В виду высокой стоимости электродвигателей вопрос их защиты от повреждения при нарушении нормального режима работы стоит достаточно остро. Среди наиболее популярных нарушений перегрузка, обрыв одной из фаз, снижение рабочего напряжения. И все они характеризуются большими рабочими токами, протекающими в обмотках электрической машины, что приводит к перегреву, ухудшению диэлектрических свойств изоляции и перегоранию жил, если ситуацию пустить на самотек. Для защиты электрических двигателей от перегревания в схему питания электропривода вводят тепловое реле.
Конструкция
Современный рынок электрооборудования предлагает огромный выбор тепловых реле различного принципа действия, как следствие, будет отличаться и их конструктивное исполнение. Однако, в соответствии с п.3.2. ГОСТ 16308-84 все технические параметры конкретной модели должны соответствовать данному типу по габаритам, исполнению и принципиальной схеме этого типа. Наиболее распространенным вариантом за счет простоты исполнения и относительной дешевизны является электротепловое реле на биметаллической пластине. Конструкция которого приведена на рисунке 1.
Рис. 1. Конструкция теплового реле
Как видите, в состав механизма входят:
- нагревательный элемент – токоведущая часть, пропускающая через себя рабочий ток электрической машины;
- биметаллическая пластина – выступает в роли действующего индикатора, реагирующего на превышение температуры;
- толкатель – выполняет функции жесткого рычага, передающего усилие от биметаллической пластины;
- температурный компенсатор – позволяет внести поправку на температуру окружающей среды для стабилизации величины тока срабатывания;
- защелка – предназначена для фиксации положения температурного реле;
- штанга расцепителя – подвижная часть механизма, предназначенного для перемещения контактов;
- контакты реле – передают питание в блок управления;
- пружина – создает усилие для перемещения реле в устойчивое положение.
На практике существуют и другие типы реле, конструкция которых будет принципиально отличаться. Данный вариант приведен в качестве примера для наглядности протекания процессов и пояснения принципа работы.
Подключение, регулировка и маркировка
Коммутационный прибор перегрузки, в отличие от электрического автомата, не разрывает силовую цепь непосредственно, а лишь подает сигнал на временное отключение объекта при аварийном режиме. Нормально включенный контакт у него работает как кнопка «стоп» контактора и подсоединяется по последовательной схеме.
Схема подключения устройств
В конструкции реле не нужно повторять абсолютно все функции силовых контактов при успешном срабатывании, поскольку оно подключается непосредственно к МП. Такое исполнение позволяет существенно сэкономить материалы для силовых контактов. Намного легче в управляющей цепи подключить малый ток, чем сразу отключать три фазы с большим.
Во многих схемах подключения теплового реле к объекту используют постоянно замкнутый контакт. Его последовательно соединяют с клавишей «стоп» пульта управления и обозначают НЗ – нормально замкнутый, или NC – normal connected.
Разомкнутый контакт при такой схеме может быть использован для инициализации срабатывания тепловой защиты. Схемы подсоединения электромоторов, в которых подключено реле тепловой защиты, могут значительно отличаться в зависимости от наличия дополнительных устройств или технических особенностей.
В стандартной простой схеме ТР подключают к выходу низковольтного пускателя на электрический двигатель. Дополнительные контакты прибора в обязательном порядке соединяют последовательно с катушкой пускателя
Это обеспечит надежную защиту от перегрузок электрооборудования. В случае недопустимого превышения предельных значений тока релейный элемент разомкнет цепь, моментально отключая МП и двигатель от электропитания.
Подключение и установку теплового реле, как правило, производят вместе с магнитным пускателем, предназначенным для коммутации и запуска электрического привода. Однако есть виды, которые монтируют на DIN-рейку или специальную панель.
Тонкости регулировки релейных элементов
Одним из главных требований к устройствам защиты электродвигателей является четкое действие аппаратов при возникновении аварийных режимов работы мотора. Очень важно правильно его подобрать и отрегулировать настройки, поскольку ложные срабатывания абсолютно недопустимы.
Электротепловое реле, которое оптимально подходит к конкретному типу двигателя по всем техническим параметрам, способно обеспечить надежную защиту от перегрузок по каждой фазе, предотвратить затяжной старт установки, не допустить аварийных ситуаций с заклиниванием ротора
Среди преимуществ использования токовых элементов защиты также следует отметить довольно высокую скорость и широкий диапазон срабатывания, удобство монтажа. Чтобы обеспечить своевременное отключение электромотора при перегрузке, реле тепловой защиты необходимо настраивать на специальной платформе/стенде.
В таком случае исключается неточность из-за естественного неравномерного разброса номинальных токов в НЭ. Для проверки защитного устройства на стенде применяется метод фиктивных нагрузок.
Через термоэлемент пропускают электрический ток пониженного напряжения, чтобы смоделировать реальную тепловую нагрузку. После этого по таймеру безошибочно определяют точное время срабатывания.
Настраивая базовые параметры, следует стремиться к таким показателям:
- при 1,5-кратном токе устройство должно отключать двигатель через 150 с;
- при 5…6-кратном токе оно должно отключать мотор через 10 с.
Если время срабатывания не соответствует норме, релейный элемент необходимо отрегулировать посредством контрольного винта.
Для корректной работы обязательно нужно настроить прибор на наибольший допустимый электрический ток двигателя и температуру воздуха
Это делают в тех случаях, когда значения номинального тока НЭ и мотора отличаются, а также если температура окружающей среды ниже номинальной (+40 ºC) более, чем на 10 градусов по шкале Цельсия.
Ток срабатывания электротеплового коммутатора уменьшается с повышением температуры вокруг рассматриваемого объекта, так как нагрев биметаллической полосы зависит от этого параметра. При существенных отличиях необходимо дополнительно отрегулировать ТР или подобрать более подходящий термоэлемент.
Резкие колебания температурных показателей сильно влияют на работоспособность токового реле. Поэтому очень важно выбирать НЭ, способный эффективно выполнять основные функции с учетом реальных значений.
ТР рекомендовано размещать в одном помещении с защищаемой электроустановкой. Их нельзя монтировать близко к теплогенераторам, нагревательным печам и другим источникам тепла
К реле с температурной компенсацией эти ограничения не относятся. Токовую уставку защитного аппарата можно регулировать в диапазоне 0,75-1,25х от значений номинального тока термоэлемента. Настройку выполняют поэтапно.
В первую очередь вычисляют поправку E1 без температурной компенсации:
E1=(Iном-Iнэ)/c×Iнэ,
Где
- Iном – номинальный ток нагрузки двигателя,
- Iнэ – номинальный ток рабочего нагревательного элемента в реле,
- c – цена деления шкалы, то есть эксцентрика (c=0,055 для защищенных пускателей, c=0,05 для открытых).
Следующий шаг – определение поправки E2 на температуру окружающего воздуха:
E2=(ta-30)/10,
Где ta (ambient temperature) – температура внешней среды в градусах Цельсия.
Последний этап – нахождение суммарной поправки:
E=E1+E2.
Суммарная поправка E может быть со знаком «+» или «-». Если в результате получается дробная величина, ее обязательно нужно округлить до целого в меньшую/большую по модулю сторону, в зависимости от характера токовой нагрузки.
Чтобы настроить реле, эксцентрик переводят на полученное значение суммарной поправки. Высокая температура срабатывания уменьшает зависимость работы защитного аппарата от внешних показателей.
Реле тепловой защиты допускает ручную плавную регулировку величины тока срабатывания устройства в пределах ±25% от значения номинального тока электромеханической установки
Регулировка этих показателей осуществляется специальным рычагом, перемещение которого изменяет первоначальный изгиб биметаллической пластины. Настройка тока срабатывания в более широком диапазоне осуществляется заменой термоэлементов.
В современных коммутационных аппаратах защиты от перегрузки есть тестовая кнопка, которая позволяет проверить исправность устройства без специального стенда. Также есть клавиша для сброса всех настроек. Обнулить их можно автоматически или вручную. Кроме того, изделие комплектуют индикатором текущего состояния электроприбора.
Маркировка электротепловых реле
Защитные аппараты подбирают в зависимости от величины мощности электрического двигателя. Основная часть ключевых характеристик скрыта в условном обозначении.
Так выглядит маркировка тепловых реле завода КЭАЗ. Важно при выборе обратить внимание на значение номинального тока рассматриваемой модели, чтобы оно было достаточным
Акцентировать внимание следует на отдельных моментах:
- Диапазон значений токов уставки (указан в скобках) у разных производителей отличается минимально.
- Буквенные обозначения конкретного типа исполнения могут различаться.
- Климатическое исполнение нередко подается в виде диапазона. К примеру, УХЛ3О4 нужно читать так: УХЛ3-О4.
Сегодня можно купить самые разные вариации прибора: реле для переменного и постоянного тока, моностабильные и бистабильные, аппараты с замедлением при включении/отключении, реле тепловой защиты с ускоряющими элементами, ТР без удерживающей обмотки, с одной обмоткой или несколькими.
Эти параметры не всегда отображены в маркировке устройств, но обязательно должны быть указаны в техпаспорте электротехнических изделий.
С устройством, разновидностями и маркировкой электромагнитного реле ознакомит следующая статья, с которой мы рекомендуем ознакомиться.
Принцип работы
В основу работы положен принцип разности температурного расширения различных металлов, описанных законом Джоуля-Ленца. При нагревании биметаллической пластины, состоящей из двух металлов с различным коэффициентом теплового расширения, произойдет ее геометрическая деформация. Именно такая пластина и устанавливается в термореле, она реагирует на превышение температуры более установленного предела.
Для рассмотрения принципа работы температурного реле воспользуемся трехмерной моделью реального устройства, приведенной на рисунке 2 ниже:
Рис. 2. Принцип действия температурного реле
Как видите, подключенное в цепь электродвигателя тепловое реле пропускает основную нагрузку электрической машины через токоведущие шины. Если смоделировать ситуацию перегрузки, когда через них потечет ток в несколько раз превышающий номинальный, то шины начнут нагреваться и избыток тепла перейдет на биметаллическую пластину, подключенную к каждой из фаз электродвигателя. При достижении температуры уставки биметаллическая пластина изогнется и приведет в движение один из толкателей. Толкатель, в свою очередь, сместит рычаг защелки на несколько миллиметров, что отпустит пружинный механизм и даст ход штанге расцепителя.
После этого контакты теплового реле отключат питание цепи управления и перекроют контакты цепи сигнализации, которая оповестит об отключении защитного приспособления. После устранения причины перегрева реле возвращается в рабочее положение посредством нажатия механической кнопки. Следует отметить, что сразу после отключения теплового реле включить его не получиться, так как биметаллическая пластина еще не остыла и возможны ложные срабатывания. Поэтому процесс требует определенной выдержки времени, после которой электродвигатель можно запускать в работу.
Грамотный поиск
Выбор теплового реле должен происходить по правилам. За основу берется номинал рабочего тока. Причем стандарты, как отечественный, так и международный, подразумевают, что минимум будет аналогичен установленному для срабатывания защиты.
Это предусматривает активацию прибора только при перегрузке линии на 20-30 %. Но не позже чем, через 20 минут. То есть, чтобы избежать ложного включения, предельные параметры на запуск должны быть выше номинальных на 12 %.
Защита от перегрева Источник prom.st
И если присутствует асинхронный мотор мощностью 1,5 кВт, подключенный к сети 380 В, то для него подойдет реле с пороговым током в 3,36 Ампер. Потому что рабочий номинал такого мотора составляет 2,8 А. И если посмотреть таблицы в специальных справочниках, то в пределах от 2,4 до 4,0 Ампер работает тепловое реле РТЛ-1008.
При неизвестных данных мотора, необходимо произвести замеры тока на каждой фазе линии. Для этого применяют либо токоизмерительные клещи, либо мультиметр. Важно обращать внимание на напряжение, на котором работает реле. А монтаж в сеть с тремя фазами нужно делать через дополнительный модуль, защищающий от перекоса фаз.
Обозначение на схеме
При чтении схем важно ориентироваться в обозначении всех устройств, изображенных на них. Это позволяет обеспечивать точное подключение с соблюдением основных параметров работы электроустановки, селективности срабатывания защит и поддерживать нормальный режим электроснабжения. Изображение теплового реле на схемах определяется положениями двух нормативных документов. В соответствии с таблицей 3 ГОСТ 2.755-87 контакты данного вида оборудования изображаются следующим образом (рисунок 3):
Рис. 3. Изображение контакта термореле
В тоже время, само температурное реле имеет обозначение в соответствии с п.21 таблицы 1 ГОСТ 2.756-76, которое отображается на схеме следующим образом (см. рисунок 4):
Рис. 4. Воспринимающая часть электротеплового реле
Знание схематических изображений электротеплового реле позволит вам ориентироваться в принципиальных схемах уже действующих агрегатов. Или самостоятельно составлять и подключать оборудование через защитное приспособление.
Обозначение TP для электродвигателя с PTC
Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.
Соединение
На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111. Электродвигатели с защитой TP 111
Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.
Виды
Современное разнообразие тепловых реле охватывает довольно широкий ассортимент. Поэтому деление на виды производиться в соответствии с установленными критериями на основании п. 1.1. ГОСТ 16308-84. Так, по роду тока рабочей цепи все устройства подразделяются на две большие группы: реле переменного и постоянного тока. В зависимости от количества рабочих полюсов встречаются:
- однополюсные – применяются для двигателей постоянного тока и других однофазных моделей;
- двухполюсные – устанавливаются в трехфазную цепь, где контроль может осуществляться только по двум фазам;
- трехполюсные – актуальны для мощных асинхронных агрегатов с короткозамкнутым ротором.
В зависимости от типа контактов вторичных цепей все тепловые приборы подразделяются на модели:
- только с замыкающим контактом;
- только с размыкающим контактом;
- и с замыкающим, и с размыкающим контактом;
- с переключающими;
В зависимости от способа возврата теплового реле в исходное положение существуют варианты с включением вручную или с самостоятельным возвратом. Также в моделях может реализовываться функция перевода с одного вида работы на другой.
Также существует разделение по наличию или отсутствию приспособления для компенсации температуры окружающего пространства. И модели с возможностью регулировки тока несрабатывания или с отсутствием таковой функции.
Обзор моделей
В таблице приведен краткий сравнительный обзор моделей тепловых реле с указанием основных параметров и примерной стоимости.
Наименование модели | Характеристики | Примерная стоимость, руб. |
РТЛ 10А | Переменный ток до 660В и частотой 50Гц или 60Гц Постоянный ток до 440В | 320 |
РТЭ-1304 | Номинальный ток 0,4-0,63 А Частота тока 50 Гц Напряжение 660 В | 340 |
РТТ5-10-1 | Реле перегрузки Род тока переменный Диапазон установок 5,00 А | 490 |
ТРН10 | Отключаемый ток: переменный — 3 А при 380 В; 1 А при 660В | 270 |
РТК | Напряжение: 220 В ток — 1,3 А | 440 |
Тепловое реле перегрузки РТЛ-1010М с уровнем пыле- и влагозащиты IP20
Назначение
Основным назначением теплового реле является защита электродвигателя от перекоса фаз, перегрева на затяжных пусках, заклинивании вала или подачи чрезмерной нагрузки. Для решения всех этих задач на практике выпускаются различные типы реле, имеющие узкую специализацию по конкретному направлению, рассмотрим далее более детально каждый из них.
- РТЛ используется для защиты трехфазных асинхронных электрических машин от воздействия токов перегрузки, перегрева при обрыве или перекосе фаз, проблем с вращением вала. Может применяться как самостоятельно, так и с установкой на пускатель ПМЛ.
- РТТ предназначено для работы с трехфазными агрегатами с короткозамкнутым ротором, обеспечивает полный охват аварийных режимов, приводящих к перегреванию обмоток. Также может устанавливаться на магнитный пускатель ПМА, ПМЕ или самостоятельно на монтажную панель.
- РТИ – трехфазное тепловое реле с возможностью монтажа на пускатели серии КМТ, КМИ. Отличаются стабильным низким расходом электроэнергии, включаются в работу совместно с предохранителями.
- ТРН – применяется для контроля пуска и режима работы электродвигателя, мало зависит от внешних температурных факторов. Является двухполюсной моделью, которую можно использовать для пуска двигателей постоянного тока.
- Твердотельные — в отличии от предыдущих, не имеет контактных групп и перемещающихся элементов внутри. Применяется в трехфазных цепях, где устанавливаются повышенные требования к пожарной безопасности.
- РТК – контролирует температурные показатели не через рабочие токи, а путем размещения датчика в корпусе мотора. Поэтому весь процесс взаимодействия осуществляется только по величине температуры.
- РТЭ – представляет собой подобие предохранителя, так как отключение происходит за счет плавления проводника. Само тепловое устройство монтируется непосредственно с электродвигателем.
Как работает тепловая защита
Принцип работы теплового реле связан со способностью металлов расширяться при сильном нагревании. В устройство монтируются две пластины из разных металлов. Но коэффициенты температурного расширения у них разные. Элементы жестко соединены между собой.
Когда происходит перегрузка системы, то для продолжения работы требуется повышение силы токов. Процесс сопровождается интенсивным выделением тепла. Контактные пластины нагреваются и у них возникает искривление в сторону участка, с меньшим температурным коэффициентом.
Причем все протекает последовательно. Затруднения в работе мотора повышают силу тока. Чем сильнее последний, тем скорее проходит нагрев. Пластина, доведенная до аварийного предела накаливания, изогнется и разомкнет контракт на участке цепи.
Структура теплового реле Источник oboiman.ru
Устанавливая тепловые реле для защиты электродвигателей, следует учитывать климатические условия в здании. Если в районе работы мотора очень жарко, то при настройке реле необходимо выставлять максимальные параметры с запасом. Чтобы компенсировать разницу температур.
Поскольку контактный материал перед срабатыванием очень сильно нагревается, нужно дать ему время для остывания. Иначе устройство снова отключит систему через короткое время. Но, как правило, за время исправления неполадок биметаллические пластины успевают прийти в норму.
Тепловое реле состоит из:
- нагревательного элемента;
- пластин из биметалла;
- толкателя;
- компенсатора температуры;
- защелки;
- штанги расцепителя;
- контактной группы;
- пружины.
Разберемся, как происходит тепловая защита электродвигателя. Ток постоянно проходит по нагревательному элементу. Если температура последнего растет, значит система начала работать под нагрузкой. При достижении заданного параметра перегрузки у биметаллической пластины происходит деформация.
Деформация биметаллической пластины Источник meteo59.ru
Она перемещает толкатель, который приводит в действие температурный компенсатор. Последний смещает в сторону защелку, чтобы штанга расцепителя смогла подняться вверх и разомкнуть контактную группу. А чтобы вернуть все в исходное положение, нужна пружина, которая активируется специальной кнопкой.
Технические характеристики
Корректная работа релейной защиты обеспечивается за счет соответствия параметров теплового устройства заданным условиям работы электрической машины. Поэтому важно изучить основные рабочие параметры реле еще до его приобретения. К основным техническим данным теплового реле относятся:
- величина номинального напряжения и частота на которые оно рассчитано;
- время-токовая характеристика – определяет время срабатывания при установленной кратности превышения;
- время возврата теплового элемента в исходное положение;
- диапазон изменения тока уставки;
- тепловая устойчивость к превышению рабочей величины;
- климатическое исполнение и степень пыле- влагозащищенности.
Маркировка тепловых реле
В маркировке указывается большинство важных характеристик ТР. Пример обозначения: РТЛ-Х1Х2Х3-Х4-Х5А-Х6А-Х7Х8, где
- РТЛ – тип теплового реле;
- Х1 – ном.ток, 1 – до 25 А, 2 – до 100 А, 3 – до 250 А, 4 – до 510 А;
- Х2– 3 цифры (условно), обозначающие диапазон токовой уставки;
- Х3–литера, характеризующая исполнение;
- Х4– способ возврата: 1 – ручной, 2 – самовозврат;
- Х5 – Iном, А;
- Х6 – диапазон уставки по току, А;
- Х7– климатическое исполнение;
- Х8– торговая марка.
Тепловое реле – эффективный элемент защиты электродвигателей и другого электрооборудования, который выгодно отличается от входного автоматического выключателя тем, что не подвержен ложным срабатываниям при кратковременных скачках тока.
Схемы подключения
Подключение вышеперечисленных моделей тепловых реле может производиться по нескольким схемам, отличающихся в зависимости от конкретного типа оборудования. Рассмотрим наиболее актуальные из них.
Рис. 5. Схема включения теплового реле
Как видите на рисунке 5, трехфазное реле RT1 подключается последовательно к двигателю M. Питание к ним подается через контактор KM. В нормальном режиме работы контакты RT1 нормально замкнуты и через катушку КМ протекает ток. Как только возникнет аварийный режим, тепловая защита разомкнет контакты и катушка контактора обесточится, питание двигателя прекратиться.
Аналогичным образом происходит включение двухполюсного реле, с той разницей, что контакты защитного устройства включаются последовательно только в две фазы из трех, как показано на рисунке ниже:
Рис. 6. Схема включения двухполюсного реле
Помимо этого существует схема включения теплового реле для мощных электродвигателей, рабочий ток которых в разы превышает допустимый предел для защитного приспособления. В таких ситуациях используется трансформаторное преобразование, а схема включения выглядит следующим образом:
Рис. 7. Схема трансформаторного включения
Зачем нужны защитные аппараты?
Даже если электропривод грамотно спроектирован и используется без нарушения базовых правил эксплуатации, всегда остается вероятность возникновения неисправностей.
К аварийным режимам работы относят однофазные и многофазные КЗ, тепловые перегрузки электрооборудования, заклинивание ротора и разрушение подшипникового узла, обрыв фазы.
Функционируя в режиме повышенных нагрузок, электрический двигатель расходует огромное количество электроэнергии. А при регулярном превышении показателей номинального напряжения оборудование интенсивно нагревается.
В результате быстро изнашивается изоляция, что приводит к значительному снижению эксплуатационного срока электромеханических установок. Чтобы исключить подобные ситуации, в цепи электрического тока подключают реле тепловой защиты. Их основная функция – обеспечить нормальный режим работы потребителей.
Они отключают мотор с определенной выдержкой времени, а в некоторых случаях – мгновенно, чтобы предотвратить разрушение изоляции или повреждение отдельных частей электроустановки.
Токовое реле постоянно защищает электрический двигатель от обрыва фазы и технологических перегрузок, а также торможения ротора. Это главные причины, из-за которых возникают аварийные режимы
С целью не допустить понижение сопротивления изоляции задействуют устройства защитного отключения, ну а если поставлена задача предотвратить нарушение охлаждения, подключают специальные аппараты встроенной тепловой защиты.
Критерии выбора
Основным критерием при выборе конкретной модели является соответствие номинальной нагрузки допустимому интервалу самого теплового реле. Для нормальной работы электрической машины вам понадобиться срабатывание при 20 – 30% перегрузке не более, чем в 5 минутный интервал. Величина тока вычисляется по формуле:
Iсраб = 1,2*Iном
Это означает, что допустимый предел регулирования должен включать в себя полученную величину тока срабатывания. Затем, проверьте на время-токовой характеристике (см. рисунок 8), за какой промежуток времени будет срабатывать защита при такой кратности:
Рис. 8. Время-токовая характеристика
В данном случае время будет равно 4 минутам при 20% теплового превышения, что вполне удовлетворяет критериям поставленной задачи.
Базовые характеристики токового реле
Основной характеристикой коммутатора тепловой защиты является выраженная зависимость времени срабатывания от протекающего по нему тока — чем больше величина, тем быстрее он сработает. Это свидетельствует об определенной инерционности релейного элемента.
Направленное перемещение частиц-носителей заряда через любой электроприбор, циркуляционный насос и электрокотел, генерирует тепло. При номинальном токе его допустимая длительность стремится к бесконечности.
А при значениях, превышающих номинальные показатели, в оборудовании повышается температура, что приводит к преждевременному износу изоляции.
Обрыв цепи мгновенно блокирует дальнейший рост температурных показателей. Это дает возможность предупредить перегрев двигателя и предотвратить аварийный выход из строя электрической установки
Номинальная нагрузка самого мотора – ключевой фактор, определяющий выбор прибора. Показатель в интервале 1,2-1,3 обозначает успешное срабатывание при токовой перегрузке в 30% на временном отрезке в 1200 секунд.
Продолжительность перегрузки может негативно сказаться на состоянии электрооборудования — при кратковременном воздействии в 5-10 минут нагревается только обмотка мотора, которая имеет небольшую массу. А при длительных нагревается весь двигатель, что чревато серьезными поломками. Или вовсе может потребоваться замена сгоревшего оборудования новым.
Чтобы максимально уберечь объект от перегрузки, следует конкретно под него использовать реле тепловой защиты, время срабатывания которого будет соответствовать максимально допустимым показателям перегрузки конкретного электродвигателя.
На практике собирать реле контроля напряжения под каждый тип мотора нецелесообразно. Один релейный элемент задействуют для защиты двигателей различного конструктивного исполнения. При этом гарантировать надежную защиту в полном рабочем интервале, ограниченном минимальной и максимальной нагрузкой, невозможно.
Повышение показателей тока не сразу приводит к опасному аварийному состоянию оборудования. Прежде чем ротор и статор нагреются до предельной температуры, пройдет некоторое время
Поэтому нет крайней необходимости в том, чтобы защитное устройство реагировало на каждое, даже незначительное повышение тока. Реле должно отключать электродвигатель только в тех случаях, когда есть опасность быстрого износа изоляционного слоя.