Опоры воздушных линий электропередач являются неотъемлемой частью энергетических систем, в которых испытывают потребность все виды гражданских, военных, а также промышленных объектов. В комплексе жилого малоэтажного и многоэтажного строительства, при возведении промышленных объектов планируется и возводится инфраструктура, которая включает в себя линии электропередач, подстанции и опоры. От выбора типа и вида опор зависит долговечность конструкции ЛЭП, ее прочность, устойчивость к целому ряду внешних механических и природных факторов. Надежные опоры в свою очередь гарантируют безаварийную подачу электроэнергии к объектам инфраструктуры, исключая перебои и возникновение внештатных, аварийных ситуаций. Современные унифицированные опоры позволяют сооружать в короткие сроки надежные воздушные линии электропередач в различных климатических поясах, на грунтах различной несущей способности.
Разновидности и назначение опор ЛЭП
Все существующие виды конструкционных изделий, которые служат в качестве опор, выполняют функцию поддержания проводов воздушных линий электропередач. В зависимости от напряжения линии различают опоры, рассчитанные на 220В, а также 0.4, 6, 10, 35, 110, 150, 220, 330, 400, 500, 750 и 1150 кВ. При этом воздушные линии делятся на три категории:
- от 0,4 до 10 кВ;
- от 35 до 110 кВ;
- от 220 до 330 кВ.
Расстояние между опорными элементами конструкции ЛЭП называется пролетом. Чем выше рабочее напряжение высоковольтной линии, тем длиннее ее траверсы, больше габариты и вес конструкции.
При этом конструкции опорных стоек должны обеспечивать возможность установки:
- кабельных концевых муфт;
- защитных выключателей и аппаратов;
- щитков и шкафов с целью подключения отдельных электроприемников;
- коммутационных и секционирующих аппаратов;
- светильников уличного освещения любой конструкции.
По способу крепления различают опоры, которые могут устанавливаться непосредственно на грунт, а также элементы, для монтажа которых необходимо сооружение специального фундамента. Последние разделяются на классические и узкобазовые. В обычном виде ширина базы крепления имеет площадь более 4 м2, предусматривая рамные, каркасные или заливные фундаменты. К категории узкобазовых относят все основания, площадь которых составляет менее 4 м2. Часто такие крепления предусматривают установку железобетонной или винтовой сваи, стальной трубы и используются на местности с дефицитом пространства.
В зависимости от вида крепления опоры можно дифференцировать на прямостоячие и конструкции с оттяжками. Последние являются наиболее устойчивыми и прочными, требуя при этом дополнительных работ по монтажу оттяжек и их креплению, каждая из которых должна иметь свой отдельно сформированный фундамент.
Промежуточные прямые опоры.
Они рассчитываются на следующие условия. Расчет промежуточных угловых опор по аварийному режиму производится на те же нагрузки, что и расчет промежуточных прямых опор (см. § 1-5). При этом надо рассматривать наиболее неблагоприятный из двух случаев, соответствующих предельным значениям угла поворота, на которые рассчитывается данная опора. При наименьшем угле поворота линии неуравновешенная составляющая тяжения необорванного провода, перпендикулярная траверсе, Sncos α/2 достигает максимального значения (при а = 0, Sncosα/2=Sп) и на опору действует наибольший крутящий момент. При наибольшем угле поворота составляющая Sncos α/2 уменьшается, но зато увеличивается составляющая Snsin α/2, а также составляющие 2Tsina/2 в точках крепления гирлянд всех остальных проводов и тросов. Очевидно, что для грани ствола стальной опоры, перпендикулярной оси траверсы, расчетным будет первый случай, а для грани, параллельной оси траверсы, как правило, второй (при наибольшем значении угла а). Тяжение в необорванных проводах Т, зависящее от нагрузки и температуры, определяется из механического расчета провода по соответствующим режимам.
Металлические, железобетонные, деревянные и композитные опоры – достоинства и недостатки
В зависимости от используемого материала различают опоры выполненные из:
- дерева;
- железобетона;
- стали.
В настоящее время также встречаются опоры композитного типа, которые включают в себя элементы из различных материалов. К примеру, железобетон может компоноваться металлическими наконечниками, ребрами, стойками, для формирования необходимой конфигурации и размера.
Каждый вид опорных элементов обладает набором индивидуальных характеристик, которые необходимо учитывать при проектировании и установке на местности.
Железобетонные опоры изготавливают из бетона, который для усиления прочности армируется металлом. С целью повышения надежности для линий от 35 до 110 кВ при изготовлении находит применение технология центрифугирования, с помощью которой бетонная смесь максимально уплотняется с устранением воздушных прослоек снижающих прочность. В процессе производства раствор разливается по специальным металлоформам, внутри которых располагается созданный заранее армированный каркас из поперечных и продольных стержней. Железобетонные изделия являются устойчивыми к внешним воздействиям и появлению коррозии. Химическая инертность бетона не позволяет ему вступать в действие с химическими элементами, допуская эксплуатацию в условиях агрессивных сред и реагентов, которыми может быть насыщен воздух. Одним из главных недостатков таких опор является их высокая масса, которая затрудняет доставку, выдвигает требования к процессу проведения монтажных работ и качеству подготовленного основания. При этом железобетон отличается высокой степенью долговечности, которая гарантирует безаварийную работу опор в течение длительного срока службы, который составляет не менее 60 – 80 лет.
Деревянные опоры для ЛЭП изготавливаются из цельных бревен. Чаще всего их использование актуально для низковольтных воздушных линий с напряжением 220 или 380 В. В качестве материала, используемого при производстве опор, преимущественно задействуются хвойные породы древесины, реже лиственные. Одним из главных достоинств применения деревянных элементов крепления проводов является доступная стоимость. при наличии местных сортов древесины это позволяет создать существенную экономию при сооружении и прокладке электролиний. При этом такие опоры уступают в долговечности металлическим, железобетонным и композитным изделиям. В процессе эксплуатации древесина разрушается под воздействием солнечных лучей, влаги, паразитного влияния насекомых, вследствие сезонного перепада температур и прочих естественных факторов. С целью повышения срока службы деревянные бревна обрабатываются специальными составами. Мастики и смолы позволяют продлить долговечность изделий до 20 – 25 лет в наиболее благоприятных условиях. Деревянные опоры используются для сооружения А- и П-образных конструкций.
Металлические опорные изделия для линий электропередач изготавливают и стальных сплавов установленных марок. Отдельные компоненты конструкции, представляющие несущие элементы и ребра жесткости в виде балок и уголков соединяют между собой воедино. Дл этой цели используют сварное жесткое соединение, которое обеспечивает соединение поверхностей на молекулярном уровне или сборно-разборное соединение при помощи болтов и гаек. С целью недопущения снижения прочности металлических опор по причине коррозии часто задействуется оцинкованный стальной прокат. Некоторые конструкции окрашивают специальными защитными составами. В зависимости от особенности конструкции различают следующие виды стальных опор:
- решетчатые;
- многогранные.
Помимо этого разделяют конструкции опор из закрытого и открытого профиля. К первым относятся шести- и восьмигранники, ко вторым треугольники и изделия квадратного сечения. Также нередко в качестве основы для сооружения стальных опор для ЛЭП находят применение трубы.
Композитные типы опорных элементов – новый вид конструкций, которые вкачают в себя отдельные узлы, выполненные из различных материалов.
Воздушные линии электропередачи. Опорные конструкции.
Рис. 2. Цикл транспозиции проводов одноцепной линии
В зависимости от количества подвешиваемых на опорах цепей опоры могут быть одноцепные и двухцепные
. Провода располагаются на одноцепных линиях горизонтально или треугольником, на двухцепных опорах –
обратной ёлкой
или
шестиугольником.
Наиболее часто встречающиеся расположения проводов на опорах схематически изображены на рис. 3.
Рис. 3. Наиболее часто встречающиеся расположения проводов и тросов на опорах
:
а – расположение по вершинам треугольника; б — горизонтальное расположение; в – расположение обратной ёлкой
Там же указано и возможное расположение грозозащитных тросов. Расположение проводов по вершинам треугольника (рис. 3,а) широко распространено на линиях до 20-35 кВ и на линиях с металлическими и железобетонными опорами напряжением 35-330 кВ.
Горизонтальное расположение проводов применяют на линиях 35 кВ и 110 кВ на деревянных опорах и на линиях более высокого напряжения на других опорах. Для двухцепных опор более удобно с точки зрения монтажа расположение проводов по типу «обратная ёлка», но увеличивает массу опор и требует подвески двух защитных тросов.
Деревянные опоры
широко применялись на воздушных линиях электропередач до 110 кВ включительно. Наиболее распространены сосновые опоры и несколько меньше опоры из лиственницы. Достоинства этих опор – малая стоимость (при наличии местной древесины) и простота изготовления. Основной недостаток – гниение древесины, особенно интенсивное в месте соприкосновения опоры с почвой.
Металлические опоры
выполняются из стали специальных марок для линий 35 кВ и выше, требуют большого количества металла. Отдельные элементы соединяют сваркой или болтами. Для предотвращения окисления и коррозии поверхность металлических опор оцинковывают или периодически окрашивают специальными красками. Однако они обладают высокой механической прочностью и большим сроком службы. Устанавливают металлические опоры на железобетонных фундаментах. Эти опоры по конструктивному решению тела опоры могут быть отнесены к двум основным схемам –
башенным
или
одностоечным
, рис. 4, и
портальным
, рис. 5.а, по способу закрепления на фундаментах – к
свободностоящим
опорам, рис. 4 и 6, и
опорам на оттяжках
, рис. 5.а, б, в.
На металлических опорах высотой 50 м и более должны быть установлены лестницы с ограждениями, доходящими по вершины опоры. При этом на каждой секции опор должны быть выполнены площадки с ограждениями.
Рис. 4. Промежуточная металлическая опора одноцепной линии
:
1 – провода; 2 – изоляторы; 3 – грозозащитный трос; 4 – тросостойка; 5 – траверсы опоры; 6 – стойка опоры; 7 – фундамент опоры
Рис. 5. Металлические опоры
:
а) – промежуточная одноцепная на оттяжках 500 кВ; б) – промежуточная
V-образная 1150 кВ; в) – промежуточная опора ВЛ постоянного тока 1500 кВ; г) – элементы пространственных решетчатых конструкций
Рис. 6. Металлические свободностоящие двухцепные опоры
:
а) – промежуточная 220 кВ; б) – анкерная угловая 110 кВ
Железобетонные опоры
выполняются для линий всех напряжений до 500 кВ. Для обеспечения необходимой плотности бетона применяют виброуплотнение и центрифугирование. Виброуплотнение производится различными вибраторами. Центрифугирование обеспечивает очень хорошее уплотнение бетона и требует специальных машин – цинтрифуг. На воздушных линиях электропередач 110 кВ и выше стойки опор и траверсы портальных опор – центрифугированные трубы, конические или цилиндрические. Железобетонные опоры долговечнее деревянных, отсутствует коррозия деталей, просты в эксплуатации и поэтому получили широкое распространение. Они имеют меньшую стоимость, но обладают большей массой и относительной хрупкостью поверхности бетона, рис. 7.
Рис. 7. Промежуточные железобетонные свободностоящие одноцепные
опоры
:
а) – со штыревыми изоляторами 6-10 кВ; б) – 35 кВ;
в) – 110 кВ; г) – 220 кВ
Траверсы одностоечных железобетонных опор – металлические оцинкованные.
Срок службы железобетонных и металлических оцинкованных или периодически окрашиваемых опор велик и достигает 50 лет и более.
Маркировка и обозначение
Для обозначения опор линий электропередач используется буквенная маркировка, которая позволяет присвоить каждой конструкции отдельное наименование: Для стальных, композитных и железобетонных видов опор, рассчитанных на прокладку воздушных линий с рабочим значением напряжения от 35 до 330 кВ, приняты следующие обозначения:
- «А» — анкерные изделия;
- «УС», «У» и «АУ» — обозначение изделий анкерно-углового типа;
- «ПС» и «П» — промежуточные конструкции;
- «ПУС» и «ПУ» — угловые промежуточные элементы;
- «ПВС» — промежуточные опоры с внутренними связями;
- «Б» — изделия из железобетона (за исключением опор рассчитанных на 500 кВ);
- «КС» и «К» — изделия концевого типа;
- «ПК» — композитные промежуточные опорные конструкции;
- «ПП» — переходные промежуточные изделия.
Цифровой индекс, который приводится после буквенного обозначения, отражает класс напряжения. Наличие буквенного указателя с литерой «т» указывает на наличие тросостойки с 2-мя тросами. Если приводится буква «п», то изделие предусматривает изменение взаимного расположения проводников в конструкции опоры. В большинстве изделий для реализации этой цели провода переносятся на соседний ярус, где формируется необходимая последовательность.
Цифра, которая указывается через дефис определяет число цепей: если значение нечётное, то линия позиционируется как одноцепная, четное принадлежит многоцепным конструкциям. Помимо этого цифра может указывать на тип исполнения изделия. Дополнительно в некоторых элементах моет указываться цифровое значение со знаком «+», которое отражает высоту приставки к базовой опоре. Данная величина применима исключительно к опорам, выполненным из стали.
Классификация опор по функциональному назначению
По конструктивному исполнению и своему технологическому назначению опоры ЛЭП разделяются на следующие типы:
- промежуточные – наиболее популярный и массово востребованный вид изделий, который предназначен для поддержания проводников на проектной высоте. При конструировании и строительстве высоковольтных линий промежуточные опорные элементы составляют 80 – 90% от общего числа используемых изделий. При этом промежуточные опоры предназначены исключительно для поддержания проводов и не несут нагрузки от натяжения проводов. Величина допустимой нагрузки зависит от модели опорных элементов, которые принимаются к установке при индивидуальном расчете. Установка промежуточных опор производится на прямых участках прокладки линии. Стальные и железобетонные изделия могут использоваться при низких значениях отрицательных температур до – 65 ºС, допуская применение элементов в северных регионах страны;
- переходные или анкерные – находят применение в точках, узлах сетей, где наличие преград естественного происхождения ил инженерных сооружений требует изменение топологии. В числе таковых могут быть водоемы, реки, овраги, возвышенности, объекты инфраструктуры и т. д. Опоры отличаются повышенными габаритами, которые позволяют им выдерживать значительные нагрузки, вызванные тяжением проводов. Конструкция таких изделий отличается повышенным значением жесткости;
- угловые – изделия установка которых производится в точках поворота высоковольтной линии. Угловые промежуточные элементы используются при малых углах поворота – до 30 градусов. Свыше задействуются полноценные угловые анкерные конструкции опорных изделий, позволяющие выдерживать силы постоянного натяжения проводов и тросов смежных пролетов;
- концевые – изделия, монтаж которых производится в начальной и конечной точке согласно проекта прокладки линии электропередач. Провода от них уходят на порталы подстанций. Элементы такого типа, как правило, воспринимают одностороннюю нагрузку от натяжения проводников;
- транспозиционные – опоры специального типа, которые используются в том случае, если появляется необходимость для организации ответвлений или изменения порядка проводников, проходящих в составе ВЛ. Также специальные изделия задействуются в том случае, когда линию необходимо усилить для повышения противоветровой нагрузки или при пересечении двух и более перекрестных линий электропередач.
Промежуточные опоры
Где применяются
: на прямых участках дороги строго между двумя анкерными опорами.
Промежуточные опоры (обозначаются «П») — не принимают участия в натяжении проводов, а лишь поддерживают их. Из всех опор на трассе 85% — промежуточные.
В обычных условиях работы испытывают нагрузки только по вертикали и горизонтали. Конструкция этого типа опор является не такой жесткой, как в «А». Однако промежуточные опоры должны иметь определенный запас прочности, поскольку в непредвиденных ситуациях нагрузка на них может сильно увеличиваться. В аварийном режиме промежуточная опора должна выдерживать обрыв двух тросов или проводов.
При подвешивании ВЛ на промежуточные опоры используются поддерживающие гирлянды изоляторов.
Преимущества железобетонных опор
Одними из наиболее популярных и востребованных в наши дни являются железобетонные опоры линий электропередач. Представляя собой один из самых практичных и экономически эффективных видов для строительства ЛЭП, железобетонные конструкции имеют ряд преимуществ, среди которых:
- продолжительный срок службы. Долговечность железобетона насчитывает 50- 70 лет в зависимости от условий эксплуатации;
- устойчивость к внешним воздействиям в виде влаги, попадания прямых солнечных лучей и т. д.;
- экологическая чистота материала, который не выделяет токсинов и не наносит вред окружающей среде;
- устойчивость к коррозионным процессам;
- высокая механическая прочность, которая достигается за счет армирования бетона;
- доступная стоимость;
- минимальные требования к процессу установки и монтажа;
- широкий температурный диапазон эксплуатации — от -55 до + 55°С;
- высокая пожаробезопасность материала, который не является горючим;
Наряду с преимуществами железобетонные опоры обладают лишь одним недостатком, который сводится к их большой массе. Невзирая на это, использование изделий оправдано считается экономически выгодным и эффективным для различных сетей и воздушных линий, которые призваны обеспечить безаварийную и бесперебойную подачу электроэнергии.
Разновидности и технология изготовления железобетонных опор
Железобетонные основания имеют армированную конструкцию. Для их изготовления находят применение сварные стальные каркасы. В ходе производственного процесса в заготовках размещаются армированные стержни как напряженной, так и ненапряженной конструкции. После этого заготовка заливается бетонным раствором. В зависимости от используемого техпроцесса опоры делятся на следующие категории:
- СВ – вибрированные стойки для линий с напряжением до 35 кВ, которые изготавливаются по методике виброуплотнения, которая задействуется для получения однородной структуры материала и устранения воздушных прослоек;
- СК, СЦП и СЦ – центрифугированные стойки, предназначенные для ЛЭП с рабочим напряжением более 35 кВ. При их изготовлении форма с залитым бетоном подлежит вращению. Прочность центрифугированных изделий позволяет сократить затраты на возведение ВЛ за счет увеличения расстояний между устанавливаемыми опорами.
Если нашего уважаемого читателя интересует, где купить стеклопластиковые топливные емкости, то можем рекомендовать . Компания-профессионал, у которой можно приобрести топливные ёмкости и резервуары, в которых можно хранить дизельное топливо, горючие смазочные материалы и многое другое. Такие ёмкости из стеклопластика подходят под разные продукты.