и разрыв провода, и возможный пожар.

Сборка

Инфракрасную головку мощностью около 400-450 Вт, необходимо закрепить на штативе, используя крепеж, элементы которого легко приобрести в торговой сети, для контроля температуры верхнего нагревательного узла необходимо применить вторую термопару.

Она должна быть установлена вместе с нагревателем. Кабель можно проложить в гибком металлорукаве. Штатив паяльной станции необходимо крепить таким образом, чтобы ИК-головка могла свободно перемещаться над всей поверхностью.

На корпусе термостола необходимо предусмотреть кронштейны для фиксации платы. Она должна располагаться на несколько сантиметров выше галогеновых ламп. Для кронштейнов можно применить подходящие алюминиевые профили.

Контроллер для инфракрасной паяльной станции помещается в корпус, который можно изготовить самостоятельно из листового металла, лучше из оцинкованной стали.

При необходимости в корпус можно встроить такие же вентиляторы охлаждения, какие используются в корпусе компьютера.

После сборки самой конструкции предстоит отладка всей схемы инфракрасной паяльной станции. Это производится опытным путем, многократно запуская схему и производя замеры. Процесс нелегкий, но после настройки он даст свои результаты – паяльная станция будет работать правильно.

Общие характеристики и принцип работы

В схему паяльной станции с феном входит блок и манипулятор-термофен, где нагревается воздух. Устройства используются для ремонта сотовых телефонов и бытовой техники. Способы формирования потока воздуха такие:

  • Турбинные – воздух подается маленьким крыльчатым электромотором в термофене.
  • Компрессорные – воздух подается компрессором, расположенным в главном блоке.

Главным образом компрессорные станции отличаются от турбинных тем, что последние могут сформировать больший воздушный поток, но недостаточно проталкивают воздух через узкие отверстия. Компрессорные же станции более эффективны, когда воздух должен пройти через узкие насадки, используемые для пайки в труднодоступных местах.

Принцип работы станции: поток воздуха проходит через спиралевидный или керамический нагреватель в трубке термического фена, нагревается до требуемой температуры и через специальные насадки выходит на обрабатываемую деталь. Термофен способен обеспечить температуру воздуха 100-800°C. В современных станциях температура, мощность и направление воздушного потока легко регулируются.

В сравнении с прочими станциями (в частности, инфракрасными), недостатки термовоздушных станций следующие:

  • Поток воздуха может сдуть мелкие детали.
  • Неравномерный прогрев поверхности.
  • Требуются дополнительные насадки.

Преимуществом же является то, что турбовоздушные станции гораздо дешевле других.

Бесконтактный паяльник

Если острой потребности в использовании инфракрасной паяльной станции нет, то для пайки может быть с успехом применен инфракрасный паяльник. Внешне он похож на обычный с той разницей, что вместо жала имеет нагревательный элемент.

Применение и устройство

Инфракрасный паяльник используется в условиях, когда контакт с выводами компонентов недопустим. Удобно им пользоваться и для пайки радиодеталей, так как часто у обычного паяльника на жале образуется нагар, и соединения получаются некачественными. Нагар приходится счищать, а на эти действия уходит порой довольно много времени.

В условиях домашней мастерской можно сделать простейший самодельный инфракрасный паяльник из прикуривателя автомобиля. Нагревательный элемент этого устройства отлично подойдет для изготовления инструмента.

Так как для нормальной работы прикуривателя нужен постоянный ток напряжением 12 Вольт, соответствующий бортовой электросети автомобиля, понадобится электропреобразователь, чтобы можно было использовать бытовую сеть переменного тока. Для этих целей можно с успехом применить блок питания для корпусов компьютеров.

Назначение

Чтобы создать современный гаджет или иное изделие, в основе которого используются микросхемы, нужно выполнить качественные швы в ограниченном пространстве. Пайка некоторых деталей производится при значительном усилении, даже под микроскопом. Только наличие паяльной станции дает возможность добиваться удовлетворительных характеристик в работе.

Покупные станции обязательно включают в состав несколько основных компонентов:

  • Контрольно-управляющий модуль. Он помогает пользователю ориентироваться на режимы работы: сила тока, напряжение, температура жала, расход воздуха и ряд иных показателей.
  • Паяльник, способный расплавлять определенный тип припоя. Перегрев гораздо выше заданных значений вызывает образование шлака, который не позволяет добиваться приемлемого качества.
  • Пинцет с внутренним нагревателем способен помочь в монтаже и демонтаже микроэлементов и SMD-компонентов.
  • Фен с терморегулятором для прогрева локального пространства и пайки групп контактов (микросхем) окажет помощь в сложном пространстве.
  • Инфракрасный тепловой источник для прогрева большой площади на платах, а также групповой монтаж.
  • Направленный тепловой излучатель для точечного нагрева пространства поможет выполнить миниатюрную работу.
  • Приспособления для отсоса припоя после выпайки деталей.
  • Вспомогательная арматура, держатели, специальные приспособления для пространственного соединения деталей. Антистатические устройства для мастера, а также коврики для размещения деталей и комплектующих.

Кроме перечисленного, станции комплектуются стойками для размещения инструмента с пружинными держателями. В зависимости от сложности и комплектации меняется цена на установку.

Принципиальная схема

Схема предельно простая. В основе всего микроконтроллер Atmega8. Сигнал с оптопары подается на операционный усилитель с регулируемым коэффициентом усиления (для калибровки) и затем на вход АЦП микроконтроллера. Для отображения температуры использован семисегментный индикатор с общим катодом, разряды которого включены через транзисторы. При вращении ручки энкодера BQ1 задается температура, а в остальное время отображается текущая температура. При включении задается начальное значение 280 градусов. Определяя разницу между текущей и требуемой температурой, пересчитав коэффициенты ПИД-составляющих, микроконтроллер при помощи ШИМ-модуляции разогревает паяльник. Для питания логической части схемы использован простой линейный стабилизатор DA1 на 5В.

Печать корпуса на 3D принтере (необязательно)

Я разработал и напечатал корпус, в который можно было бы установить импульсный источник питания и печатную плату, чтобы всё выглядело аккуратно. К сожалению, для использования этого корпуса вам необходимо будет найти точно такой же тип источника питания. Если у вас есть подходящий источник, и вы хотите напечатать корпус, или если вы хотите изменить его под свои требования, то можете скачать приложенные файлы. Я печатал с заполнением 20% и толщиной слоя 0,3. Вы можете использовать более высокий уровень заполнения и меньшую высоту слоя, если у вас есть время и терпение.

UPD

Выложенные выше файлы устарели. В текущей версии мы обновили чертежи для резки оргстекла, изготовления печатной платы, а также обновили прошивку, чтобы убрать мерцание индикатора. Обратите внимание, что для новой версии прошивки требуется включить CKSEL0, CKSEL2, CKSEL3, SUT0, BOOTSZ0, BOOTSZ1 и SPIEN

(то есть изменить стандартные настройки). Печатная плата в формате Sprint Layout V1.1 Прошивка для микроконтроллера V1.1 Файл для резки оргстекла V1.1

Также эту паяльную станцию можно приобрести в виде набора для самостоятельной сборки в нашем магазине и у наших партнеров GOOD-KITS.ru и ROBOTCLASS.ru.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]