Как правильно настроить тепловое реле электродвигателя | Contact-pro.ru

В течение длительного рабочего процесса у любых электродвигателей перегреваются обмотки, портится изоляционное покрытие. Подобные ситуации нередко приводят к межвитковым замыканиям, выгоранию полюсов и другим негативным последствиям, требующим срочного дорогостоящего ремонта. Избежать этого помогает тепловое реле для электродвигателя, установленное в цепь питания и обеспечивающее надежную защиту от перегрева.

Ну а теперь перейдем к расчету правильной уставки теплового реле!

За пример возьмем насос Grundfos.

Вводные данные для расчета берем из таблички на электродвигателе.

f = 60 Гц

U = 220-277 ∆ / 380-480 Y В

Формула рассчета номинального тока (ток полной нагрузки) In = 5,70 — 5,00 / 3,30 — 2,90 А

Представим, что:

  • Ua = фактическое напряжение 254 ∆ / 440 Y В (фактическое напряжение)
  • Umin = 220 ∆ / 380 Y В (минимальные значения в диапазоне напряжений)
  • Umax = 277 ∆ / 480 Y V (Максимальные значения в диапазоне напряжений)

Соотношение напряжений определяется следующими уравнениями:

  • Для схемы подключения треугольник UΔ = (UA — Umin) / (Umax — Umin),что в данном случае: UΔ = (254 — 220) / (227 — 220) = 0,6
  • Для схемы подключения звезда UY = (UA — Umin) / (Umax — Umin), что в данном случае: UY = (440-380) / (480-380) = 0,6

И так мы получаем, что UΔ = UY

Конструктивное исполнение тепловых реле

Тепловые реле всех видов имеют аналогичное устройство. Наиболее важный элемент любого из них — чувствительная биметаллическая пластина.

Значение тока срабатывания находится под влиянием температурных показателей среды, в которой работает реле. Рост температуры уменьшает время срабатывания.

Чтобы это влияние свести к минимуму, разработчики устройств выбирают как можно большую температуру биметалла. С этой же целью некоторые реле снабжают дополнительной компенсационной пластиной.

Если в конструкцию реле включены нихромовые нагреватели, подключение их осуществляют по параллельной, последовательной или параллельно-последовательной схеме с пластиной.

Значение тока в биметалле регулируют при помощи шунтов. Все детали вмонтированы в корпус. Биметаллический элемент U-образной формы зафиксирован на оси.

Цилиндрическая пружина упирается в один конец пластины. Другим концом она базируется на уравновешенной изоляционной колодке.Совершает повороты вокруг оси и является опорой для контактного мостика, оснащенного контактами из серебра.

Для координации тока уставки биметаллическая пластина своим левым концом соединена с ее механизмом. Регулировка происходит за счет влияния на первичную деформацию пластины.

Если величина токов перегрузки становится равной или большей чем уставки, изоляционная колодка поворачивается под воздействием пластины. Во время ее опрокидывания происходит отключение размыкающего контакта устройства.

Автоматически реле делает возврат в первоначальное положение. Процесс самовозврата занимает не более 3 минут с момента включения защиты. Возможен и ручной возврат, для этого предусмотрена специальная клавиша Reset.

При ее использовании прибор занимает исходное положение за 1 минуту. Чтобы задействовать кнопку, ее проворачивают против часовой стрелки до момента, когда она поднимется над корпусом. Ток установки обычно указан на щитке.

Теперь рассчитаем фактический ток полной нагрузки нашего насоса (I)

  • Ток для значений при схеме подключения треугольник: 5,70 + (5,00 — 5,70) × 0,6 = 5,28 = 5,30 A
  • Ток для значений при схеме подключения звезда: 3,30 + (2,90 — 3,30) × 0,6 = 3,06 = 3,10 А

Главное правило: тепловое реле перегрузки двигателя всегда настраивается на номинальный ток, указанный на паспортной табличке.

Однако если двигатели спроектированы с учетом эксплуатационного фактора, который затем указан на паспортной табличке, например. 1.15, установленный ток для реле перегрузки может быть увеличен на 15% по сравнению с током полной нагрузки или с коэффициентом эксплуатации в амперах , который обычно указывается на паспортной табличке.

ВЫВОД: в нашем случае двигатель подключен по схеме звезда = 440 В 60 Гц, реле перегрузки должно быть установлено на 3,1 А.

Срабатывает тепловое реле. Перегруз или что это может быть?

Разбираться, что к чему времени у меня не было, я быстро проверил указателем электродвигатель на наличие пробоя на корпус, возвратил реле, и запустил двигатель в работу. Тут же меряю нагрузку – показывает 10 Ампер. Электродвигатель на насосе 7,5 кВт, значит, номинал у него должен быть в пределах 14-15 Ампер. Кстати, в этой статье, я писал как рассчитать номинальный ток электродвигателя, кому интересно почитайте. Тепловое реле стоит на 16 Ампер, по идее всё должно работать идеально.

Насос этот, работает не постоянно. Его включают на несколько минут каждые 2-3 часа. Я решил уточнить у человека, который его включает. При каких условиях сработала защита – когда пришёл насос уже не включался, или его выбило уже в рабочем состоянии.

Со слов Сергея, так зовут человека, который работает на линии, насос был уже выбит, когда он пришёл его включать. Значит, тепловое реле сработало ещё на предыдущем включении. Я подумал, что Сергей просто неправильно выключил насос. Нужно сначала выключить насос, а потом закрывать краны. А он, наверное, сделал наоборот.

Во время пересменки, я всё рассказ сменщику, и пошёл на два выходных.

Через два дня, я опять заступил на смену, и человек которого я меняю, рассказал мне, что насос все два дня, то выбивал, то нормально работал. Я сразу подумал, что нужно искать причину этих остановок.

Заступив на смену, я сразу звоню Сергею, и говорю ему, чтобы позвал меня, когда будет включать насос. И вот, я уже стою с токоизмерительными клещами возле ПЗА. Включили насос, ток опять показывает 10 Ампер. Проработал он минут 5, и его выключили.

Я сразу же разбираю электрическую схему включения насоса, и начинаю проверять все аппараты на наличие нагревов. На тепловом реле был небольшой нагрев на одной фазе. Я полностью заменил одну биметаллическую вставку, и перетянул все болтовые соединения.

Но когда я открыл электромагнитный пускатель, мне всё сразу стало ясно. Пускатель там стоял ПМЭ-211, и контакты на нём были немного подгоревшие. Я решил проверить замыкаются ли контакты, когда втягивается пускатель. Указатель прикладываю к верхним и нижним контактам, и принудительно втягиваю пускатель.

При такой проверке, я обнаружил, что контакты замыкаются через раз. При такой работе, получается, что на электродвигатель подавалось только две фазы, ток был большим, и от этого срабатывало тепловое реле.

Сделал ревизию пускателю. После этого проблем с работой насоса больше не было.

Вот такая история была у меня на смене. Надеюсь, статья вам понравилась. Я привёл реальный пример, при каких обстоятельствах может срабатывать тепловое реле. Буду рад, если поделитесь этой статьёй со своими друзьями в социальных сетях. Так же подписывайтесь на обновление моего сайта. Пока.

С уважением Александр!

Реле времени (10 устанавл. функц.) RT-10 EKF PROxima, rt-10

Многофункциональное реле времени RT-10 EKF PROxima является электронным коммутационным аппаратом с регулируемыми режимами работы и регулируемой установкой времени. Реле предназначено для включения или отключения нагрузки по заданным временным величинам и режимам работы. Переключение диапазонов времени и режимов работы производится с помощью поворотных регуляторов расположенных на лицевой поверхности реле. Реле применяется в системах промышленной и бытовой автоматики: в вентиляционных, отопительных, осветительных системах. Категория применения – АС-15 (управление электромагнитами мощностью свыше 72 Вт).

Паспорт RT-10

Статус:Регулярная
Номин. ток, А8
Количество выход. перекидных контактов без задержки1
Номин. напряжение питания цепи управления Us AC 60 Гц, В230…230
Номин. напряжение питания цепи управления Us постоян. тока DC, В24…24
Временной диапазон, с0.1…8640000
Тип напряжения управленияAC/DC (перемен./постоян.)
Изменяемые выходы с задержкой/без задержкиНет
Сменный блок дополнит. контактовНет
Количество выход. перекидных контактов с задержкой0
Количество выход. нормально открытых контактов с задержкой0
Импульсное устройствоНет
Подходит для монтажа на DIN-рейку (с ?-профилем)Да
Количество выход. нормально открытых контактов без задержки0
Количество выход. нормально закрытых контактов без задержки0
Срок службы, лет10
Номин. напряжение питания цепи управления Us AC 50 Гц, В230…230
Тип электрического подключенияВинтовое соединение
Количество выход. нормально закрытых контактов с задержкой0
Функция задержки на выключениеДа
Перекидной контакт на выключениеДа
Подходит только для дистанционного управленияНет
Высота, мм91,4
Глубина, мм49
Подходит для фронтального монтажаДа
Гарантийный срок эксплуатации, лет7
Со штепсельн. гнездом/розеткойНет
Возможно дистанционное управлениеДа
Функция мгновенного, с задержкой срабатывания, неизменяемойНет
Ширина, мм18,5
Функция мгновенного срабатывания импульсомНет
Функция времени, включение с задержкой, изменяемойДа
Функция времени, включение импульсом. Изменяемая задержка на включениеНет
С полупроводниковым выходомНет
Функция задержки на включениеДа
Перекидной контакт на включениеДа
Подключение Звезда-ТреугольникНет
СерияPROxima

Принцип работы приспособления

Выполняя защитную функцию, автоматический выключатель разъединяет силовые питающие цепи. Тепловое реле отличается от него тем, что при превышении нагрузки просто выдает управляющий сигнал. При такой защите токи небольшой величины коммутируются в одной цепи управления.

В схеме перед термореле находится магнитный пускатель. Когда цепи размыкаются в аварийном порядке, отпадает надобность в дублировании работы контактора. Следовательно, не расходуется материал для изготовления силовых контактных групп.

Наиболее популярными являются приборы, оснащенные биметаллическими пластинами. Собственно пластина состоит из двух аналогичных элементов.

Один из них обладает значительным температурным коэффициентом, а другой — несколько меньшим. Эти две составляющие плотно прилегают друг к другу.

Так как составные части биметаллической пластины выполнены из пары разнородных металлов, имеющих неодинаковые коэффициенты расширения, нагрев заставляет ее изгибаться и взаимодействовать с контактами

Обеспечивается такое жесткое скрепление путем сваривания или прокаткой в горячем виде. За счет того, что пластина закреплена неподвижно, при нагреве наблюдается ее изгиб в сторону элемента с меньшим температурным коэффициентом. Этот принцип взят за основу при создании тепловых реле.

При их производстве применяют хромоникелевую сталь и немагнитную, обладающие большим значением температурного коэффициента. Как материал с малым значением этого параметра используют инвар — соединение никеля с железом.

По такой схеме функционирует тепловое реле. Незакрепленный конец биметаллической пластины при ее прогибе воздействует на контакты термореле (+)

Пластину из биметалла прогревают токи нагрузки. Протекают они чаще всего по специальному нагревателю. Существует и комбинированный нагрев, при котором, кроме тепла, отдаваемого нагревателем, биметалл прогревает еще и ток, проходящий через него.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]