СКИН-ЭФФЕКТ В ЦИЛИНДРИЧЕСКОМ ПРОВОДЕ КРУГЛОГО СЕЧЕНИЯ ПРИ ПРЯМОУГОЛЬНОЙ ФОРМЕ ИМПУЛЬСА ТОКА

Каждый опытный электротехник знает, что распределение плотности тока в проводнике нелинейно. Чем ближе к центральной оси, тем меньше амплитуда сигнала. При высокой частоте для корректного расчета вполне достаточно учитывать прохождение волн через определенный поверхностный слой. Это явление, скин эффект, способно выполнять полезные функции. Для успешного применения на практике, кроме общей теории, нужно изучить методику вычислений.

Объяснение поверхностного эффекта

Следует подчеркнуть одинаковую плотность тока при подключении проводника к источнику питания с постоянным напряжением. Однако ситуация изменяется при прохождении волнового сигнала.

Физическая картина возникновения

Для объяснения причин явления можно использовать вторую часть пояснительной картинки выше. В графической форме показаны силовые воздействия, которые образуются переменным полем. Электрическая составляющая (Е) направлена противоположно току (I), что объясняет возникающее сопротивление и соответствующее уменьшение амплитуды. По мере приближения к поверхности будет проявляться обратный эффект. Он вызван совпадением векторов напряженностей.

Уравнение, описывающее скин-эффект

Для выражения амплитуды через плотность тока берут определяющие соотношения из классических уравнений закона Ома и формул Максвелла. Дифференциалом по заданному временному интервалу можно вычислить значения магнитной и электрической компонент поля. В упрощенном виде рассматривают бесконечный проводящий образец, созданный из однородного материала.

Свойства быстропеременных токов

Определение 1
Токами высокой частоты считают токи, которые имею частоту выше, чем $10000 Гц$. Для этих токов не выполняются условия квазистационарности. В процессе протекания такого тока по проводнику, в проводнике появляются вихревые токи, которые порождаются изменениями магнитного поля с высокой скоростью.

Изменения магнитного поля в проводнике происходят такие, что на его оси вихревой ток имеем направление встречное к основному току, а у поверхности проводника течение этого тока совпадает с направлением основного тока. Значит, ток высокой частоты имеет непостоянную плотность по поперечному сечению. Плотность тока в центре сечения проводника почти равна нулю. Она увеличивается при движении в направлении к наружной поверхности. При очень высокой частоте ток течет по тонкому наружному слою проводника.

Ты эксперт в этой предметной области? Предлагаем стать автором Справочника Условия работы

Сейчас токи высокой частоты широко применяются. Высокочастотные плавильные печи применяют для быстрого прогрева металлических тел. С помощью высокочастотных токов проводят закаливание стальных деталей. Объект на короткое время размещают внутри катушки с током высокой частоты. Поверхностный слой детали разогревается вихревыми токами, ее внутренность при этом остается холодной. Деталь вынимают из катушки, внутренняя часть быстро отнимает тепло у поверхностного слоя, поверхность быстро охлаждается и закаляется. Глубину прогрева регулируют временем выдержки детали в катушке и частотой тока. После такой процедуры поверхность детали становится твердой и прочной, внутри металл сохраняет упругость и пластичность.

Формула определения частоты среза диаметра проводника

Эффект Холла

Для практических вычислений отдельными незначительными факторами пренебрегают. Например, чтобы определить частоту среза (Fср), цепь радиотехнического устройства рассчитывают по диаметру (D) соответствующего проводника. В формулу добавляют важнейшую характеристику определенного материала – удельное сопротивление (Rу) или проводимость (Sу). Зависимость отмеченных параметров показывает следующее выражение:

Fср = 4/ (π*μ*Sу*D2),

где μ – постоянная величина (μ = 4* Sу*10-7 Генри на метр).

Толщина скин-слоя

Конденсатор в цепи переменного тока

Из рассмотренного в предыдущем разделе определения понятна обратная зависимость плотности тока от частоты сигнала. Следующая таблица демонстрирует наглядно «активный» слой медного проводника. При многократном уменьшении энергетического потока в глубине на определенном уровне нецелесообразно применение толстых линий электропередач.

ПараметрЗначения
Частота сигнала, Гц506010 000100 0001 000 000
Толщина скин слоя, мм9,348,530,660,210,067

В первых двух столбцах приведены значения для стандартных сетей переменного тока. Эти данные демонстрируют, что сравнительно незначительное изменение частоты (10 Гц) делает бесполезным 1,62 мм диаметра проводника (медь). Нетрудно вычислить значительную экономию при создании длинной линии после соответствующей оптимизации параметров сигнала. Следует не забывать, что каждый металл отличается глубиной эффективного слоя. Какой выбрать вариант, будет понятно после тщательного изучения целевого назначения конструкции.

Аномальный скин-эффект

Внимательное изучение явления позволяет сделать несколько важных выводов. Как показано на конкретных примерах, скин слой отличается небольшой глубиной. Однако соответствующее расстояние намного меньше средних значений свободного пробега заряженных частиц. Следует не забывать, что на соответствующее перемещение нужно затратить определенную энергию. Преодоление электрического сопротивления материала сопровождается нагревом.

Если снижать температуру, проводимость увеличится. Одновременно станет больше свободный пробег, и уменьшится толщина рассматриваемой части проводника. При определенном уровне стандартный механизм волновых взаимодействий станет ничтожным. Аномальный скин эффект – это изменение размеров слоя, в котором обеспечивается достаточно высокая для практического использования плотность тока.

Носители зарядов и их движение

При отсутствии электрического поля свободные точечные заряды пребывают в равновесии. Они осуществляют колебания, взаимодействуя между собой и с ионами такого же, либо противоположного знака. Однако картина равновесия вмиг нарушается при попадании металла в электрическое поле. На заряженном проводнике возникает электрическое смещение.

Под действием кулоновских сил происходит перераспределение электронов в металлическом теле. Перемещению зарядов способствует напряжённость поля, действующая на носители заряженных частиц разных знаков, но в разных направлениях.

В результате этого воздействия заряженные частицы устремляются в противоположные стороны. Точнее, в металлах происходит только перемещение электронов, которые скапливаются на поверхности с одной стороны.

Положительные ионы, связанные атомными силами кристаллической решётки не перемещаются, но поскольку электроны устремились в одну сторону, то на другой стороне проводника преобладают дырки (положительно заряженные ионы) (см. рис. 1). Таким образом, можно утверждать, что электроны и положительные ионы под действием электрического поля распределяются в противоположных направлениях на поверхности тел. То есть, заряды стремятся к равновесному распределению.

Процесс распределения частиц продолжается до тех пор, пока не уравновесится их взаимодействие внешних и внутренних сил. То есть, пока сумма напряжённостей внешнего электрического поля не уравняется с внутренней напряжённостью. Данный процесс длится доли секунды. Если плотность энергии не меняется, а металл остаётся в спокойствии, то равновесие сил является константой.

Учитывая направления внешних векторов напряженности и внутренних сил, действующих на проводник, можно записать:

Результирующий вектор напряженности

Нулевое значение напряжённости поля означает, что внутренний потенциал тела компенсируется действием внешних сил:

Если в электрическое поле поместить металлический шар, то все статическое электричество на его поверхности будет иметь одинаковый потенциал. Такие поверхности получили название эквипотенциальных поверхностей. Заряды, скопившиеся под действием сил напряжённости поля, называются индуцированными или избыточными. Наличие избыточных зарядов характерно для всех типов проводников, оказавшихся в электрическом поле.

Рассуждения, приведённые выше, справедливы также для веществ со свободными ионами разных знаков (растворы солей и кислот). В результате такого распределения заряды также располагаются на противоположных концах токопроводящего тела. При этом равенство, записанное выше, сохраняется.

Ещё одно важное свойство проводников: при сообщении им дополнительных зарядов, собственные заряженные частицы распределяются так, чтобы восстановилось равновесие. Например, при добавлении отрицательных зарядов, последние будут противодействовать избыточным электронам, стремясь занять их место на поверхности тела.

Если проводник изолирован, то до определённого времени количество индуцированного электричества будет увеличиваться, пока не восстановится новое равновесие. При этом внутренняя напряженность поля, увеличенная плотностями зарядов, будет усиливать своё противодействие. В конце концов, наступит момент, когда отталкивающие силы остановят приток одноименных статического электричества.

Если же создать условия для отвода избыточных заряженных частиц (при сохранении притока новых), например, заземлить кондуктор, то возникнет электрический ток. Причём перемещение заряженных частиц будет проходить по поверхности металла, но не внутри его, как можно было бы ожидать.

Применение

Поверхностный эффект позволяет обеспечить локальный нагрев части проводника при пропускании переменного тока. Этот принцип используют, чтобы обогреть трубопровод в зимний период. Правильное применение технологии подразумевает следующие преимущества:

  • отсутствие сопроводительных контрольных и функциональных устройств;
  • практически неограниченная длина трассы;
  • возможность безопасного применения высоких температур.

Частотное распределение плотности токов используют для передачи информационных сигналов по силовым линиям электропередач. При достаточном уменьшении длины волны близость центральной части проводника не будет помехой. Модулированная СВЧ составляющая проходит в поверхностном слое. Для создания пакетов данных и расшифровки применяют специальные кодирующие (декодирующие) устройства.

К сведению. Подобные механизмы используют в нефтяной отрасли для оценки продуктивности скважины. Скин фактор определяет сопротивление перемещению жидкости в близкой технологическому отверстию области пласта. По этому параметру делают оценку реального объема добычи, по сравнению с идеальными условиями.

Глубина проникновения тока в металл

6 ноября 2018

Явление поверхностного эффекта

Постоянный ток в проводнике распределяется равномерно по сечению, переменный ток распределяется по сечению неравномерно в зависимости от частоты тока (рис. 10.6.).

Рис. 10.6. Глубина проникновения тока в металл в зависимости от его частоты: а — постоянный, б, в, г — переменный 50, 10 000, 125 000 Гц соответственно

При пропускании переменного тока наибольшая противоэлектродвижущая сила индуктируется в центре проводника, который охватывается полным магнитным потоком. Чем ближе к поверхности проводника, тем слабее магнитное поле, а, следовательно, меньше противо электродвижущая сила. Существование этой силы равноценно появлению в проводнике некоторого добавочного сопротивления, носящего название индуктивного сопротивления цепи. Встречая в центре проводника наибольшее индуктивное сопротивление, ток будет стремиться пройти в направлении наименьшего сопротивления и вытисниться к поверхности проводника.

Свойство тока высокой частоты протекать только по поверхностному слою проводника принято называть поверхностным эффектом,

или
скин-эффектом.
Плотность тока для различных точек сечения проводника будет неодинаковой. Чем выше частота тока, тем больше в центре проводника индуктивное сопротивление и меньше плотность тока. Неравномерное распределение индукционных токов приводит к неравномерному нагреву деталей: поверхностные слои очень быстро нагреваются до высоких температур, а сердцевина или совсем не нагревается или нагревается незначительно, благодаря теплопроводности стали.

Для количественной оценки явления поверхностного эффекта введено понятие глубины проникновения тока

8 (дельта). При этом считают, что переменный ток протекает только в поверхностном слое, толщина которого равна глубине проникновения тока, и имеет на этой глубине равномерную плотность.

Глубина проникновения тока или толщина слоя определяется по формуле:

где р — удельное электрическое сопротивление, Ом-мм2/м; р — магнитная проницаемость, Гс/Э; f- частота тока, Гц.

Следовательно, с увеличением частоты глубина проникновения индукционных токов уменьшается (рис. .103, таблица 10.4.). Если менять частоту тока, то можно в широких пределах изменять глубину проникновения 8, а, следовательно, и толщину слоя, по которому идет ток, вызывающий нагрев поверхности закаливаемой детали.

Из приведенных в табл., данных следует, что с повышением температуры нагрева металла глубина проникновения тока растет и достигает наибольшего значения при температуре потери магнитных свойств — точки Кюри.

Таблица 10.4

Глубина проникновения тока в металл при различных частотах

Частота тока, Гц Глубина проникновения тока, см
Сталь 45 Электролитическая

медь

при t=15°C,

Р =2-10 -50м-см, ^ =40 Гс/Э

при t =800°С,

Р =10 — 4 Ом-см, ^=1 Гс/Э

при t =15°С,

Р = 1,8.10 -6 Ом-см, ^ =1 Гс/Э

50 0,5 7.0 1,0
2500 0,067 1.0 0,13
10000 0.034 0,5 0,07
100000 0,011 0.16 0,022
1 000 000 0,0034 0,05 0,007

С ростом температуры нагрева (рис. 10.7.) стальных деталей удельное сопротивление р возрастает и выше 1000°С достигает своего максимального значения.

Рис. 10.7. Кривые изменения магнитной проницаемости и удельного электрического сопротивления стали 45 в зависимости от температуры нагрева

Магнитная проницаемость в интервале 600…700°С почти не зависит от температуры, но при дальнейшем ее повышении резко падает и достигает минимального значения, равного магнитной проницаемости вакуума ( jli =1).

Для практических расчетов глубину проникновения 8 тока в металл вычисляют по упрощенным формулам: для стальных деталей при температуре 15° С:

мм и при температуре 760° С , мм

Где: S- глубина проникновения тока, мм; f- частота тока, Гц.

Для большинства сталей магнитные превращения протекают в интервале критических температур 765-780° С, при которых магнитная проницаемость резко падает и становится равной единице. После потери сталью магнитных свойств с образованием аустенита глубина проникновения тока резко возрастает.

Наибольшее значение глубины проникновения тока называют горячей глубиной проникновения

и обозначают ГОр- Приближенно она может быть определена по упрощенной формуле:

Зная зависимость глубины проникновения тока от температуры, процесс индукционного нагрева стали можно представить по следующей схеме.

В первый момент начинается, нагрев стали в тонком поверхностном слое, равном глубине проникновения тока в холодный металл. После потери этим слоем магнитных свойств, глубина проникновения тока возрастает и нагревается слой, расположенный глубже. Повышение температуры в первом нагретом слое замедляется.

После потери магнитных свойств вторым слоем начинает быстро нагреваться третий слой и т.д. Пределом роста глубины проникновения тока является горячая глубина проникновения.

Повышение температуры в слое с горячей глубиной проникновения происходит за счет индуктированных токов, а в более глубоких слоях — в основном за счет теплопроводности.

Этот процесс нагрева объясняет причину быстрого распространения тепла при нагреве ТВЧ, в связи с изменениями магнитных свойств. На рис. 10.5 изображен график индукционного нагрева, из которого видно, что более быстрый нагрев происходит при температурах ниже точки Кюри (769°С). Выше этой критической точки нагрев замедляется в связи с потерей сталью магнитных свойств и фазовыми превращениями.

Существует три основных способа поверхностной индукционной закалки в зависимости от размера, формы детали и некоторых специальных требований нагрева: одновременный, непрерывно последовательный и последовательный (поочередный).

Рис. 10.8. График индукционного нагрева

Учёт эффекта в технике и борьба с ним

Это явление оказывает заметное влияние по мере увеличения частоты сигнала. Следует учитывать скин эффект при проектировании схем с переменными (импульсными) токами. В частности, делают коррекцию расчета катушки фильтра, колебательного контура, трансформатора.

Типовые способы решения обозначенных проблем:

  • уменьшение толщины проводника;
  • создание полых конструкций;
  • образование поверхностного слоя из металла с лучшей проводимостью;
  • устранение неровностей;
  • плетение из нескольких изолированных жил.

К сведению. Радикальное устранение вредных явлений организуют с помощью передачи электроэнергии постоянным током.

Распределение зарядов и форма тела

Как было замечено выше, распределение зарядов зависит от формы тела. Больше всего статического электричества собирается на выступах, особенно на острых концах (см. рис. 3, 4).

Как видно из рисунка 4 плотность распределения зарядов на вогнутых поверхностях минимальна. Электростатическое поле сплошных и полых проводников не отличается, если их поверхности идентичны. Другими словами все токопроводящие тела с одинаковыми поверхностями обладают одинаковыми поверхностными плотностями.

На сферических поверхностях статическое электричество распределяется равномерно. Ёмкость конденсатора (сферического) вычисляют по формуле:

Емкость сферического конденсатора

где R1 и R2 – внешний и внутренний радиусы сферического конденсатора.

Распределение статического электричества на сфере иллюстрирует рисунок 5. Обратите внимание на то, что внутри сферического тела, как впрочем, и любого другого, заряды отсутствуют: вектор E=0, φ=const.

Вы, наверно, слышали о клетке Фарадея. Человек, находящийся в замкнутом пространстве из токопроводящего материала, то есть в клетке, не ощущает на себе влияния мощных разрядов. Статическое электричество стекает по поверхностям стенок клетки на землю, и не могут попасть внутрь клетки.

Способы подавления скин эффекта

Перечисленные методики имеют особое значение при работе с высокочастотными радиосигналами. В частности, для улучшения проводимости поверхностный слой создают из серебра, платины, других благородных металлов. Следующие рекомендации применяют на практике при создании качественной аудио аппаратуры:

  • для пропускания сигналов используют тонкие (0,25-0,35 мм) жилы;
  • плетением кабеля устраняют значительные искажения силовых линий магнитного поля;
  • надежной изоляцией предотвращают окисление меди;
  • проверяют наличие поблизости других линий, способных оказывать вредное взаимное влияние.

При переходе в СВЧ диапазон сигналы передают по волноводам. Устраняют возможные негативные проявления с помощью передачи данных сигналами в оптическом диапазоне.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]