Что такое диэлектрические потери и из-за чего они возникают?


Что такое диэлектрические потери?

Применение электроизоляционных материалов основано на том, что они препятствуют электрическому току преодолевать некоторое пространство, ограниченное изолятором. Идеальный изолятор должен абсолютно исключить условия для проводимости электрического тока. К сожалению, в природе не существует таких материалов. Таких диэлектриков также не сумели создать в лабораторных условиях.

Теоретически можно обосновать существование идеальных изоляторов, но синтезировать на практике такие вещества не реально, так как даже ничтожно малая доля примесей образует диэлектрическую проницаемость. Иначе говоря, рассеяния энергии в диэлектрической среде будут наблюдаться всегда. Речь может идти об усилиях, направленных на уменьшение таких потерь.

Исходя из того, что часть электроэнергии неизбежно теряется в изоляторе, был введён термин «диэлектрические потери» – необратимый процесс преобразования в теплоту энергии электрического поля, пронизывающего диэлектрическую среду, То есть, это электрическая мощность, направленная на нагревание изоляционного материала, пребывающего в зоне действия электрического поля.

Значение потерь определяется как отношение активной мощности к реактивной. Обычно активная мощность, потребляемая диэлектриком очень мала, по сравнению с реактивной мощностью. Это значит, что искомая величина тоже будет мизерной – сотые доли от единицы. Для вычислений используют величину «тангенс угла», выраженную в процентах.

Электрическую характеристику, выражающую рассеивающее свойство диэлектрика, называют тангенсом угла диэлектрических потерь. При расчётах принято считать, что диэлектрик является изоляционным материалом конденсатора, меняющего ёмкость и дополняющий до 90º угол сдвига фаз φ, образованный векторами напряжения и тока в цепи. Данный угол обозначают символом δ и называют углом рассеивания, то есть, диэлектрических потерь. Величина, численно равна тангенсу данного угла ( tgδ ), это и есть та самая характеристика диэлектрического нагрева.

tgδ применяется в расчётах для определения величины рассеиваемой мощности по соответствующей формуле. Поэтому его вычисление имеет практическое значение. Введение понятия тангенса угла позволяет вычислять относительные значения диэлектрических потерь. А это позволяет сравнивать по качеству различные изоляторы.

Именно этот показатель или просто угол δ производители трансформаторных масел указывают на упаковке своей продукции. По величине угла ( tg δ ) можно судить о качестве изолятора: чем меньше угол δ, тем высшие диэлектрические свойства проявляет изоляционный материал.

Методика расчета

Составим схему, в которой включен конденсатор с диэлектриком. При этом активная мощность в данной схеме должна соответствовать мощности, рассеиваемой в диэлектрике рассматриваемого конденсатора, а угол сдвига, образованный векторами тока и напряжения, должен равняться углу сдвига в конденсаторе. Такие условные схемы с последовательным и параллельным включением активного сопротивления представлены на рис. 1. На этой же картинке построены векторные диаграммы для каждой схемы.

Значения символов понятны из рисунка 1.

Заметим, что в качественных диэлектриках величина tg2 δ очень мала, поэтому ею можно пренебречь. Тогда каждая из формул для вычисления диэлектрических потерь приобретёт вид: Pa = U2*ω*C*tδ. Если напряжение в этой формуле выразить в вольтах, угловую частоту ( ω ) в с-1, а ёмкость C в фарадах, то получим мощность ( Pa ) в ваттах.

Очевидно, что параметры вычислений на основании приведённых схем зависят от частоты. Из этого следует, что вычислив параметры диэлектриков на одной частоте, их нельзя автоматически переносить для расчётов в других диапазонах частот.

Механизмы потерь по-разному проявляются в твёрдых, жидких и газообразных веществах. Рассмотрим природу рассеяний в этих диэлектриках.

Диэлектрические потери в разных диэлектриках

В газах

Для газообразных веществ или их включений в материалах диэлектрика характерны ионизационные потери при определённых условиях: когда молекулы газа ионизируются. Например, ионизация газов происходит во время электрических пробоев сквозным током. При этом молекулы газа превращаются в ионы, создавая токопроводящий канал с максимумом напряженности. В результате диэлектрические потери лавинообразно возрастают, стремясь к максимуму tg угла.

При таких диэлектрических потерях мощность стремительно растёт: Ри = А1 f (U – Uи)3, где А1 – постоянная, зависящая от вида вещества, f — частота поля, а символами U, Uиобозначено приложенное напряжение и напряжение ионизации, зависящее от давления газа.

Если величина напряжения Uи не достигает порога, необходимого для запуска процесса ударной ионизации, то нагревание диэлектрика является незначительным, потому что, при поляризации, пространственная ориентация дипольных молекул в газах не влияет на электропроводность. Поэтому газы – самые лучшие диэлектрики, с низкими потерями, особенно в диапазоне высоких частот.

Зависимость тангенса угла рассеивания мощности в диэлектриках с газовыми включениями, иллюстрирует график на рис. 3.

В жидких диэлектриках

Наличие диэлектрических потерь в жидкостях, в основном зависят от их полярности. В среде неполярных диэлектриков рассеяния обусловлены электропроводностью. При наличии в жидких веществах примесей дипольных молекул (так называемые полярные жидкости), рассеивание мощности может быть значительным. Это связано с повышением электропроводности, в результате дипольно-релаксационной поляризации.

Жидкие полярные изоляторы имеют выраженную зависимость потерь от вязкости. Поворачиваясь под действием магнитного поля в вязкой среде, диполи, в результате трения, нагревают её. Рассеиваемая мощность жидкого диэлектрика возрастает до тех пор, пока механизмы поляризации успевают за изменениями электрического поля. При достижении максимума поляризации процесс стабилизируется.

В твердых веществах

Высокочастотные диэлектрики с неполярной структурой обладают небольшим tg δ. К ним относятся качественные материалы:

  • сера;
  • полимеры;
  • парафин и некоторые другие.

Потери у диэлектриков с полярной молекулой более значительны. К таким материалам можно отнести:

  • органические стёкла;
  • эбонит и другие каучуковые вещества;
  • полиамиды;
  • целлюлозосодержащие материалы;
  • фенолоформальдегидные смолы.

Керамические диэлектрики без примесей имеют плотную ионно-решётчатую структуру. У них высокое удельное сопротивление. а значение tg δ таких материалов не превышает величины 10-3.

Вещества с неплотным расположением ионов обладают ионной поляризацией. У них наблюдается также электронно-поляризационная поляризация. tg δ этих диэлектриков ещё выше – от 10-2.

Сегнетоэлектрики и вещества со сложными неоднородными структурами, такие как текстолит, пластмассы, гетинакс и другие, имеют tg δ > 0,1.

Рассеивание мощности в результате сквозной электропроводимости происходит во всех диэлектриках. Однако потери становятся ощутимыми лишь при частотах от 50 до 1000 Гц, в температурном режиме более 100 ºC. Высокое переменное напряжение, как и удельное сопротивление также влияет на величину рассеивания.

Электронная библиотека

Общетехнические дисциплины / Материаловедение технология конструкционных материалов / 9.2.3 Диэлектрические потери

Общие определения

Диэлектрическими потерями

называют энергию, рассеиваемую в единицу времени в диэлектрике при воздействии на него электрического поля и вызывающую нагрев диэлектрика. Если на диэлектрик воздействует переменное электрическое поле напряженностью
Е
и круговой частотой
ω
, то в нем возникают электрические токи двух видов: ток смещения или емкостной ток и ток проводимости (рис. 9.10).

Плотность тока смещения равна:

. (9.11)

Плотность тока проводимости определяется следующим образом:

, (9.11)

где – удельная, активная проводимость диэлектрика на угловой частоте ω

.

Плотность общего тока (J

) равна векторной сумме плотностей токов смещения и проводимости (рис. 9.9). Если бы диэлектрик был идеальным, т.е. без потерь (), ток был бы чисто реактивным и его плотность:

(см. рис. 9.10) была бы направлена по мнимой оси под углом 90° к вектору . Однако у реальных диэлектриков, с , отличной от нуля, суммарный ток сдвинут на угол относительно тока идеального диэлектрика (φ

– угол сдвига фаз между током и напряжением). Чем больше , тем больше угол
δ
, характеризующий степень отличия реального диэлектрика от идеального.

Рис. 9.10. Векторная диаграмма (комплексная плоскость) плотности тока в диэлектрике

Угол δ

между векторами плотностей переменного тока диэлектрика и тока смещения на комплексной плоскости называют
углом диэлектрических потерь
. Тангенс этого угла

(9.12)

является одним из важнейших параметров не только диэлектриков, но также конденсаторов, изоляторов и других электроизоляционных элементов. Или другими словами, угол диэлектрических потерь (δ

) называют углом, дополняющим до 90° угол сдвига фаз (
φ
) между током и напряжением в емкостной цепи.

Мощность, рассеиваемая в единице объема вещества, т.е. так называемые удельные диэлектрические потери

, равны:

или

, (9.13)

где Е

– действующее значение напряженности переменного поля, В/м. Чем выше tg
δ
, тем больше нагрев диэлектрика в электрическом поле заданной частоты и напряженности. Введение безразмерного параметра tg
δ
удобно, потому что он не зависит от формы и размеров участка изоляции, а определяется лишь свойствами диэлектрического материала.

Если к конденсатору или другому электроизоляционному элементу приложено напряжение с угловой частотой (ω

) и действующим значением
U
, то отношение проходящих тока проводимости

(где Ra

– активное сопротивление элемента на частоте ) и тока смещения

(где С

– емкость) можно выразить так:

.

Так как , a , где – геометрический размер, то

. (9.14)

Полные диэлектрические потери в участке изоляции емкостью С

при приложении напряжения
U
(действующего значения) угловой частотой
ω
равны:

. (9.15)

Наряду с потерями tgδ

характеризует добротность конденсатора (
Q
), а следовательно, и максимально возможную добротность контура с данным конденсатором:

. (9.16)

Таким образом, tgδ

есть величина, обратная добротности.

Высокие диэлектрические потери приводят к разогреву и тепловому пробою диэлектриков в сильных электрических полях, снижению добротности и избирательности колебательных контуров. В связи с этим стремятся снизить tgδ

диэлектрических материалов, что возможно, если известна природа диэлектрических потерь.

Виды диэлектрических потерь

Диэлектрические потери по их особенностями и физической природе можно разделить на пять основных видов:

1) обусловленные сквозной электропроводностью;

2) обусловленные релаксационными (медленными) видами поляризации;

3) обусловленные неоднородностью структуры (миграционные);

4) ионизационные;

5) резонансные.

Диэлектрические потери, обусловленные сквозной электропроводностью

проявляются во всех без исключения диэлектриках как в постоянных, так и в переменных электрических полях. Часть диэлектрических потерь, обусловленных сквозным током диэлектрика, называют
диэлектрическими потерями на электропроводность
.

Потери на электропроводность ничтожно малы у электроизоляционных материалов с высоким удельным сопротивлением (у полиэтилена, политетрафторэтилена и т.п.), а на высоких и сверхвысоких частотах – практически у всех материалов. Однако их необходимо учитывать в изоляции, работающей при повышенных температурах (выше 100° С), а также при увлажнении и прочих условиях, приводящих к снижению удельного сопротивления.

Диэлектрические потери, обусловленные релаксационными (медленными) видами поляризации

могут проявляться в полярных диэлектриках и только в переменных электрических полях.

Активная проводимость диэлектриков () при переменном токе обычно значительно больше, чем проводимость () при постоянном токе. Тангенс угла потерь, даже на высоких частотах, не падает ниже 10-4. Следовательно, существуют и другие механизмы диэлектрических потерь, кроме потерь, обусловленных током сквозной проводимости. Эти механизмы связаны с поляризацией диэлектрика.

Диэлектрические потери на поляризацию будут максимальны, когда период изменения электрического поля сравним со временем установления поляризации (τ

).

Если частота поля , поляризация не успевает следовать за изменениями поля, поляризованность и диэлектрическая проницаемость станут ниже низкочастотных. В области частот наблюдается изменение диэлектрической проницаемости с увеличением частоты, называемое диэлектрической дисперсией

.

Диэлектрическая дисперсия может носить релаксационный (ε монотонно снижается с ростом ω

) или резонансный (
ε
с ростом частоты проходит через максимум и минимум) характер.

Значения ε

и tg
δ
полярных диэлектриков сильно зависят от температуры (
Т
).

При высоких температурах снижение ε

с ростом
Т
связано с дезориентирующим влиянием на дипольную поляризацию хаотического теплового движения, в результате чего при . При низких температурах
ε
падает до значения , потому что частота релаксации становится ниже частоты измерений. Чем выше частота измерений, тем выше температура падения
ε
(
Т
). При температурах падения
ε
(
Т
) наблюдаются релаксационные максимумы потерь. Таким образом, релаксационная дисперсия может наблюдаться при изменении не только частоты, но и температуры.

В полярных диэлектриках наблюдаемые потери представляют собой сумму из потерь на электропроводность и релаксационных потерь. Диэлектрические потери, обусловленные неоднородностью структуры, характерны для композиционных диэлектриков, а также для диэлектриков с различными (в том числе и проводящими) примесями.

Миграционная поляризация обусловлена миграцией зарядов в проводящих включениях и их накоплением на границах неоднородностей. Процесс миграционной поляризации устанавливается очень медленно и не успевает следовать за изменением величины и направления электрического поля высокой частоты. Поэтому миграционная поляризация уменьшается с ростом частоты, на низких частотах и в области частот ее дисперсии наблюдаются миграционные потери.

Ионизационные потери

, или потери на частичные разряды, наблюдаются в пористых диэлектриках при повышении напряжения сверх определенного предела (), называемого
порогом ионизации
(рис. 9.11). При напряжениях выше в воздушных включениях или других дефектах внутри диэлектрика появляются частичные разряды, приводящие к рассеянию энергии электрического поля. Диэлектрические потери, обусловленные ионизацией диэлектрика в электрическом поле, и называются
ионизационными диэлектрическими потерями
.

Рис. 9.11. Ионизационные потери пористых диэлектриков при напряжениях, выше напряжения ионизации (Uион

)

При действии частичных разрядов диэлектрик может постепенно разрушаться. Поэтому рабочее напряжение следует выбирать ниже напряжения ионизации () соответствующего началу роста tgδ

.

График зависимости tgδ

от напряжения (рис. 9.11) называют
кривой ионизации
диэлектрика. По кривой ионизации оценивают качество электрической изоляции высокого напряжения: чем меньше приращение tg
δ
вследствие ионизационных потерь () и чем при более высоких напряжениях начинается рост tg
δ
, тем изоляция лучше. Для повышения качества электрической изоляции высокого напряжения ее пропитывают, заполняя поры маслами, лаками, компаундами, газами под высоким давлением.

Резонансные диэлектрические потери

происходят при дисперсии резонансного характера, когда частота электрического поля приближается к частотам собственных колебаний электронов или ионов.

Резонансные потери электронной поляризации имеют максимумы в оптическом диапазоне: инфракрасной, видимой и ультрафиолетовой областях спектра (на частотах 1014…1017 Гц). С ними связано поглощение света веществом. Потери сопровождаются частотной зависимостью показателя преломления и максимальны в области так называемой «аномальной» дисперсии, где ε

снижается с ростом
ω
(под «нормальной» дисперсией в оптике имеют в виду увеличение показателя преломления с ростом частоты).

Максимумы резонансных потерь ионной поляризации наблюдаются в инфракрасном диапазоне на частотах 1013…1014 Гц. Однако в веществах с высокой диэлектрической проницаемостью, а также в стеклах и ситаллах, где есть слабо связанные ионы, частоты ионного резонанса могут быть и ниже (~1012 Гц). В этом случае начало резонансного максимума потерь захватывает диапазон СВЧ (109…1010 Гц).

Диэлектрические потери в газах

Диэлектрические потери в газах при напряженностях электрического поля, лежащих ниже значения, необходимого для развития ударной ионизации, очень малы. В этом случае газ можно рассматривать как идеальный диэлектрик. Источником диэлектрических потерь в этом случае является в основном сквозная электропроводность. Так как газы обладают весьма малой электропроводностью, то и угол диэлектрических потерь в связи с этим будет ничтожно мал, особенно при высоких частотах

При высоких напряженностях электрического поля, а также в неоднородных электрических полях, когда напряженность некоторых областей превышает некоторое критическое значение, молекулы газа ионизируются, вследствие чего в газе возникают потери на ионизацию.

Диэлектрические потери в жидких диэлектриках

В неполярных жидких диэлектриках

диэлектрические потери обусловлены только сквозной электропроводностью, если жидкость не содержит примесей с дипольными молекулами, и значение tg
δ
c ростом температуры будет возрастать, а с ростом частоты приложенного электрического поля – уменьшаться.

В полярных жидкостях

, в зависимости от условий эксплуатации, повышения температуры, частоты и т.п. могут проявляться потери, обусловленные дипольно-релаксационной поляризацией, помимо потерь, обусловленных электропроводностью. Для таких жидкостей зависимости tg
δ
от температуры и частоты приложенного электрического поля носят более сложный характер.

Диэлектрические потери в твердых диэлектриках

Диэлектрические потери в твердых диэлектриках необходимо рассматривать в связи с их структурой. Твердые диэлектрики обладают разными свойствами и строением, в них возможно существование всех видов диэлектрических потерь.

В неполярных твердых диэлектриках

, не имеющих примесей, диэлектрические потери определяются сквозной электропроводностью, и величина tg
δ
c ростом температуры будет возрастать, а с ростом частоты приложенного электрического поля – уменьшаться.

В полярных твердых диэлектриках

обладающих дипольно-релаксационной, ионно-релаксационной и другими медленными видами поляризации, в зависимости от условий эксплуатации (от повышенных температур, частот и т.п.) могут возникать заметные потери, связанные с медленными видами поляризации.

Диэлектрические потери в твердых диэлектриках неоднородной структуры

К таким диэлектрикам относятся материалы, в состав которых входит не менее двух компонентов, не вступивших в химическую реакцию, т.е. механически смешанных друг с другом. К неоднородным диэлектрикам следует отнести: керамику, слоистые пластики, пропитанную бумагу, картон, ткани и др. Диэлектрические потери таких материалов определяются свойствами и количественным соотношением компонентов, поэтому зависимости tgδ

от температуры и частоты приложенного электрического поля носят очень сложный характер.

Рис. 9.12. Зависимость tgδ

от температуры для конденсаторной бумаги, пропитанной компаундом (80 % канифоль + 20 %

Например, кривая зависимости tgδ

от температуры (рис. 9.12) для бумаги, пропитанной масляно-канифольным компаундом, имеет два максимума: первый (при низких температурах) характеризует диэлектрические потери самой бумаги (целлюлозы); второй (при более высокой тем­пературе) обусловлен дипольно-релаксационными потерями пропитывающего компаунда.

Виды диэлектрических потерь

В зависимости от электрических свойств различных видов диэлектриков различают следующие виды диэлектрических потерь, сопровождающихся нагревом диэлектрика:

  • ионизационные потери, наблюдаемые в газах;
  • релаксационные потери в жидких (вязких) диэлектриках, в результате релаксационной поляризации;
  • рассеяние в веществах, имеющих дипольную поляризацию;
  • поляризационное рассеивание в веществах, имеющих сквозную электропроводность;
  • высокочастотные резонансные потери;
  • диэлектрические потери, вызванные неоднородностью структуры твердых диэлектриков.

Диэлектрические вещества по-разному ведут себя при различных температурах, при постоянном или переменном токе. Максимумы потерь происходят при достижении определённого порога температуры. Этот порог индивидуален для каждого вещества. Тангенс угла δ зависит также от приложенного напряжения (рис. 4).

В жидких

Значения потерь будут зависеть от состава материалов. Жидкость без примесей будет нейтральной, соответственно и потери в ней будут почти равны нулю. Это объясняется низкой электрической проводимостью.

Если в жидкости будут примесь или полярность, её будут использовать в технических цепях, поскольку их потери диэлектрики гораздо более высоки. Такие жидкости имеют отличительные особенности, одной из которых является вязкость вещества.

Иногда такие жидкости называют дипольными из-за установки дипольной поляризации. Чем больше будет вязкость, тем выше станут потери диэлектрики.

В жидких диэлектриках определённой значимостью обладает температура. Если с помощью температуру увеличить, увеличится и тангенс в угле, причём до максимальных значений.

Таким же способом можно опустить его до минимума и вновь повысить. Это зависит от электрической проводимости, которая изменяется под воздействием температур.

Чем измерить?

Рассчитывать потери диэлектриков по формуле не очень удобно. Часто величину tg производители определяют опытным путём и указывают на упаковках или в справочниках.

Существуют специальные измерительные приборы, такие как «ИПИ – 10» ( или измеритель «Ш2», позволяющие с высокой точностью определить уровень рассеивания в диэлектриках либо найти тангенс угла рассеяния. Устройства довольно компактны и просты в работе. С их помощью можно исследовать свойства твёрдых и жидких веществ на предмет диэлектрических потерь.

Какими приборами можно измерить

Потери можно измерить с помощью разных приборов. Например, ИПИ-10 от производителя Теттекс, который позволяет изучать твёрдые и жидкие диэлектрические материалы.

Иногда используют устройства для измерений тангенсов углов в диэлектриках жидкого типа, например, Тангенс-ЗМ. Измерители Ш2-12ТМ тоже активно применяют для выявления нужных значений.

Это основные моменты, которые следует знать о потерях в диэлектрике. Благодаря формулам из статьи Вы можете провести расчет потерь для разных материалов!

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]