Закон Ома для участка цепи — одна из основ электротехники. Данный закон указывает на соотношение между током, напряжением и сопротивлением.
Сам Закон Ома для участка цепи гласит так:
Сила тока в проводнике (участке электрической цепи) прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника (участка электрической цепи)
[Г.С. Ом, 1826]
Из этого определения Георг Ом вывел следующую формулу:
I = U/R или U = R*I
Формула, вытекающая из закона Ома, также известна в просторечии как формула URI. Такое название появилось от последовательности букв в формуле:
U = R*I
- R — сопротивление проводника (Ом);
- I — сила тока в проводнике (Ампер);
- U — напряжение приложенное к проводнику (Вольт).
Основные понятия
Вольтметр
Падение напряжения – это величина, отраженная в изменении потенциала в разных частях проводника. Протекающий от источника по направлению к нагрузке ток меняет свои параметры в силу сопротивления проводов, но его направление остается неизменным. Измерить напряжение можно с помощью вольтметра:
- двумя приборами в начале и конце линии;
- поочередное измерение в нескольких местах;
- вольтметром, подключенным параллельно кабелю.
Простейшая цепь – источник питания, проводник, нагрузка. Примером может быть лампа накаливания, включенная в розетку 220 В. Если замерить прибором напряжение на лампе, оно будет немного ниже. Падение возникло на сопротивлении лампы.
Напряжение или падение напряжения на участке цепи можно вычислять, применяя закон Ома, по формуле U = IR, где:
- U – электрическое напряжение (вольт);
- I – сила тока в проводнике (ампер);
- R – сопротивление цепи или ее элементов (ом).
Зная две любые величины, можно вычислить третью. При этом нужно учитывать род тока – переменный или постоянный. Если в цепи несколько параллельно подключенных сопротивлений, расчет несколько усложняется.
Основные понятия и законы электрических цепей. Вопрос-ответ.
Вопрос 1. Определите понятие «электрическая цепь», «электрическая схема», «узел», «ветвь», «источники тока», «источник ЭДС». Ответ. Электрическая цепь — это совокупность устройств, предназначенных для прохождения электрического тока. Устройствами, образующими электрическую цепь, являются источники электромагнитной энергии — генераторы, потребители электромагнитной энергии — приемники и системы передачи энергии. Электрическая схема — это графическое изображение электрической цепи. Схема показывает последовательность соединения двухполюсников, составляющих электрическую цепь. Ветвь — это весь участок электрической цепи, вдоль которого ток имеет одно и то же значение. Узел — это место соединения трех и более ветвей. Узел электрической цепи на схеме отмечается жирной точкой. Источник тока — это генератор, создающий ток, не зависимый от сопротивления нагрузки. Источник напряжения (ЭДС) — это генератор с внутренним сопротивлением равным нулю.
Вопрос 2. Что понимается под ВАХ? Ответ. График, изображающий зависимость напряжения на двухполюснике от тока через двухполюсник, называется вольтамперной характеристикой (ВАХ) этого двухполюсника.
Рис. 1. Вольт-амперные характеристики. Кривая а представляет собой ВАХ такого двухполюсника, сопротивление которого не зависит ни от тока через двухполюсник, ни от напряжения на нем, его ВАХ будет представлять собой прямую линию, проходящую через нуль, такие двухполюсники называются линейными. Кривая б представляет собой ВАХ такого двухполюсника, сопротивление которого возрастает с увеличением тока. Примером такого двухполюсника может служить лампочка накаливания с вольфрамовой нитью. Удельное сопротивление вольфрама растет с увеличением температуры, и, следовательно, с ростом тока через нить накаливания. Кривая в изображает ВАХ газоразрядного прибора. Согласно этой ВАХ сопротивление прибора с увеличением тока должно падать. Характеристики б, е, и г принадлежат сопротивлениям, не подчиняющимся закону Ома. Лампа накаливания и газоразрядный прибор являются нелинейными сопротивлениями.
Вопрос 3. Нарисуйте ВАХ реального источника, источника ЭДС, источника тока, линейного сопротивления. Ответ.
Рис. 2. ВАХ: а — реального источника ЭДС; б — идеального источника ЭДС; в — идеального источника тока; г — линейного сопротивления.
Вопрос 4. Сформулируйте закон Ома для участка цепи с ЭДС, первый и второй законы Кирхгофа. Запишите в буквенном виде, сколько уравнений следует составлять по первому и второму законам Кирхгофа? Ответ. Закон Ома: при неизменном сопротивлении проводника напряжение на нем пропорционально току в проводнике. Математическое выражение этого закона Ома имеет вид:
. Первый закон Кирхгофа. Первый закон определяет баланс токов в узлах электрической цепи: алгебраическая сумма токов в ветвях, связанных общим узлом электрической цепи, равна нулю; или сумма токов, уходящих от узла электрической цепи, равна сумме токов, приходящих к этому узлу. Уходящие токи будем считать положительными, приходящие — отрицательными. Математическое выражение первого закона Кирхгофа имеет вид: или , где — номера ветвей, связанных данным узлом. Второй закон Кирхгофа. Второй закон Кирхгофа устанавливает баланс напряжений в контурах электрической цепи: во всяком контуре электрической цепи алгебраическая сумма напряжений на отдельных элементах контура равна нулю. Математическое выражение закона или второе уравнение Кирхгофа имеет вид: или , где — индексы всех активных и пассивных элементов контура, включая и внутренние сопротивления генераторов; — напряжения на этих элементах. Второе уравнение Кирхгофа можно записать так: , где — число пассивных элементов; — число источников напряжений. Читается это уравнение так: во всяком контуре электрической цепи алгебраическая сумма падений напряжения равна алгебраической сумме э.д.с., действующих в этом контуре. Формулы и примеры решения задач по ТОЭ здесь.
Вопрос 5. В чем отличие напряжения от падения напряжения? Ответ. Напряжение (для генератора) — это разность потенциалов между зажимами работающего генератора. Падение напряжения (в генераторе) — это разность между э.д.с. и напряжением на его зажимах, создаваемая током в сопротивлениях токоведущих элементов самого генератора. Напряжение (в линии) — это разность потенциалов между проводами. Падение напряжения (в линии) — это разность потенциалов вдоль проводов, возникающая при токе в линии благодаря сопротивлению самих проводов линии. Напряжение и падение напряжения (на приемнике) — это одна и та же разность потенциалов между его зажимами.
Вопрос 6. Какие вам известны проявления магнитного поля? Ответ. Энергия магнитного поля накапливается в индуктивности.
Вопрос 7. Дайте определение L. Ответ. Коэффициент пропорциональности, равный
называется статической индуктивностью катушки. Потокосцепление катушки: — произведение числа витков катушки на значение магнитного потока. Динамическая индуктивность катушки определяется по формуле: LД=. Если катушка линейная, то динамическая индуктивность катушки не отличается от ее статической индуктивности и называется просто — индуктивность.
Вопрос 8. Какие вам известны проявления электрического поля? Ответ. Энергия электрического поля накапливается в емкости.
Вопрос 9. Дайте определение С. Ответ. Емкость (С) между двумя проводниками — это абсолютное значение отношения электрического заряда одного проводника к разности потенциалов между проводниками при условии, что эти проводники имеют равные по величине, но противоположные по знаку заряды. Единицей емкости является фарада (Ф). Емкость — это идеальный конденсатор, не обладающий ни индуктивностью, ни сопротивлением.
Вопрос 10. Сформулируйте закон Джоуля-Ленца. Ответ. Закон Джоуля—Ленца: работа, совершаемая током i в сопротивлении r за время t, определяется выражением:
или , где u — напряжение на сопротивлении r, равное .
Источник: Никольский О.К., Куликова Л.В., Семичевский П.И., Германенко В.С. Теоретические основы электротехники: В 2-х т. Учебное пособие для вузов.
Источник
В обычной жизни человека слова «потери» и «падение» применяются для обозначения факта снижения определенных достижений, но обозначают разную величину.
При этом «потерями» обозначает утрату части, ущерб, уменьшение количества достигнутого ранее уровня. Потери нежелательны, но с ними можно мириться.
Под словом «падение» понимается более серьёзный урон, связанный с полным лишением прав. Таким образом, даже иногда происходящие потери (скажем, кошелька) со временем могут привести к падению (например, уровня материальной жизни).
В этом плане рассмотрим этот вопрос по отношению к напряжению электрической сети.
Как образуется потери и падение напряжения
Электроэнергия на большие расстояния передается по воздушным линиям от одной подстанции к другой.
Провода ВЛ рассчитаны на передачу допустимой мощности и изготавливаются из металлических жил определенного материала и сечения. Они создают активную нагрузку с величиной сопротивления R и реактивную — X.
На приемной стороне стоит трансформатор, преобразующий электроэнергию. Его обмотки обладают активным и ярко выраженным индуктивным сопротивлением XL. Вторичная сторона трансформатора понижает напряжение и передает его дальше потребителям, нагрузка которых выражается величиной Z и носит активный, емкостной и индуктивный характер. Она тоже оказывает влияние на электрические параметры сети.
Напряжение, приложенное на провода ближайшей к передающей электроэнергию подстанции опоре ВЛ, преодолевает реактивное и активное сопротивление цепи в каждой фазе и создает в ней ток, вектор которого отклоняется от вектора приложенного напряжения на угол φ.
Характер распределения напряжений и протекания токов по линии для симметричного режима нагрузки показан на картинке.
Поскольку каждая фаза линии питает разное количество потребителей, которые к тому же случайным порядком отключаются или подключаются в работу, то идеально сбалансировать фазную нагрузку технически очень сложно. В ней всегда есть небаланс, который определяется векторным сложением токов фаз и записывается величиной 3I0. В большинстве расчетов им просто пренебрегают.
Энергия, затраченная передающей подстанцией, частично расходуется на преодоление сопротивления линии и доходит до приемной стороны с небольшими изменениями. Эта доля характеризуется потерей и падением напряжения, вектор которого немного уменьшается по амплитуде и сдвигается по углу в каждой фазе.
Как рассчитываются потери и падение напряжения
Для понимания процессов, происходящих при передаче электроэнергии, удобна векторная форма представления основных характеристик. Различные математические методы расчета также базируются на этом способе.
Чтобы упростить вычисления в трехфазной системе ее представляют тремя однофазными схемами замещения. Этот способ хорошо работает при симметричной нагрузке и позволяет анализировать процессы при ее нарушениях.
В приведенных схемах активное R и реактивное X сопротивление каждого провода линии подключаются последовательно к комплексному сопротивлению нагрузки Zн, характеризуемой углом φ.
Далее проводится расчет потери и падения напряжения в одной фазе. Для этого надо задать данные. С этой целью выбирается подстанция, принимающая энергию, на которой уже должна быть определена допустимая нагрузка.
Величина напряжения каждой высоковольтной системы уже задана справочниками, а сопротивления проводов определяются по их длине, поперечному сечению, материалу и конфигурации сети. Максимальный ток в цепи задан и ограничен свойствами проводников.
Поэтому для начала вычислений мы имеем: U2, R, X, Z, I, φ.
Берем одну фазу, например, «А» и откладываем для нее на комплексной плоскости вектора U2 и I, сдвинутые на угол φ, как показано на рисунке 1. Разность потенциалов на активном сопротивлении провода совпадает по направлению с током, а по величине определяется выражением I∙R. Этот вектор откладываем от окончания U2 (Рис. 2).
Разность потенциалов на реактивном сопротивлении провода отличается от направления тока на угол φ1 и вычисляется произведением I∙X. Откладываем его от вектора I∙R (Рис. 3).
Напоминания: за положительное направления вращения векторов на комплексной плоскости принято движение, противоположное ходу часовой стрелки. Ток, проходящий через индуктивную нагрузку, отстает по углу от приложенного напряжения.
На рисунке 4 показано вычерчивание векторов разности потенциалов на общем сопротивлении провода I∙Z и напряжения на входе в схему U1.
Теперь можно сравнивать вектора на входе в схему замещения и на нагрузке. Для этого расположим полученную диаграмму горизонтально (Рис. 5) и из начала координат проведем дугу с радиусом модуля U1 до пересечения с направлением вектора U2 (Рис. 6).
На рисунке 7 показано увеличение треугольника для наглядности и проведение вспомогательных линий, обозначение характерных точек пересечения буквами.
Внизу картинки показано, что получившийся вектор ac называют падением напряжения, а ab — потерями. Они отличаются по величине и направлению. Если вернуться к исходному масштабу, то будет видно, что ас получен в результате геометрического вычитания векторов (U2 из U1), а ab — арифметического. Этот процесс показан на картинке ниже (Рис. 8).
Вывод формул для расчета потери напряжения
Теперь вернемся к рисунку 7 и обратим внимание, что отрезок bd очень маленький. По этой причине при расчетах им пренебрегают, а потери напряжения рассчитывают по длине отрезка ad. Он состоит из двух отрезков ae и ed.
Поскольку ae=I∙R∙cosφ, а ed=I∙x∙sinφ, то потери напряжения для одной фазы можно вычислить по формуле:
Величины активной P и реактивной Q мощностей можно снимать с показаний электросчетчиков линии.
Таким образом, потери напряжения в электрической схеме зависят от:
активного и реактивного сопротивления цепи;
составляющих приложенной мощности;
величины приложенного напряжения.
Вывод формул для расчета поперечной составляющей падения напряжения
Вернемся к рисунку 7. Векторную величину ас можно представить гипотенузой прямоугольного треугольника acd. Катет ad мы уже вычислили. Определим поперечную составляющую cd.
На рисунке видно, что cd=cf-df.
Используя выведенные закономерности проведем небольшие математические преобразования и получим поперечную составляющую падения напряжения.
Определение формулы для расчета напряжения U1 в начале ЛЭП
Зная величину напряжения на конце линии U2, потери ∆Uл и поперечную составляющую падения δU, можно вычислить по теореме Пифагора величину вектора U1. В развернутой форме она имеет следующий вид.
Расчет потерь напряжения выполняется инженерами на стадии создания проекта электрической схемы для оптимального выбора конфигурации сети и составляющих ее элементов.
В процессе эксплуатации электроустановок при необходимости могут периодически проводиться одновременные замеры векторов напряжений на концам линий и сравнение полученных результатов методом простых расчетов. Этот способ актуален для устройств, к которым предъявляются повышенные требования, обусловленные необходимостью высокой точности работы.
Потери напряжения во вторичных цепях
Примером могут служить вторичные цепи измерительных трансформаторов напряжения, которые по длине иногда достигают нескольких сотен метров и передаются специальным силовым кабелем увеличенного сечения.
К электрическим характеристикам такого кабеля предъявляются повышенные требования по качеству передачи напряжения.
Современные защиты электротехнических объектов требуют работу измерительных систем с высокими метрологическими показателями и классом точности 0,5 или даже 0,2. Поэтому потери подводимого к ним напряжения необходимо контролировать и учитывать. Иначе вводимая ими погрешность в работу оборудования может существенно влиять на все эксплуатационные характеристики.
Потери напряжения внутри протяженных кабельных линий
Особенность конструкции длинного кабеля состоит в том, что он обладает емкостным сопротивлением за счет довольно близкого расположения токопроводящих жил и тонкого слоя изоляции между ними. Оно дополнительно отклоняет проходящий через кабель вектор тока и изменяет его величину.
Влияние снижения напряжения на емкостном сопротивлении необходимо учесть в расчете для изменения величины I∙z. В остальном описанная выше технология не меняется.
В статье приведены примеры потерь и падения напряжения на воздушных линиях электропередач и кабелях. Однако, они происходят во всех потребителях электроэнергии, включая электродвигатели, трансформаторы, индуктивности, конденсаторные установки и другие устройства.
Величина потерь напряжения для каждого вида электрооборудования законодательно регламентирована применительно к условиям эксплуатации, а принцип их определения во всех электрических схемах действует одинаково.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Результат понижения напряжения
Распространено явление, когда входное напряжение определяется ниже установленной нормы. Проседание по длине кабеля возникает по причине прохождения высокого тока, который вызывает увеличение сопротивления. Также потери возрастают на линиях большой протяженности, что характерно для сельской местности.
Согласно нормативам, потери от трансформатора до самого удаленного участка должны составлять не более 9%. Результат отклонения параметров от нормы может быть следующим:
- сбой работы энергозависимых установок и оборудования, осветительных приборов;
- выход электроприборов из строя при низких показателях напряжения на входе;
- снижение вращающего момента при пуске электродвигателя или компрессорной установки;
- пусковой ток приводит к перегреву и отключению двигателя;
- неравномерная токовая нагрузка в начале линии и на удаленном конце;
- осветительные приборы работают вполнакала;
- потери электроэнергии, недоиспользование мощности тока.
Изменяются характеристики и параметры эксплуатации электрических приборов. Например, из-за слабой мощности увеличивается время нагрева воды бойлером. Снижение напряжения приводит к сбоям в электронике.
В рабочем режиме потери напряжения в кабеле могут быть до 5%. Это значение допустимо для сетей энергетической отрасли, так как токи большой мощности доставляются на дальние расстояния. К таким линиям предъявляются повышенные требования. Поэтому при потерях в быту следует уделить внимание вторичным сетям распределения энергии.
Проверка кабеля по потере напряжения
Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.
Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:
- при освещении и сигнализации при напряжении более 50 вольт – 5 %;
- при освещении и сигнализации при напряжении 50 вольт – 10 %;
- при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
- при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
- при пуске двигателей – 25 %;
- при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
- при подаче электричества в генераторы и распределительный щит – 1 %.
Вам это будет интересно Как узнать ампераж
Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.
Пример калькулятора для автоматизации вычислений
Причины падения напряжения
Перекос фаз в трехфазной цепи
Прежде всего нужно разобраться: это вина поставщика электроэнергии или потребителя. Проблемы с сетью возникают по таким причинам:
- износ линий электропередач;
- недостаточная мощность трансформаторов;
- дисбаланс мощности или перекос фаз.
Эти проблемы связаны с поставщиком, самостоятельно их решить невозможно. Чтобы понять, правильно или нет работают высоковольтные линии, придется вызывать представителей энергосбыта. Они сделают замеры и составят заключение.
Удостовериться, что вина падения не связана с поставщиком, можно самостоятельно. Прежде всего, стоит выяснить у соседей, есть ли у них подобные проблемы. Для измерения напряжения в быту подойдет мультиметр. Его стоимость до 1000 рублей. Если прибор на входе в квартиру показывает нормальное напряжение, причину нужно искать в домашней сети.
Падать напряжение может из-за большой протяженности проводки. Когда длина сети превышает 100 метров, а сечение проводников 16 мм, колебания станут регулярными. Чтобы исправить ситуацию, придется менять проводку.
Слабые контакты – это дополнительное сопротивление току. К приборам он доходит в недостаточном количестве. К тому же неисправные контакты могут вызвать замыкание и привести к пожару. Чтобы нормализовать показатели, нужно заменить аварийный участок цепи и подгоревшие контакты.
Виновником может быть неправильное соединение проводов, идущих от ЛЭП к дому. Иногда вопреки требованиям безопасности соединяют медные провода с алюминиевыми или медные проводники соединены вместо клемм скруткой. Клеммы и зажимы изготовлены из некачественных материалов, либо срок их годности вышел.
Возможно, неисправность заключается в самом вводном аппарате. В этом случае его следует заменить.
Реальные примеры измерения напряжения
Наиболее простым примером измерения напряжения в бытовых условиях является пальчиковая батарейка. В ней вам необходимо приложить черный щуп к выводу «– », а красный к выводу « + », позицию переключателя установить на 2 В постоянного напряжения.
Рис. 4. Пример измерения напряжения на батарейке
Если показания для батарейки 1,5 В будут в пределах от 1,6 до 1,2 В, то такой источник питания считается пригодным для всего оборудования, в случае снижения значений до 1 – 0,7 В, от батарейки будут запускаться импульсные устройства, к примеру, часы. Если вольтметр покажет 0,6 В и менее, разряд достиг критического значения.
При измерении разности потенциалов в бытовой сети, вам следует коснуться щупами контактов розетки. Так как изолированная часть щупа имеет ограничительное кольцо, за которым расположен длинный стержень, вы можете безопасно проникнуть в розетку, не рискуя прикоснуться к токоведущим элементам. Допустимыми считаются отклонения от номинала на 10%, то есть от 198 до 142 В.
Также можно замерить разность потенциалов на выходе автомобильного аккумулятора или на другом элементе цепи электрической проводки. Для этого черный щуп мультиметра устанавливается на «– » клемму аккумулятора, а красный на « + » клемму.
Если аккумулятор заряжен, то показания вольтметра должны находиться в пределах от 12 до 14 В, но встречаются модели и с большим разбросом. Такое измерение позволяет диагностировать различные причины неполадок.
Как рассчитать потери
Линейная зависимость между напряжением и током
При расчете электрической линии отклонения напряжений не должны превышать регламентированных норм. Допустимые колебания для бытовых однофазных сетей – 209–231В, для трехфазной сети напряжение может варьироваться от 361 до 399 В.
Колебания силы тока и потребляемой мощности приводит к изменению напряжения в токопроводящих жилах возле потребителя. Поэтому при составлении схемы электропроводки необходимо учитывать допустимые потери.
В однофазной сети идет два провода, поэтому падение напряжения можно найти по следующей формуле: U=I*R, в свою очередь, R=(r*2i)/S.
- где r – удельное сопротивление, которое равно сопротивлению провода, сечением 1 мм2 и длиной 1м;
- i – обозначается как длина проводника;
- S – сечение кабеля.
Программа AutoCad для расчета падения напряжения
В трехфазной сети мощности на фазных проводах компенсируют друг друга, а длина нулевого проводника не учитывается, так как по нему не идет ток. Если нагрузка по фазам неравномерная, расчет выполняют как для однофазной сети. Для линий большой протяженности дополнительно учитывают емкостное и индуктивное сопротивление.
Расчет падения можно выполнять с помощью онлайн-калькулятора, также существуют специальные таблицы. В них показаны допустимые токовые нагрузки для кабелей разных типов. При расчетах сечения кабеля должны учитываться следующие данные:
- материал изготовления проводников;
- скрытая или открытая прокладка линии;
- токовая нагрузка;
- условия окружающей среды.
При протекании тока по кабелю, проводу или шине, происходит их нагревание. Этот процесс изменяет физические свойства проводников. Происходит оплавление изоляции, перегрев контактов, перегорание провода. От правильного подбора кабеля зависит надежность и бесперебойная работа электросети.
Как рассчитать сопротивление для понижения напряжения: формула падения на резисторе
Резистор является одним из самых распространённых элементов в электрической цепи. С его помощью ограничивается ток и изменяется напряжение. Конструируя схемы, часто может понадобится рассчитать сопротивление для понижения напряжения. Это актуально при построении делителей цифровых устройств или блоков питания, поэтому уметь выполнять такие вычисления должен каждый радиолюбитель.
Резистор — это элемент, использующийся в электрической цепи и не требующий для своей работы источника питания. Предназначен он для трансформирования силы тока в напряжение и обратно. Кроме этого, он может преобразовывать электрическую энергию в тепловую и ограничивать величину тока. Но перед расчётом падения напряжения на резисторе желательно разобраться в сути этого процесса.
Резистор — весьма распространённый элемент, характеризующийся рядом параметров. Основными из них являются:
- сопротивление;
- величина рассеиваемой энергии;
- рабочее напряжение;
- мощность;
- устойчивость к влиянию окружающей среды;
- паразитная составляющая.
Пассивный электрический элемент обозначается на схеме в виде прямоугольника с двумя выводами из середины его боковых сторон. В центре фигуры может указываться мощность римскими цифрами или чёрточками. Например, вертикальная полоска обозначает выдерживаемую мощность элемента, равную 1 Вт. Перечёркнутый прямоугольник в обозначениях на схеме указывает, что такой резистор является переменным.
Резисторы могут выпускаться с постоянным и переменным сопротивлением. Разновидностью вторых являются подстроечные элементы. Отличие их от переменных заключается лишь в способе установки нужного значения.
На схемах и в технической литературе устройство обозначается латинской буквой R, рядом с которой указывается порядковый номер и его номинал в соответствии с Международной системой единиц (СИ). Например, R12 5 кОм — резистор на пять килоом, расположенный в схеме под 12 номером.
При изготовлении элемента используется резистивный слой, который может быть плёночным или объёмным. Он наносится на диэлектрическое основание, а сверху покрывается защитной плёнкой.
Значение сопротивления
Сопротивление является фундаментальной величиной в электрических процессах. Его значение неизменно связано с током и напряжением. Их общая зависимость описывается с помощью закона Ома: сила тока, возникшая на участке цепи, прямо пропорциональна разности потенциалов между крайними точками этого участка и обратно пропорциональна его сопротивлению. Из этого закона находится сопротивление по следующей формуле:
R = U / I, где:
- R — сопротивление на участке цепи, Ом.
- I — сила тока, проходящая через этот участок, А.
- U — разность потенциалов на узлах части схемы, В.
Фактически же сопротивление элемента определяется его физической структурой и обусловлено колебаниями атомов в кристаллической решётке. Поэтому все материалы различаются на проводники, полупроводники и диэлектрики в зависимости от способности проводить электричество.
Ток — это направленное движение носителей заряда. Для его возникновения необходимо, чтобы вещество имело свободные электроны. Если к такому физическому телу приложить электрическое поле, то перемещаемые им заряды начнутся сталкиваться с неоднородностями структуры. Эти дефекты образуются из-за различных примесей, нарушения периодичности решётки, тепловых флуктуаций. Ударяясь о них, электрон расходует энергию, которая преобразовывается в тепловую. В результате заряд теряет импульс, а величина разности потенциалов уменьшается.
Но закон Ома можно применить не для всех веществ. В электролитах, диэлектриках и полупроводниках линейная зависимость между тремя величинами наблюдается не всегда. Сопротивление таких веществ зависит от физических параметров проводника, а именно — его длины и площади поперечного сечения, при этом оно чувствительно к изменению температуры.
Эта зависимость описывается с помощью формулы R = p * l / S. То есть сопротивление прямо пропорционально длине и обратно пропорционально площади проводника. Величина p называется удельным сопротивлением и определяется типом материала. Его значение берётся из справочника.
Импеданс резистора
Закон Ома применим для идеального резистора, не обладающего паразитными сопротивлениями. Полное сопротивление (импеданс) определяется исходя из эквивалентной схемы. Точный расчёт сопротивления для понижения напряжения необходимо проводить по другим формулам. Эквивалентная схема резистора, кроме активного импеданса, содержит также ёмкостное и индуктивное сопротивление.
Первое приводит к медленному накоплению заряда, который рассеивается при изменении направления тока. Чем больше паразитная ёмкость, тем дольше она заряжается. Соответственно, чем быстрее ток изменяет своё направление, тем меньше его ёмкостное сопротивление. Второе же характеризуется магнитным полем, чье появление мешает току изменять направление, поэтому, чем быстрее ток изменяет своё движение, тем больше становится индуктивное сопротивление.
Импеданс вычисляется по формуле: I = U/Z, где Z = (R2+(Xc-Xl)2)½. Где:
- R — активное значение, R = p*l/s.
- Xc — ёмкостная величина, Хс = 1/w*C.
- Xl — индуктивная величина, Хl = w*C.
- w- циклическая частота, w = 2πƒ.
Зная полное сопротивление резистора, можно точнее рассчитать падение напряжения в нём. Но для измерения паразитных составляющих понадобится использовать узкоспециализированные приборы. В обычных расчётах сопротивление вычисляют, учитывая только его активное значение, а паразитные величины принимают за ничтожно малые.
Параллельное соединение
В электрических схемах на участках цепи используется как параллельное, так и последовательное соединение. Первое представляет собой цепь, в которой каждый её элемент подключён к другому обоими контактами, но при этом между собственными его выводами нет прямой электрической связи. Т. е. существует две точки (электрические узлы), к которым присоединено несколько резисторов.
При таком включении ток, проходя через узел, начинает разделяться, и через каждый элемент потечёт разное его значение. Величина тока на каждом элементе будет прямо пропорциональна сопротивлению резистора, поэтому общая проводимость на этом участке увеличится, а её импеданс уменьшится.
Формула, с помощью которой можно рассчитать общую проводимость, выглядит так: G = 1/ Rобщ = 1/ R1 + 1/ R2 +…+ 1/ Rn, где n — обозначает порядковый номер резистора в цепи.
Преобразовав эту формулу, получится выражение вида: R общ = 1/G = (R1*R2*…* Rn) / (R1*R2 + R2*Rn +…+ R1*Rn. Проанализировав его, можно сделать вывод, что при параллельном соединении импеданс всегда будет меньше самого маленького значения отдельного резистора.
При таком соединении напряжение между узлами одновременно является общей разностью потенциалов для всего участка и на каждом отдельно взятом резисторе. Поэтому если рассчитать падение напряжения на одном приборе, то оно будет таким же на любом параллельно подключённом элементе: U общ = U 1 = U 2 =…= U n.
А вот электрический ток, проходящий через отдельный элемент, исходя из закона Ома будет равен: I Rn = U Rn / R n.
Последовательное включение
Так называется объединение в один участок цепи двух или более резисторов, в котором их соединение между собой происходит только в одной точке. Импеданс при последовательном включении определяется как сумма сопротивлений каждого отдельного элемента: Rобщ = R1+R2+…+Rn.
Следовательно, ток, протекающий через такую цепочку, будет становиться всё меньше после прохождения через последовательно включённый резистор. Чем будет больше элементов в цепи, тем труднее ему будет пройти их всех. Таким образом, его общее значение определяется как Iобщ = U / (R1+R2+…+Rn).
Поэтому можно утверждать, что в последовательном соединении существует только один путь для протекания тока. Чем будет больше количество резисторов в линии, тем меньше будет ток на этом участке.
Советуем к прочтению: Как проверить батарейку мультиметром: на работоспособность
Падение разности потенциалов при таком типе соединения на каждом элементе будет иметь своё значение. Оно определяется формулой URn = IRn*Rn, и чем больше будет импеданс элемента, тем больше энергии в нём начнёт выделяться.
Расчёт делителя напряжения
Резистивный делитель напряжения представляет элементарную схему для понижения напряжения. Состоять он может из двух или более элементов. Простейший делитель можно представить в виде двух участков цепи, которые называют плечами. Одно из них, которое располагается между положительной точкой потенциала и нулевой, — верхнее, а другое, между отрицательной и минусовой, — нижнее.
Такая схема используется для снижения напряжения как в постоянных, так и переменных цепях. Суть процесса заключается в следующем.
- На резистивную схему от источника питания подаётся напряжение U.
- Через резисторы последовательного участка цепи, образованного резисторами R1 и R2, начинает протекать ток.
- В результате на каждом из них выделяется какое-то количество энергии, т. е. возникает падение напряжения.
Сумма напряжений на всём размахе линии равняется значению разности потенциалов источника питания. В соответствии с формулой: U = I*R падение напряжения прямо пропорционально силе тока и величине сопротивления. Учитывая, что ток, протекающий через резисторы, одинаковый, справедливыми будут формулы U1 = I*R1 и U2= I*R2.
Тогда общее падение напряжение на участке будет равно U = I *(R1+ R2). Исходя из этого можно найти силу тока: I = U /(R1+ R2). Используя эти два выражения, можно получить окончательные формулы для расчёта падения напряжения на каждом элементе:
- U1 = R1*U/(R1+R2);
- U2 = R2*U/(R1+R2).
Практическое применение такого делителя очень распространено из-за несложности реализации понижения напряжения. Например, пусть источник питания выдаёт 12 В, а на нагрузку необходимо подать 6 В, при этом её сопротивление составляет 10 кОм. Для решения такой задачи рекомендуется использовать резисторы, сопротивление которых в десять раз меньше нагрузочного значения, поэтому, приняв R 1 = 1 кОм и подставив все известные значения в формулу напряжения на резисторе, получится, что 6 = R 2*12 (1000+ R 2) отсюда R 2 = 1 кОм.
Теперь, зная все величины, можно проверить верность расчёта. Падение разности потенциалов на первом элементе высчитывается как U 1 = 1000*12/(1000+1000) = 6 В, а общее напряжение — Uобщ = U 1+ U 2 = 12 В, что соответствует значению источника питания.
Следует отметить, что использование резисторов для понижения используется только при маломощных нагрузках, так как часть энергии превращается в тепло, а коэффициент полезного действия (КПД) очень низкий.
Как уменьшить падение напряжения и снизить потери в кабеле
Можно снизить количество потерь, уменьшив сопротивление на всем участке электросети. Экономию дает способ повторного заземления нуля на каждой опоре линии электропередач.
Стоимость электроснабжения линией большой протяженности, выбранной по допустимому падению напряжения, больше выбора, выполненного по нагреву кабеля. Все же есть возможность снизить эти расходы.
- Усилить начальный потенциал питающего кабеля, подключив его к отдельному трансформатору.
- Добиться постоянных величин напряжения в сети можно с помощью установки стабилизатора возле нагрузки.
- Подключение потребителей с низкими нагрузками 12–36 В выполняют через трансформатор или блок питания.
Чем длиннее кабель линии электропередач, тем большее сопротивление возникает при прохождении по нему тока. Очевидно, что потери напряжения также выше. Снизить их можно, комбинируя способы между собой.
- Снизить расходы увеличением сечения питающего кабеля. Но этот метод потребует больших финансовых вложений.
- При разработке линий энергоснабжения следует выбирать максимально короткий путь, так как прямая линия всегда короче ломаной.
- При снижении температуры сопротивление металлов уменьшается. Вентилируемые кабельные лотки и другие конструкции снижают потери в линии.
- Уменьшение нагрузки возможно, если есть много источников питания и потребителей.
Экономию дает должное содержание и профилактика электросетей – проверка плотности и прочности контактов, использование надежных клеммников.
Подходить к вопросу сохранения энергии нужно с полной ответственностью. Проблема потери напряжения может вывести из строя дорогостоящие приборы, инструменты. Не стоит пренебрегать мерами безопасности, они будут нивелировать скачки напряжения и защищать бытовую технику и оборудование на предприятии.