Конструкции антенн для радиолюбительских диапазонов

Для принятия бесплатного эфирного цифрового телевещания подойдет любой приемник дециметровых волн, на вещательное качество сигнала можно повлиять тщательным выбором антенны. Если принцип работы телевизионной антенны понятен, и вы любите экспериментировать, а также экономить, то лучше сделать её своими руками. В большинстве случаев для самостоятельной разработки выбирают пассивный тип антенн, так как эти устройства не включают в себя сложных технических устройств. Но отсутствие микросхем и другой электроники не относится к активным видам улавливателей телесигнала. Независимо от того какую по технологии приемную антенну вы решили изготовить из подручных материалов, сначала необходимо самому выяснить как она работает.

Краткая история электромагнетизма

Более 2600 лет назад (и, вероятно, еще раньше) древние греки обнаружили, что кусок янтаря, натёртый об мех, притягивает легкие предметы, например, перья. Примерно в то же время древние люди обнаружили магнитную руду, которая представляет собой куски намагниченной горной породы.

Потребовалось несколько сотен лет, чтобы определить, что существует два различных вида притяжения и отталкивания (магнитное и электрическое): одинаковые отталкиваются, а противоположные притягиваются. Затем прошло еще 2000 лет перед тем, как ученые впервые обнаружили, что эти два совершенно разных явления природы были неразрывно связаны между собой.

В начале девятнадцатого века Ханс Кристиан Эрстед помести провод перпендикулярно стрелке компаса и ничего не увидел. Но когда он повернул провод параллельно стрелке компаса и пропустил через него ток, стрелка отклонилась в одном направлении. Когда он пропустил ток через провод в противоположном направлении, стрелка компаса также отклонилась в противоположном направлении.

Ток, протекающий через проводник, расположенный перпендикулярно стрелке компаса, не вызывает ее движения

Этот провод был первой передающей антенной, а компас был первым приемником. Ученые в то время просто не знали об этом.

Пока не очень элегантно, этот эксперимент дал подсказку о том, как работает вселенная – что заряды, двигающиеся через провод, создают магнитное поле, которое перпендекулярно проводу. (Ученые вскоре узнали, что это поле, окружающее проводник, имеет круглую форму, а не форму прямой, перпендикулярной проводнику.)

С помощью этой информации ученые смогли описать способы, с которыми электрические и магнитные поля взаимодействуют с электрическими зарядами, и сформировать основы понимания электромагнетизма.

Видео выше показывает, как нить лампы накаливания, работающей от переменного тока, изгибается между точками крепления при воздействии сильного магнитного поля.

Вскоре Никола Тесла в своей лаборатории без проводов зажег лампы, продемонстрировал первую игрушечную лодку с дистанционным управлением и создал систему переменного тока, которую сегодня мы используем по всему миру для передачи электрической энергии.

Менее чем через столетие после эксперимента Эрстеда, Гульельмо Маркони изобрел способ передачи первых беспроводных телеграфных сигналов через Атлантику.

И вот теперь, через два столетия после первого эксперимента с компасом, мы можем делать фотографии далеких планет и отправлять их через необъятный космос на устройства, которые мы можем держать в руках – и всё благодаря антеннам.

Принцип действия в режимах приема и передачи

Первая антенна — симметричный вибратор Герца. На деле устройство практически не используется.

Форма и конструкция устройства, будь то антенна для телевидения или радиотелескоп для изучения вселенной, зависит от назначения и длины волны, которая реализуется для этого устройства. Широко распространены металлические рупоры, отрезки/ системы проводников.

Также нашли применение волноводы:

  • из металла;
  • из диэлектрика;
  • с щелями, прорезанными в металлических стенках.

Для улучшения диаграммы направленности используют линзы и рефлекторы, которые устанавливают на излучатели.

Конструктивно антенна представляет собой систему проводников, соединенных напрямую или через специальный тракт — линию питания, с передающим или принимающим устройством.

В систему излучения входят:

  • генератор/ источник колебаний;
  • фидерный («питающий/ подающий» от слова «feed» — питать/ подавать) тракт;
  • излучатель, т. е передающая антенна.

При передаче источник, которым может выступать радиопередатчик, создает переменный электрический ток, протекающий по проводникам антенны. Согласно закону Ампера вокруг токопроводящих элементов порождается магнитное поле, изменяющееся во времени. Оно, в свою очередь, не только воздействует на ток, проходящий по проводникам, но и создает по закону Фарадея переменное вихревое электрическое поле, которое воспроизводит магнитное поле и т. д. Таким образом получаются электромагнитные волны, излучаемые в пространство антенной.

Система приема:

  • принимающая антенна;
  • фидер;
  • приемник.

Приемная антенна работает так. На проводники устройства падают волны электромагнитного поля, наводя в них токи. Через фидер эти наведенные токи поступают во входной импеданс (комплексное сопротивление между двумя узлами цепи / полюсами двухполюсника) приемника, порождая напряжение.

Составные блоки

В нашей Вселенной действуют определенные правила. Люди обнаружили это тысячи лет назад, когда стали различать силу тяжести и способность одних объектов притягивать или отталкивать другие объекты. Затем люди обнаружили еще один набор правил притяжения и отталкивания, которые были полностью отделены от первого.

Люди разделили объекты по категориям и с помощью экспериментов определили, что положительный и отрицательный являются противоположными проявлениями свойства под названием «заряд», как и северный и южный полюса являются противоположными проявлениями чего-то под названием магнетизм, как и левая и правая руки являются двумя типами рук.

Что-то происходило в проводе Эрстеда независимо от того, была ли под ним стрелка компаса или нет. Это приводит к идее о неосязаемых электромагнитных полях, которые пронизывают Вселенную – и самые плотные материи, и вакуум. Каждый из наших объектов, отнесенных к категориям (+/-/N/S), влияет на пространство вокруг него и подвергается влиянию, если изменяется окружающее его поле.

Рупорная антенна

Рупорная антенна состоит из расширяющегося металлического волновода в форме рупора, собирающего радиоволны в луч. У рупорных антенн очень широкий диапазон рабочих частот, они могут работать с 20-кратным разрывом его границ – к примеру, от 1 до 20 ГГц. Усиление варьируется от 10 до 25 дБ, и часто они используются в качестве облучателей более крупных антенн.

Схема излучения

Наложение волн (принцип суперпозиции)

Волны переносят энергию из одного места в другое.

Оставаясь нетронутым в течение длительного периода времени, поверхность воды в бассейне будет казаться плоской и неподвижной. Если побеспокоить воду в одном месте, молекулы воды побеспокоят соседние молекулы воды, которые побеспокоят соседние молекулы воды и так далее, пока волнение не дойдет до края бассейна.

Молекулы, которые начали цепь событий, остаются на месте, близкому их начальному расположению, но волнение достигнет края бассейна за секунды. Волны передают энергию без переноса вещества.

Волны, как мы их описываем, это движение возмущения через среду. Одиночное начальное возмущение или миллион таких возмущений, к распространению возмущения приводит цепная реакция столкновений молекул в бассейне.

Когда две волны возмущают одну и ту же область пространства, их амплитуды будут складываться или вычитаться, создавая либо конструктивную, либо разрушающую интерференцию. Эта практика временного сложения или вычитания называется принципом суперпозиции.

График конструктивной интерференции волн

После того, как волны интерферируют в определенном месте, они продолжают движение в том же направлении и с той же скоростью, с какими они начали движение, так долго, пока они остаются в той же среде. Скорость и направление могут измениться, когда волна войдет в новую среду. Звуковые волны проходят через воздух, водные волны проходят через жидкости – вещества, через которые проходят волны, называются «средой».

Электромагнитные волны могут проходить через такие среды, как воздух и вода, или через пустоту космоса – они не требуют среды для распространения энергии из одного места в другое.

Инструкции по сборке лучших антенн

Своими руками можно собрать много интересных и действенных антенн. Рассмотрим подробные инструкции по изготовлению лучших и наиболее простых в изготовлении моделей.

Самоделка #1 — простая телевизионная антенна

Если ретранслятор расположен от дачи в пределах 30 км, то подойдет самая обычная конструкция, собранная из двух трубок и кабеля. Провод подключается к соответствующему гнезду-входу телевизора.

Схема и выбор материалов

Типовое устройство примитивной дачной антенны приведено на рисунке ниже. Видно, что две трубки одной длины стыкуются на пластине, которую в свою очередь фиксируют к мачте.

Первым делом необходимо узнать частоту вещания местной телевышки – от параметра зависит длина труб.

Диапазон полосы вещания – 50-230 МГц. Для каждого канала необходима своя длина антенных «усов».

В таблице отображены параметры конструкции уловителя сигнала исходя из частоты транслируемых эфиров. Полоса вещания поделена на 12 каналов

Для изготовления антенны подойдут трубы из дюралюминия, стали, латуни. Их диаметр может колебаться в пределах – 8-24 мм, чаще всего берут 16 мм. Основное условие – отрезки должны быть равнозначными, подготовленными из труб с одинаковыми свойствами.

Необходимые материалы:

  • металлическая труба – отрез на 6 см короче длины, определенной по табличным значениям;
  • провод сопротивлением 75 Ом , требуемая длина – расстояние от телевизора до антенны плюс 2 м на провисание и петлю согласования;
  • толстый электроизоляционный гетинакс – толщина от 4 мм;
  • металлические полосы , хомуты для фиксации труб на пластине;
  • мачта для антенны – это может быть уголок, при незначительной высоте допустимо использование деревянного бруска.
  • Для работ желательно запастись паяльником, припоем, флюсом. Соединения центральных проводников рекомендовано пропаивать – это продлит срок службы устройства, повысит качество изображения.

    Для защиты от окисления участки стыков надо залить силиконом, эпоксидной смолой. Доступный, но не надежный способ – обмотка изолентой.

    Сборка и настройка изобретения

    Сначала отрезают нужный размер трубы и распиливают ее на две равные части. Можно воспользоваться кусачками по металлу.

    Расстояние между внутренними концами трубок – 6 см, между дальними – дистанция, указанная в таблице.

    Последующий ход работ:

  • Закрепить антенные усы к держателю хомутами, а саму пластину гетинакса зафиксировать на мачте.
  • Соединить трубы через согласующее устройство – кабельная петля типа РК-1,3,4. Параметры элемента отображены в правой колонке таблицы, принцип изготовления – на схеме устройства антенны.
  • Центральные жилы припаять к концам трубок, оплетку соединить куском аналогичного проводника.
  • Состыковать центральные проводники концов согласующей петли с телевизионным кабелем. Оплетку соединить медным проводом.
  • На штанге зафиксировать петлю и идущий вниз провод.
  • Мачту поднять на крышу дачного домика, настроить антенну.
  • Для определения оптимального положения устройства нужны два человека. Первый проворачивает антенну на улице, а второй – следит за изменением изображения по телевизору.

    Уловив хорошее качество сигнала, конструкцию закрепляют в выбранном положении.

    Самоделка #2 — петлевая антенна из трубы

    Модуль немного сложнее в создании, но расширяет радиус приема до 40 км. Основная сложность заключается в необходимости гибки трубы.

    Длину кабеля и трубы высчитывают исходя из частоты вещания телеканалов.

    Под нужный параметр делают заготовки – отмеряют и отрезают вибратор, провод для согласующего устройства. Рекомендованный диаметр трубы – 12-18 мм.

    Сборку начинают с изгибания трубы. Край вибратора расплющивают и запаивают. Трубу наполняют песком, и заделывают второй торец по аналогии с первым. Края можно заглушить, посадив пробки на силикон.

    Фигурную трубу крепят на мачту. К концам вибратора прикручивают и пропаивают петли согласования, фиксируют телевизионный кабель. Закрепляют медным проводом оплетку и приступают к настройке.

    Самоделка #3 — улавливатель сигнала Харченко

    Телеантенна «восьмерка» или «зигзагообразная» подходит для цифрового телевидения DVB-T2, трансляция эфира в диапазоне ДМВ. Модуль прост в изготовлении. Для реализации проекта понадобится токопроводящий металл.

    Расчет и разработка чертежа

    Устройство телеантенны весьма примитивно – два квадрата/ромба, скрепленных между собой. В оригинальном исполнении модуль Харченко предусматривает расположение за фигурными элементами отражателя.

    Для изготовления зигзагообразной антенны высчитывать длину волны необязательно. Желательно соорудить конструкцию более широкополосной – это увеличит ее возможности.

    При желании, можно рассчитать параметры устройства. Значение волны транслируемого сигнала поделить на 4 – полученная величина является стороной квадрата.

    На приведенном примере отображен чертеж антенны с параметрами сторон: В1 – 14 см, В2 – 13 см. Разница длин в один сантиметр дает необходимую дистанцию между квадратами.

    Нижние участки удлиняют на 1 см. Этот зазор необходим под петлю для припаивания антенного кабеля.

    Изготовление рамки и подготовка кабеля

    Последующие расчеты будут приведены относительно данных чертежа, отображенного выше. Суммарный периметр квадратов составляет 112 см. Следует отрезать проволоку нужной длины и сформировать деталь по схеме.

    Порядок работ:

  • Согнуть проволоку посередине под прямым углом.
  • Далее идут два участка по 14 см, а за ними стороны по 13 см. После каждого сгиба проверяем ровность углов, должно быть строго по 90 градусов.
  • Когда сформирован первый квадрат, приступают к созданию второй фигуры. Опять идут разносторонние элементы по 14 см, а за ними – две части по 13 см + 1 см.
  • Незначительные расхождения в длине сторон допустимы. Главное, соблюдать прямые углы.

    Если формовка конструкции сделана правильно, то между двумя частями телеантенны должно получиться расстояние в 1,5-2 см

    Следующий шаг – подготовка кабеля. Производят его зачистку с двух сторон. По окружности кабеля делают надрез, отступив от края 2-2,5 см.

    Работу выполняют аккуратно, чтобы не повредить внутреннюю оплетку. По линии разреза кабель немного переламывают и удаляют изоляцию .

    Со второй стороны кабеля подпаять штекер. Провод надо очистить на 1 см, сформировать проводники и залудить.

    На участках выполнения пайки штекер зачистить наждаком, протереть спиртом. К центральному выходу припаять моножилу, к боковому – скрутку. Захват вокруг изоляции обжать, накрутить пластиковый наконечник, альтернатива – залить токонепроводящим герметиком. До высыхания состава собрать штекер.

    Порядок соединения элементов

    Финишный этап сборки – стыковка рамы и кабеля. Если привязки к конкретному каналу нет, то спайку лучше делать в средней точке для расширения захвата сигнала.

    Разделанный конец кабеля соединяют с двумя сторонами квадрата по центру. До окончательной фиксации можно проверить работоспособность антенны. Если все в норме, то выполняют герметизацию места пайки.

    Самый надежный метод – залить силиконом или клеем. Для корпуса подойдет пластиковая крышка из-под пятилитровой баклажки

    В мини-таре делают отверстия под элементы квадратов, укладывают рамку с проводом и заливают герметизирующим составом.

    Самоделка #4 — антенна «двойной квадрат»

    Узкополосная конструкция позволит решить проблему слабого сигнала или забивания трансляции более сильным эфиром. Антенна подойдет и для приема цифрового телевидения. Главное условие работы – четкая ориентация на распределитель сигнала.

    Схема устройства и размеры

    Конструктивно телеантенна представлена в виде двух рамок, соединенных вверху и внизу стрелами. Большой квадрат – рефлектор, меньший – вибратор.

    Возможна вариация с тремя рамками, обеспечивающая высокий коэффициент усиления сигнала. Наименьший квадрат – директор

    Верхнюю стрелу делают из металла, а нижнюю из гетинакса, текстолита или другого изоляционного материала.

    Требования к устройству телеантенны:

    • центры квадратов должны находиться на одной линии, эта прямая смотрит в сторону передатчика;
    • меньшая рамка имеет разомкнутый контур, концы фиксируют к текстолитовой пластине;
    • верхнюю часть мачты под антенны делают из дерева.

    Параметры для изготовления двухэлементных рамочных телеантенн берут из таблицы. Размеры рабочих элементов зависят от типа волн: дециметровых или метровых.

    В трехрамочной конструкции дистанцию между концами средней рамки увеличивают до 5 см.

    Сборка и подключение

    Для соединения рамки с антенным кабелем потребуется симметрирующий короткозамкнутый шлейф. Устройство сооружают из участков антенного провода.

    Правый элемент – шлейф, укороченный левый – фидер. К месту их стыковки крепят телевизионный кабель. Протяженность отрезков определяют по таблице с учетом длины волн сигнала.

    Перед компоновкой элементов производят их зачистку. У шлейфа снимают алюминиевый слой, скручивают в жгут оплетку. Центральный проводник срезают

    С фидером выполняют те же действия, оставляя сердцевину кабеля.

    Дальнейшая последовательность работ:

  • К левому концу вибратора припаять центральную жилу фидера, оплетку шлейфа.
  • К правому торцу активной рамки прикрепить скрутку фидера.
  • Низ шлейфа состыковать с оплеткой фидера металлической перемычкой. Жгуты спаять легкоплавким припоем.
  • Отрезы кабеля должны идти параллельно, дистанция – 5 см. Чтобы зафиксировать расстояние используют диэлектрический материал. Согласующее устройство монтируют на текстолитовую пластину.
  • Телевизионный кабель припаять к низу фидера, состыковав соответствующие элементы – оплетку с оплеткой, стержень со стержнем.
  • Использование согласующего устройства снижает вероятность помех, избавляет от эффекта двойного изображения. Без него не обойтись при значительном отдалении от передатчика.

    Отражение волны

    При переходе волн из одной среды в другую часть их энергии передается, часть энергии отражается, а часть энергии рассеивается в окружающую среду.

    Свойства материалов этих двух сред определяют соотношения передачи к отражению и рассеиванию. А также свойства материалов определяют, будет ли волна инвертироваться при отражении.

    Передача и отражение энергии одиночного волнового импульса Непрерывная падающая волна (оранжевый) попадает на границу сред, где часть энергии отражается (светло-оранжевый), а часть энергии передается (темно-оранжевый)

    Уголковая антенна

    Тип антенны, часто используемой на УКВ и УВЧ-передатчиках. Состоит из облучателя (это может быть диполь или массив Яги), укреплённого перед двумя плоскими прямоугольными отражающими экранами, соединёнными под углом, обычно в 90°. В качестве отражателя может выступать лист металла или решётка (для низкочастотных радаров), уменьшающая вес и увеличивающая сопротивление ветру. У уголковых антенн широкий диапазон, а усиление составляет порядка 10-15 дБ.

    Схема излучения

    Отражение и инверсия

    Когда волны распространяются из одной среды в другую, часть падающей энергии отражается. В зависимости от свойств материалов сред волны могут инвертироваться при отражении.

    Представьте себе длинную пружину, привязанную к столбу. Если вы слегка ударите пружину слева, возмущение распространится по всей длине пружины, пока оно не ударит столб; и в этот момент оно изменит направление и начнет распространяться назад к вам с другой стороны, справа. Это и есть инверсия.

    Инверсия волны при отражении

    Возьмите ту же самую пружину и привяжите ее к веревке, одетой петлей на столб. Если вы слегка ударите пружину слева, возмущение распространится по всей длине пружины, пока оно не ударит веревку; в этот момент оно изменит направление и начнет распространяться назад к вам с той же стороны, слева.

    Отсутствие инверсии при отражении

    Понимание отражения колебаний пружины поможет нам понять, что происходит внутри антенны.

    Вот четыре ситуации, которые помогут проиллюстрировать понятия отражения и инверсии.

    Инвертируется или нет волна при отражении, это определяется свойствами сред по обе стороны границы раздела.

    Если волна инвертируется при отражении, и мы хотим получить конструктивную интерференцию в веревке, у нас должна быть веревка длиной, равной половине длины волны, полной длине волны или полутора длин волны и так далее:\(L = n {\lambda \over 2}\), где n – целое положительное число.

    Антенный резонанс основан на тех же принципах отражения и интерференции: выбирайте длину провода так, чтобы отраженная энергия могла интерферировать конструктивно, создавая больший сигнал, а, не уменьшая его.

    Область применения антенн

    Диапазон волн колеблется от долей мм до десятков километров. Отсюда сформировалось многообразие видов антенн и множество сфер использования. Принимающие и передающие устройства применяются в таких областях:

    • беспроводная связь;
    • медицина;
    • системы навигации;
    • космическая/ авиационная техника картографирования;
    • астрономия;
    • радиолокация;
    • геология и многие другие.

    Антенны активно используют в радиотелескопах при изучении космоса, в военной радиолокации, в чипах для непрерывного измерения показателей/ изучения/ диагностирования патологий в организме людей/ животных, да и просто в быту.

    Современный человек не представляет жизни без гаджетов, а в основе их управления лежит приемное/ передающее устройство. Мачта для антенны в бытовых целях практически не используется, разве что для увеличения зоны приема модема, теперь сигнал поступает на спутниковые тарелки или подается через мобильный и проводной интернет и т. д.

    Стоячие волны

    Когда две волны одинаковой длины распространяются в одной среде, но в противоположных направлениях (изображены синим и оранжевым цветами в примерах ниже), они могут взаимодействовать и образовывать стоячую волну (изображена зеленым цветом в примерах ниже). Стоячие волны называются так потому, что в то время, как синие волны движутся влево, а оранжевые волны движутся вправо, зеленые стоячие волны не обладают никаким видимым движением в какую-либо сторону.

    Падающая волна (оранжевая) и отраженная волна (синяя) объединяются, формируя стоячую волну (зеленая)

    Стоячая волна возникает только при определенных условиях в среде, которые определяются режимом отражения и длиной падающей волны.

    Телевизионные приемные антенны.

    В отличие от волн, используемых для АМ-вещания, волны, на которых ведется телевещание, имеют значительно меньшую длину, так что приемные антенны размером в половину длины волны здесь вполне осуществимы. Так, телевизионный полуволновый симметричный вибратор настолько мал, что его можно сделать из жесткой трубки. Вместе с тем малый размер даже электрически длинной антенны на этих частотах означает, что эффективная площадь приема падающей волны (и, следовательно, возможность антенны захватить ее энергию) ограниченна. Кроме того, из-за большой ширины полосы телевизионного сигнала и шума, равномерно распределенного по каналу, приемник должен получить значительное количество энергии, чтобы обеспечить приемлемое отношение сигнал/шум. В свете вышесказанного становится понятным, что эффективность антенны играет важную роль в приеме телевизионного сигнала.

    На рабочих частотах телевещания атмосферные помехи не имеют особого значения, но приемная антенна будет улавливать массу индустриальных помех и космический шум. Поэтому важно, чтобы приемная антенна имела четко выраженную направленность, позволяющую не принимать сигналы, приходящие с направлений, не совпадающих с направлением на нужную передающую станцию. Другой тип помех, часто ухудшающих качество телевизионнного приема, – это многолучевое распространение, при котором нужный сигнал приходит на приемную антенну по двум путям разной длины. Так, например, один сигнал может прийти непосредственно от передатчика, а другой – отразившись от какой-либо горы или здания. Многолучевое распространение проявляется на экране в виде многоконтурности изображений, и, чтобы избавиться от него, надо использовать направленную антенну, позволяющую исключить прием по одному из двух лучей.

    Ширина полосы телевизионной приемной антенны должна быть очень большой, поскольку от нее требуется охватить не один канал, а обычно все тринадцать, размещенные в диапазоне частот 4:1. К счастью, согласование линии передачи с антенной, при котором отражения не возникают, не так существенно на приемной стороне, где рассогласование приводит лишь к потере слабого сигнала, не порождая эхо-сигналов. Важное значение имеет, однако, согласование соединительной линии с приемником, но в этом случае следует уделить внимание конструкции приемника.

    Отражения, возникающие на неоднородностях соединительной линии, могут вызывать многоконтурность или потерю резкости изображения. Такие отражения часто возникают, если двухпроводной ленточный кабель проходит слишком близко к металлическим конструкциям, например таким, как лотки для проводов или водостоки. Это станет понятным, если вспомнить, что высокочастотная электромагнитная энергия распространяется в поле, возникающем вокруг проводов, которые служат проводниками этого поля.

    Одна из самых простых антенн, используемых для приема телевизионного сигнала, представляет собой полуволновый петлевой симметричный вибратор (рис. 7), отличающийся от обычного полуволнового симметричного вибратора тем, что его выходной импеданс (300 Ом) согласуется с широко применяемыми типами фидеров, а также тем, что он обладает более широкой полосой; иначе говоря, он эффективно передает принимаемую электромагнитную энергию более широкого диапазона частот в соединительную линию.

    Чтобы получить нужную диаграмму направленности в горизонтальной и вертикальной плоскостях, базовую антенну обычно используют совместно с одним или несколькими пассивными элементами. Пассивный элемент – это еще одна антенна, размещенная вблизи от основной, но не подсоединенная к фидеру. С основной антенной (а следовательно, и с приемником) она связана только локальными полями. Понять, как пассивный элемент влияет на диаграмму направленности антенны, легко, поскольку здесь, по существу, используется тот же принцип, что и в ненаправленной антенной решетке; разница же состоит в том, что в данном случае возбуждается только одна антенна, а другая принимает энергию лишь от ее ближнего поля. Для примера отметим, что стержень полуволновой длины, помещенный (как показано на рис. на расстоянии в четверть длины волны от полуволнового симметричного вибратора, действует как отражатель. Почему это действительно так, можно пояснить следующим образом. Локальное поле возбуждаемой (основной) антенны индуцирует в пассивном элементе заряды и токи противоположного знака, но из-за расстояния в четверть длины волны эти токи и заряды отстают от соответствующих токов и зарядов в основной антенне приблизительно на четверть периода, т.е. ток в пассивном элементе опережает ток в основной антенне приблизительно на 90°. Диаграмма направленности возбуждаемой антенны с пассивным элементом определяется путем наложения обоих излучаемых волновых полей. Эта ситуация очень похожа на рассмотренную для ненаправленной (в горизонтальной плоскости) решетки АМ-вещания; ее диаграмма направленности показана пунктирной линией на рис. 5. Эти две волны имеют тенденцию гасить друг друга в направлении к пассивному элементу и усиливать друг друга в противоположном направлении; следовательно, пассивный элемент действует как отражатель. Пассивный элемент не обязательно должен находиться на расстоянии в четверть волны от возбуждаемой антенны. Если его поместить очень близко к ней, например на расстоянии всего 0,1 длины волны, он тем не менее будет действовать как отражатель, если его длину сделать чуть больше половины длины волны. Увеличение длины пассивного элемента делает его индуктивным, в результате чего текущий по нему ток отстает по фазе от электродвижущей силы, индуцируемой полем основной антенны. Если же близко расположенный пассивный элемент сделать чуть короче половины длины волны, он становится направляющим («директором») и концентрирует излучение на своей стороне от основной антенны. Все вышесказанное имеет непосредственное отношение и к приемным антеннам. Поскольку диаграммы направленности при передаче и приеме одинаковы, пассивные директоры и отражатели можно использовать в телевизионных приемных антеннах для получения необходимой диаграммы направленности. Типичная высоконаправленная антенная решетка с одним отражателем и тремя директорами показана на рис. 9.

    Коэффициент стоячей волны (КСВ, SWR)

    Стоячие волны максимальной амплитуды возникают при очень точной комбинации частоты (или длины волны) и длины антенны.

    К сожалению, нецелесообразно и фактически невозможно иметь антенны, которые обладают точной длиной, необходимой для формирования идеальной стоячей волны в требуемом диапазоне частот. К счастью, в этом нет необходимости. Антенна с одной фиксированной длиной может работать в небольшом диапазоне частот с небольшим, приемлемым уровнем расстройки.

    Длина антенны должна быть настроена для получения стоячей волны как можно более близкой к идеальной в центре рабочего диапазона частот.

    Измерители КСВ (коэффициента стоячей волны) измеряют отношение передаваемой энергии к отраженной, и это отношение должно быть как можно ближе к 1:1.

    Небольшие подстройки могут быть выполнены путем добавления в схему пассивных компонентов между оконечным каскадом усиления и антенной. Небольшие недостатки в настройке антенны могут вызвать появление разности потенциалов на конечном каскаде усиления, нагревание конечного участка передающей линии. Большой дисбаланс может вызвать подачу большой разности потенциалов обратно на схему передатчика, вызывая пробой диэлектрика, искрение и выход из строя оконечного усилителя.

    ТИПЫ АНТЕНН

    Тип конструкции антенны зависит от длины волн, на которых она должна работать. Чтобы эффективно излучать энергию, антенна должна иметь размеры, близкие к длине рабочей волны. Поэтому на низких частотах, использовавшихся в свое время для трансатлантической радиотелеграфной и радиотелефонной связи (частоты от 16 до 70 кГц, т.е. волны длиной от 19 до 4,3 км), огромная система антенных проводов общей протяженностью до 2 км представляла собой электрически короткую антенну и оказывалась, следовательно, неэффективным излучателем. Если такая антенна должна была иметь заметную направленность, то ее эффективность получалась очень низкой. Напротив, на сверхвысоких частотах (СВЧ) использование полуволнового симметричного вибратора длиной менее 1 см и отполированного металлического рефлектора диаметром всего лишь несколько сантиметров позволяет весьма эффективно фокусировать излучение такого вибратора в узкий луч.

    Передача информации

    Вероятно, наиболее известны два способа передачи информации: частотная модуляция (ЧМ, FM) и амплитудная модуляция (АМ, AM).

    Частотная модуляция

    При частотной модуляции информация передаются с помощью изменения частоты несущего колебания.

    Амплитудная модуляция

    При амплитудной модуляции частота несущего колебания остается постоянной. Информация передается с помощью изменения амплитуды несущей.

    Параболическая антенна

    Одна из самых популярных антенн для радаров – параболический отражатель. Облучатель располагается в фокусе параболы, и энергия радара направляется на поверхность отражателя. Чаще всего в качестве облучателя используется рупорная антенна, но можно использовать и дипольную, и спиральную.

    Поскольку точечный источник энергии находится в фокусе, он преобразуется в волновой фронт постоянной фазы, что делает параболу хорошо приспособленной для использования в радарах. Изменяя размер и форму отражающей поверхности, можно создавать лучи и схемы излучения различной формы. Направленность параболических антенн гораздо лучше, чем у Яги или дипольной, усиление может достигать 30-35 дБ. Главный их недостаток – неприспособленность к низким частотам из-за размера. Ещё один – облучатель может блокировать часть сигнала.

    Схема излучения

    Дипольная антенна

    Простая антенна, которая использует два одинаковых элемента, называется диполем. Самые короткие дипольные антенны работают с колебаниями, для которых длина антенны равна половине длины волны, и которые создают стоячие волны по всей длине антенны.

    Изменяющиеся электрические поля вдоль длины антенны создают радиоволны, которые распространяются в направлениях от антенны.

    Антенны позволяют передавать и получать информацию, воздействуя и подвергаясь воздействию электромагнитных полей, пронизывающих вселенную. В следующей статье мы рассмотрим различные типы антенн, и как они работают.

    Оригинал статьи:

    • Mark Hughes. An Introduction to Antenna Basics

    Принцип работы передающей антенны

    Рассмотрим принцип действия простейшего излучающего устройства. Если взять простую двухпроводную симметричную линию, то излучать в пространство она не будет, несмотря на то, что в ней текут токи высокой частоты, рисунок 2.

    Излучение будет отсутствовать за счет того, что токи I и I’ находятся в противофазе, что приводит их к взаимной компенсации. Для получения излучения можно развести концы двухпроводной линии, чтобы поля от токов I, I’ не могла компенсировать друг друга, рисунок 3.

    Такая антенна получила название симметричного вибратора. Распределение тока в вибраторе остается таким же, каким оно было на соответствующем участке двухпроводной линии. Для исследования поля, излученного антеннами из проводов, удобно представлять такую антенну в виде совокупности элементарных электрических вибраторов (ЭЭВ) малой длины (малой по сравнению с длиной волны). В пределах каждого такого элементарного вибратора амплитуду и фазу тока можно считать неизменными. В конечном итоге общее поле, излученное антенной, можно рассчитать как сумму полей, излученных отдельными элементарными вибраторами (в теории это называется принцип суперпозиции).

    На практике ЭЭВ реализуется в виде диполя Герца. Это антенна является первым реализованным излучателем электромагнитных колебаний, рисунок 4.

    Рисунок 4 – Диполь герца

    Такой излучатель можно сделать, если на концах тонких проводов (длиной L, меньшей длины волны) установить проводящие тела с большой емкостью (например, металлические шары). Заряженные шары создают токи, которые значительно выше емкостных токов между проводами. Так обеспечивается равномерное распределение тока вдоль проводника. Отметим, что на практике диполь Герца практически не используется.

    Щелевая антенна

    Хотя у описанных антенн довольно большое усиление по отношению к размеру апертуры, у всех них есть общие недостатки: большая восприимчивость по боковым лепесткам (подверженность мешающим отражениям от земной поверхности и чувствительность к целям с низкой эффективной площадью рассеяния), уменьшение эффективности из-за блокирования луча (проблема с блокированием есть у малых радаров, которые можно использовать на летающих аппаратах; большие радары, где проблема с блокированием меньше, нельзя использовать в воздухе). В результате была придумана новая схема антенны – щелевая. Она выполнена в виде металлической поверхности, обычно плоской, в котором прорезаны отверстия или щели. Когда её облучают на нужной частоте, электромагнитные волны испускаются из каждого слота – то есть, слоты выступают в роли отдельных антенн и формируют массив. Поскольку луч, идущий из каждого слота, слабый, их боковые лепестки также очень малы. Щелевые антенны характеризуются высоким усилением, малыми боковыми лепестками и малым весом. В них могут отсутствовать выступающие части, что в ряде случаев является их важным преимуществом (например, при установке на летательных аппаратах).

    Схема излучения

    Пассивная фазированная антенная решётка (ПФАР) [passive electronically scanned array, PESA]

    Луч можно формировать и управлять им электронным способом, контролируя разность фаз группы передающих элементов – таким образом можно контролировать, в каких местах происходит усиливающая или ослабляющая интерференция. Из этого следует, что в радаре самолёта для управления лучом из стороны в сторону должно быть не менее двух передающих элементов.

    Обычно радар с ПФАР состоит из 1 облучателя, одного усилителя малых помех, одного распределителя мощности, 1000-2000 передающих элементов и равного количества фазосдвигателей.

    Передающими элементами могут быть изотропные или направленные антенны. Некоторые типичные виды передающих элементов:

    На первых поколениях истребителей чаще всего использовались патч-антенны (полосковые антенны), поскольку их проще всего разрабатывать.

    Современные массивы с активной фазой используют желобковые излучатели из-за их широкополосных возможностей и улучшенного усиления:

    Вне зависимости от типа используемой антенны увеличение количества излучающих элементов улучшает характеристики направленности радара.

    Как мы знаем, при одинаковой частоте радара увеличение апертуры приводит к уменьшению ширины пучка, что увеличивает дальность и точность. Но у фазированных решёток не стоит увеличивать расстояние между излучающими элементами в попытке увеличения апертуры и уменьшения стоимости радара. Поскольку если расстояние между элементами больше, чем рабочая частота, могут появляться побочные лепестки, заметно ухудшающие эффективность радара.

    Самая важная и дорогая часть ПФАР – фазосдвигатели. Без них невозможно управлять фазой сигнала и направлением луча.

    Они бывают разных видов, но в целом их можно разделить на четыре типа.

    Фазосдвигатели с временной задержкой

    Простейший тип фазосдвигателей. Сигналу на прохождение линии передачи нужно время. Эта задержка, равная фазовому сдвигу сигнала, зависит от длины линии передачи, частоты сигнала и фазовой скорости сигнала в передающем материале. Переключая сигнал между двумя или более линиями передач заданной длины, можно управлять фазовым сдвигом. Переключающие элементы – это механические реле, pin-диоды, полевые транзисторы или микроэлектромеханические системы. pin-диоды часто используются из-за высокой скорости, низких потерь и простых цепей смещения, обеспечивающих изменение сопротивления от 10 кОм до 1 Ом.

    Задержка, сек = фазовый сдвиг ° / (360 * частота, Гц)

    Их недостаток в увеличении фазовой ошибки с увеличением частоты и увеличении размера с уменьшением частоты. Также изменение фазы изменяется в зависимости от частоты, поэтому для слишком малых и больших частот они неприменимы.

    Отражательный/квадратурный фазосдвигатель

    Обычно это квадратурное устройство связи, разделяющее входной сигнал на два сигнала, различающихся по фазе на 90°, которые затем отражаются. Затем они комбинируются по фазе на выходе. Эта схема работает благодаря тому, что отражение сигнала от проводящих линий могут быть смещены по фазе по отношению к падавшему сигналу. Сдвиг по фазе изменяется от 0° (открытая цепь, нулевая ёмкость варактора) до -180° (цепь закорочена, ёмкость варактора бесконечна). Такие фазосдвигателя обладают широким диапазоном работы. Однако физические ограничения варакторов приводят к тому, что на практике сдвиг по фазе может достигать только 160°. Но для большего сдвига возможно комбинировать несколько таких цепей.

    Векторный IQ-модулятор

    Так же, как и у отражательного фазосдвигателя, здесь сигнал разделяется на два выхода с 90-градусным смещением фазы. Входящая фаза без смещения называется I-каналом, а квадратура с 90-градусным смещением называется Q-каналом. Затем каждый сигнал проходит через двухфазный модулятор, способный сдвигать фазу сигнала. Каждый сигнал подвергается сдвигу фазы на 0° или 180°, что позволяет выбрать любую пару квадратурных векторов. Затем два сигнала рекомбинируются. Поскольку затухание обоих сигналов можно контролировать, у выходящего сигнала контролируется не только фаза, но и амплитуда.

    Фазосдвигатель на фильтрах верхних/нижних частот

    Был изготовлен для решения проблемы фазосдвигателей с временной задержкой, не способных работать на большом диапазоне частот. Работает путём переключения пути сигнала между фильтрами верхних и нижних частот. Похож на фазосдвигатель с временной задержкой, только вместо линий передачи используются фильтры. Фильтр верхних частот состоит из последовательности индукторов и конденсаторов, обеспечивающих опережение по фазе. Такой фазосдвигатель обеспечивает постоянный сдвиг фазы в диапазоне рабочих частот. Также его размер гораздо меньше, чем у предыдущих перечисленных фазосдвигателей, поэтому он чаще всего используется в радарах.

    Если подытожить, то по сравнению с обычной отражающей антенной, основными преимуществами ПФАР будут: высокая скорость сканирования (увеличение количества отслеживаемых целей, уменьшение вероятности обнаружения станцией предупреждения об облучении), оптимизация времени нахождения на цели, высокое усиление и малые боковые лепестки (тяжелее заглушить и обнаружить), случайная последовательность сканирования (сложнее заглушить), возможность использовать особые техники модуляции и обнаружения для извлечения сигнала из шума. Основные недостатки – высокая стоимость, невозможность сканирования шире 60 градусов в ширину (поле зрения стационарного фазового массива – 120 градусов, механический радар может расширить его до 360).

    Рейтинг
    ( 1 оценка, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]