От Лоренца к Холлу
Эффект Холла является продолжением силы Лоренца, которая описывает силу, действующую на заряженные частицы – такие как электрон – движущиеся в магнитном поле. Если магнитное поле направлено перпендикулярно направлению движения электронов, на электрон действует сила, которая перпендикулярна и направлению движения, и направлению магнитного поля.
Эффект Холла относится к ситуации, в которой сила Лоренца действует на электроны, движущиеся в проводнике, так что разница потенциалов – или другими словами, напряжение – возникает между двумя сторонами проводника.
Следует отметить, что стрелки на втором рисунке показывают направления протекания обычного тока, а это означает, что электроны двигаются в противоположном направлении. Направление силы Лоренца определяется правилом правой руки, учитывающим направление движения электрона относительно магнитного поля. На первом рисунке электрон движется вправо, а сила Лоренца направлена вверх. На втором рисунке электроны движутся влево, а сила Лоренца направлена вниз, и, таким образом, отрицательный заряд накапливается на нижней стороне проводника. Результатом является разность потенциалом, которая возникает между верхней и нижней кромками проводника, с верхним краем более положительным по сравнению с нижним. Эта разность потенциалов называется напряжением Холла:
\[U_{Холл}=-\frac{IB}{eρt}\]
Эта формула, которая применяется к токопроводящей пластине, говорит нам, что напряжение Холла зависит от величины тока (I), протекающего через проводник, от магнитной индукции (B), от элементарного заряда электрона (e), количества электронов в единице объема (ρ) и от толщины пластины (t).
Виды
Цифровые датчики Холла делятся на униполярные и биполярные
Помимо эффекта Холла, законы которого описаны классической физикой и соблюдаются во всех нормальных или приближённых к нормальным условиям экспериментах, выделяют ещё несколько разновидностей явления возникновения разности потенциалов в проводнике.
Аномальный
Аномальным называют любой случай накопления заряда на грани проводника, в котором исключено воздействие внешних магнитных полей. Необходимым условием является перпендикулярная направленность разницы потенциалов относительно направления силы тока.
Причины, по которым возникает аномальный эффект Холла, обычно кроются в намагниченности металла-проводника или особенностях его молекулярной структуры.
Квантовый
Законы возникновения разницы потенциалов в «квантовом мире» исследуются на примере плоского проводника типа ДЭГ (двумерный электронный газ). Квантовый наблюдается в сильных магнитных полях и при низких температурах. Он выражается в квантовании холловского сопротивления, которое на графике имеет чётко выраженные «участки плато». Чем выше сопротивление, тем длиннее участки плато и выше разница между ними.
Открытие данного явления — одна из основных вех современной квантовой физики. Клаус фон Клитцинг, первооткрыватель квантового эффекта Холла, в 1985 году был удостоен Нобелевской премии.
Дробный
Многие передовые учёные в 80-х годах прошлого века заинтересовались исследованиями фон Клитцинга и продолжили изучать свойства разности потенциалов в ДЭГ. Наибольших успехов достигли Даниэль Цуи и Хорст Штёрмер, которые проанализировали промежуточные участки между «плато сопротивления» и пришли к выводу, что при существенном увеличении интенсивности магнитных полей «участки плато» можно получить и на дробных значениях электронных уровней Ландау, например, при n=1/3; n=2/5; n=3/7 и т. д.
Такое явление получило название дробного квантового эффекта Холла, а его первооткрыватели получили Нобелевскую премию по физике в 1998 году. В настоящее время ведутся расширенные исследования квантового и дробного квантового видов данного эффекта.
Спиновый
В 2003–2004 годах было изучено поведение электронов с антипараллельными спинами в проводниках, изолированных от каких-либо магнитных полей. Теоретической базой исследования послужили теории Владимира Переля, выдвинутые в далёком 1971 году. Они были доказаны на практике, когда удалось зафиксировать отклонения данных групп электронов к противоположным граням проводника. Движение заряженных частиц напоминает первый вид эффекта — аномальный.
Использование эффекта Холла
Напряжения, генерируемые с помощью эффекта Холла малы по отношению к воздействиям шума, смещения и температуры, которые, как правило, влияют на схему, и, таким образом, реальные датчики на основе эффекта Холла не были широко распространены до появления полупроводниковой технологии, позволившей создание компонентов с высокой степенью интеграции, которые включали в себя и элемент Холла, и дополнительную схему, необходимую для усиления напряжения Холла. Тем не менее, датчики на основе эффекта Холла ограничены в своей способности измерять небольшие токи. Например, чувствительность ACS712 от Allegro MicroSystems составляет 185 мВ/А. Это означает, что ток 10 мА создаст выходное напряжение только 1,85 мВ. Это напряжение может быть приемлемым, если у схемы низкий уровень шума, но, если в цепь протекания тока включить резистор 2 Ом, в результате можно получить напряжение 20 мВ, что значительно лучше.
Эффект Холла используется в различных датчиках; устройства, основанные на относительно простой связи между током, магнитным полем и напряжением, могут использоваться для измерения положения, скорости и напряженности магнитного поля. В данной статье мы сосредоточим внимание на устройствах, которые измеряют ток через напряжение Холла, генерируемое, когда магнитное поле, создаваемое измеряемым током, концентрируется в элементе датчика Холла.
Применение датчиков Холла
- Датчики Холла широко применяются в бытовой технике. Красноречивый пример – стиральные машины. Пользователи ломают умы, как в продвинутых моделях производится взвешивание белья. В сети приводятся патенты, где при помощи пружин или тензодатчиков предлагается задачу решить в лоб. Подобные устройства не способны на большую надёжность, рискуя постоянно подвергаться деформациям. Вдобавок на бак вешается пара-другая кирпичей, значит, суммарный вес конструкции велик, что накладывает ограничения. На практике в стиральных машинах белья вначале обильно увлажняется, потом по скорости разгона барабана оценивается общая масса. Так происходит взвешивание белья, в дальнейшем определяющее программу работы оборудования, расход порошка, воды, ополаскивателя.
- В компьютерных клавиатурах датчики Холла впервые вошли в серийное производство. Обычно на подложке стоит чувствительный элемент, на клавише крепится магнит. Понятно, что пружин внутри современной клавиатуры уже нет, а сила упругости создаётся за счёт полимеров с высоким сроком службы. Решение крайне удачное: ломается не датчик и не упругая механическая часть, выходит из строя контроллер.
- Датчик Холла возможно применять для измерения силы тока (как в токовых клещах). Прибор может реагировать на изменение электромагнитного поля, окружающего провода. Создаётся так называемая обмотка возбуждения (индуктивность из медной проволоки). Измеряемый ток подаётся на отводы, в результате образуется электромагнитная волна, часть оценивается датчиком Холла. Отклик зависит напрямую от измеряемой величины. Расчёт ведётся по формулам, заложенным, к примеру, в контроллер. Для точности прибор тарируется заводом изготовителем. Причём сохраняются упомянутые выше преимущества, прежде всего – отсутствие подвижных частей. Аналогичным образом при помощи датчиков Холла становится возможным измерение мощности.
Применение датчика - Преобразование постоянного напряжение в переменное считается примером создания генератора. Если датчик Холла находится в переменном магнитном поле, напряжения на выходе повторяет форму. КПД прибора не отличается высоким значением. Зато конструкция упрощается до максимума, становится возможным непосредственная передача формы магнитного поля электрическому току.
- В связи с описанными выше фактами отметим, что датчики Холла позволяют контролировать расход и заполненность заряда аккумуляторов (посредством измерения протекающего тока и интегрирования его по времени). Это обусловливает возможность их самого широкого применения. Например, в сотовых телефонах (до 37% рынка). Но специалисты считают, что самым многообещающим направлением является сегмент электромобилей, где вопрос наличия энергии будет жизненно важным.
- Благодаря наличию магнитного поля Земли становится возможным создание на основе датчиков Холла компасов. Проблема заключается лишь в том, что величина в Тл неравномерная по поверхности материков и континентов, требуется ввод методов коррекции измерений. За счёт указанного эффекта иногда работают автоматические системы стабилизации изображения видеокамер мобильных устройств.
- Мало известно, но 52% доходности от выпуска датчиков Холла приходится на автомобильную промышленность. В этой отрасли требуется измерять частоты вращения колёс, коленчатого и распределительного валов. Читатели уже догадались, что датчик Холла поможет с определением положения дроссельной заслонки, руля. Автомобильный рынок стал главной движущей силой для дальнейшего совершенствования приборов. Некоторые системы считаются стандартом де-факто (ASIC, ASSP, ESC/ESP и пр.) на рыке, и датчики Холла принимают в них живое участие.
Советуем к прочтению: АВР: устройство и принцип действия системы ввода резерва, применение автоматического переключения питания
Достоинства и недостатки
Характеристики у разных датчиков тока на основе эффекта Холла сильно отличаются, поэтому трудно суммировать достоинства и недостатки использования эффекта Холла относительно другого распространенного способа измерения тока; а именно, вставки прецизионного резистора в цепь протекания тока и измерения появившегося на нем падения напряжения с помощью дифференциального усилителя. В целом, датчики Холла ценятся за «невлияние» и обеспечение электрической изоляции между цепью протекания тока и измерительной цепью. Эти устройства рассматриваются как не оказывающие влияния потому, что в цепь протекания тока не вставляется какого-либо существенного сопротивления, и, таким образом, схема при проведении измерений ведет себя так же, как если бы датчика не было вовсе. Дополнительным преимуществом является то, что датчиком рассеивается минимальная мощность; это особенно важно при измерении больших токов.
Что касается точности, доступные в настоящее время датчики Холла могут достичь минимальной ошибки в 1%. Хорошо продуманный датчик на основе резистора может дать лучший результат, но одного процента, как правило, хватает при работе с большими токами/напряжениями, где и подходит использование датчиков Холла.
Недостатки датчиков Холла включают в себя ограниченный диапазон частот и высокую стоимость. ACS712 работает до 80 кГц, а диапазон Melexis MLX91208, который позиционируется, как «широкополосный», ограничивается верхней границей 250 кГц. Резистивный датчик тока с высокоскоростным усилителем, с другой стороны, может хорошо работать и мегагерцовом диапазоне. Кроме того, как обсуждалось выше, эффект Холла по своей природе имеет ограничение в отношении измерения малых токов.
Как проверить датчик Холла
Рекомендуется проводить проверку при помощи несложного прибора, который каждый водитель может сделать своими руками. Ему понадобится сопротивление 1 кОм и простой светодиод. К его ножке припаивается сопротивление, к нему – два отрезка любой удобной для работы длины гибкого провода, и устройство готово. Проверка датчика Холла предваряется определением наличия электропитания на нем:
- крышка распределителя снимается;
- штекерная коробка с трамблера отсоединяется;
- тестер подключается к 1 и 3 клемме, затем включается зажигание.
Если электрическая проводка авто функционирует в нормальном режиме, тестер покажет напряжение 10 и выше Вольт. После этого подсоединяем к тем самым клеммам сконструированный приборчик – светодиод загорается, если полярность была выбрана правильно. В противном случае нужно поменять местами концы проводов. Последующая схема проверки такова:
- провод, накинутый на 1 клемму, не трогаем, а на свободную 2 клемму перекидываем конец с 3-ей;
- проворачиваем (вручную либо стартером) распределительный вал.
Если вы отмечаете, что светодиод моргает во время данного процесса, значит, датчик зажигания не нуждается в замене. Также возможна проверка датчика Холла мультиметром. Его подсоединяют к выходному контакту зажигания, выставив на устройстве режим вольтметра. Стрелка устройства должна двигаться в интервале 0,4-3 Вольта (показатель исправности датчика).
Как проверить датчик Холла
Неисправности датчика Холла проявляются по-разному, даже опытные специалисты не в состоянии с точностью определить поломку. Есть ряд симптомов, но указывают на проблемы с датчиком они косвенно, т.к. эти признаки бывают по разным причинам:
- двигатель не запускается;
- на холостом ходу обороты плавают;
- во время движения при повышении оборотов автомобиль дёргается;
- глохнет мотор без причины.
Если возникают подобные симптомы необходимо, в том числе проверить и датчик Холла. Помимо указанного в статье способа существует ещё несколько. Например, самый простой это попросить у кого-нибудь исправный датчик и просто заменить его на своём автомобиле, если проблемы самоустранились, значит, датчик неисправен.
Если под рукой есть мультиметр провести проверку проще простого. Для этого необходимо на приборе выставить режим игры измерения напряжения и протестировать показатели на выходе датчика, если он исправен напряжение будет варьироваться от 0,4 до 11 В. Ещё один распространенный способ предполагает проверку при отсутствии искрообразования (если питание есть в системе зажигания) и заключается в имитации датчика. С трамблёра снимается колодка и включается зажигание. Далее с помощью куска провода замыкаются контакты 3 и 2 на колодке, если появится искра на центральном канале катушки зажигания, значит, датчик Холла неисправен и требует замены.
Еще одним видом есть в проверочке существования сопротивляемости на датчике. Для того нужно соорудить нехитрый приборчик, который состоит из резистора сопротивляемости 1 Ком, светового диода, и гибкой проводки. К ноге светового диода припаять сопротивление, и к нему два проводочка такой удлиненности, удобной для деятельности (не коротенькие). Затем снять крышечку распределителя, отсоединяем трамблер и коробочку штекера. После проверяем исправна ли цепь электрики. Потому мильтиметр электроники подключаем в одному и третьему клеммам, затем включаем зажигание автомашины.
При хороших условиях, измерение на экранчике приборчика должно быть в рамках 10-12 В. После также подсоединить на эти же клеммы сделанный механизм. Если вы все правильно сделали – диод световой загорится. Иначе нужно сменить местечками проводку. Дальше нужно сделать это: проводок, который подсоединен к первой клемме, не трогать кончик с третьей клеммы перекинуть на свободную вторую провернуть распредвал (руками либо стартером) Если при повороте вала диод заморгал, это говорит о том, что датчик не следует менять.
Замена датчика Холла.
Вольтметр и мультиметр
Используя вольтметр или классический тестер, вам не составит труда проверить состояние устройства.
Думаю, тестером умеет пользоваться каждый автомобилист. Задача заключается в том, чтобы сделать замеры напряжения на выходе датчика.
Если ДХ находится в исправном состоянии, тестер выдаст значения в диапазоне 0,4-11 В.
Ровно точно так же применяют универсальный мультиметр. Нужно лишь выбрать на нем режим вольтметра.
Без тестеров
Когда тестеры отсутствуют, проверку можно выполнить несколько иным методом.
Тут требуется провести пошаговые манипуляции:
- подключается свеча зажигания к выводу провода от катушки;
- соединяется резьбовая часть свечи с массой;
- демонтируется каретка с датчиком;
- подсоединяется разъем;
- включается зажигание;
- металлическим предметом проводится возле датчика;
- при появлении искры на свечке ДХ исправен.
Только будьте предельно осторожными, занимаясь своими руками подобными манипуляциями.
Имитация датчика
Достаточно интересный и эффективный метод. Но тут придется немного поработать своими руками.
Советуем к прочтению: Что такое КИП и КИПиА: расшифровка аббревиатуры, назначение
Принцип имитации заключается в следующем. Сначала извлеките из ДХ колодку, на которой идет 3 штекера. Далее запустите зажигание на автомобиле, после чего соедините 3 и 6 выходы между собой.
Если при такой манипуляции появилась искра, то вероятнее всего ДХ вышел из строя.
Клин клином
Самый простой и эффективный метод, который не потребует от вас вооружаться тестером или мультиметром. Но потребуется заведомо исправный аналогичный датчик Холла.
Суть диагностики до безобразия простая. Вы снимаете старый контроллер, устанавливаете на его место новый. Если после проведенной манипуляции симптоматика проходит и работа двигателя нормализуется, тогда просто оставляете новую деталь на месте. Если вы брали ДХ у товарища или соседа по гаражу, снимаете девайс, благодарите, и идете в магазин автозапчастей.
Самодельный тестер
Из практически подручных материалов можно собрать аналог тестера.
Устройство для проверки состоит из обычного светодиода, сопротивления на 1 Ом и двух отрезков гибкой проводки, которые нужно припаять к ножке.
Изоляция
Одно из главных преимуществ датчиков Холла заключается в электрической изоляции, которую в контексте проектирования схем и систем называют гальванической развязкой. Принцип гальванической развязки используется всякий раз, когда проект требует, чтобы две схемы связывались таким способом, который предотвращает любую возможность протекания между ними электрического тока. Простой пример, когда цифровой сигнал передается через оптоизолятор, который преобразует импульсы напряжения в импульсы света и таким образом передает данные оптическим способом, а не электрическим. Одной из основных причин для реализации гальванической развязки является предотвращение проблем, связанных с земляными контурами:
Основные принципы проектирования схем предполагают, что взаимосвязанные компоненты совместно используют общую точку земли, на которой предполагается 0 В. В реальной жизни, однако, «земля» состоит из проводников, имеющих ненулевое сопротивление, и эти проводники служат в качестве обратного пути протекания тока от схемы назад к источнику питания. Закон Ома напоминает нам, что ток и сопротивление дадут напряжение, и это падение напряжения в обратном пути означает, что «земля» в одной части схемы не точно такая же по потенциалу, как «земля» в другой части схемы. Эта разница в потенциалах земли может привести к проблемам, начиная от незначительных до катастрофических.
Для предотвращения протекания постоянного тока между двумя схемами используется гальваническая развязка, позволяющая успешно общаться схемам с различными потенциалами земли. Это особенно актуально для измерения токов: низковольтный датчик и обрабатывающая цепь могут понадобиться для контроля больших, изменяющихся в больших пределах токов, например, в цепи привода двигателя. Эти большие, быстро изменяющиеся токи приведут к значительным колебаниям напряжения в цепи обратного пути протекания тока. Датчик Холла позволяет системе контролировать ток привода и защитить схему высокоточного датчика от этих вредных колебаний земли.
Возможности и преимущества
- Возможность измерений в режимах постоянного и переменного сигнала. Использование переменного тока и фазочувствительного детектирования исключает тепловые эффекты и погрешности, связанные с изменением параметров системы со временем, а также значительно улучшает соотношение сигналшум. Режим постоянного сигнала используется тогда, когда захват носителей ловушками, выпрямление на неомических контактах или паразитные емкости влияют на переменный ток.
- Возможность измерения различными способами: Ван-дер-Пау и т.д. согласно стандарту ASTM F-76.
- Простая и удобная зондовая система, повышающая производительность.
- Компактный настольный дизайн прибора.
- Широкий диапазон значения тока и автоматическая установка его величины для минимизации нагрева образца.
- Ограничение величины электрического поля во избежание эффектов ударной ионизации при низких температурах.
- Дополнительный буферный усилитель/источник тока для расширения диапазона измеряемого поверхностного сопротивления до 100 ГОм/см2.
- Программный контроль всех параметров измерений, возможность сохранения и архивирования данных, текстовый и графический вывод на печать.
- Дополнительные возможности проведения измерений при различных температурах:
- две фиксированные температуры: комнатная и 77К;
- криостат с жидким азотом, от 90К до 500К;
- криостат с непрерывной прокачкой жидкого гелия, от 4К до 500К;
- криостат с непрерывной прокачкой жидкого гелия, от 4К до 300К.
- Редкоземельный постоянный магнит, обеспечивающий высокую стабильность.
- В процессе измерения пластина помещается под непрозрачный кожух, тем самым исключаются ошибки, обусловленные посторонней засветкой.
- Используемая конструкция зондов позволяет быстро осуществлять установку и измерения при комнатной температуре и температуре жидкого азота (77К) пластин диаметром до 3 дюймов.
- Тщательная проверка правильности измерений, в том числе алгоритмы контроля качества контактов
- Система электрического вжигания контактов
Синфазное напряжение
Другое важное применение датчиков Холла заключается в измерении токов при работе с высокими напряжениями. В схеме резистивного датчика тока дифференциальный усилитель измеряет разницу между напряжениями на одной стороне резистора и на другой. Проблема возникает, когда эти напряжения велики по сравнению с потенциалом земли:
Реальные усилители имеют ограниченный «диапазон синфазности», что означает, что устройство не будет функционировать должным образом, разница между входными напряжениями мала, и очень велика разница между ними и землей. Диапазоны синфазных входных напряжений токоизмерительных усилителей, как правило, не выходят за пределы 80 или 100 В. С другой стороны, датчики Холла могут преобразовать ток в напряжение без связи с потенциалом земли в измеряемой цепи. Следовательно, пока напряжение не достаточно велико, чтобы вызвать физическое повреждение, синфазное напряжение не влияет на работу датчика Холла.
Оригинал статьи
- Robert Keim. Understanding and Applying the Hall Effect
Почему выходит из строя датчик Холла
Повреждение сенсора может проявляться разными симптомами — даже профессионалу порой бывает непросто определить точную причину. Вот какие признаки говорят о поломке датчика:
- мотор плохо заводится;
- холостой ход с постоянными перебоями;
- на высоких оборотах автомобиль дергается;
- искра на свечах пропадает;
- двигатель внезапно глохнет.
Главная причина выхода этой детали из строя банальна — накопилась грязь. Как только это происходит, ДХ сигнализирует моментально. С машиной начинают происходить «чудеса». Однако винить этот прибор во всех бедах неправильно — нужна доскональная проверка.
Исчезновение искры — главный симптом неисправности ДХ.
Распространенная причина неисправности — отсутствие контакта в проводке. Всего в приборе 3 контакта — соединяющий его с массой, с плюсом, с коммутатором. Один из контактов мог окислиться, из-за чего и разорвалась электрическая цепь.
Наконец, провод может просто оборваться или переломиться. Это происходит из-за того, что вакуумный корректор зажигания смещает площадку, на которой размещен ДХ, сдвигая угол зажигания. Во избежание такой напасти проводку нужно закрепить так, чтобы она изгибалась петлей.
Если высоковольтная проводка в машине изношена и пролегает рядом с проводами сенсора, возможен пробой высокого напряжения. Часто пробои возникают при влажной погоде, при заезде колесом в глубокую лужу.
Провода датчика должны быть удалены от остальной проводки. А еще проводку нужно как можно чаще менять — хотя бы раз в 2 года.
Поломка может возникнуть из-за перезарядки генератора аккумуляторной батареи — когда ДХ испытал слишком сильную нагрузку и на входе коммутатора сгорела одна из деталей.
Признаки неисправности датчика
Холла Неисправности у датчика Холла проявляются по-разному. Даже опытный мастер не всегда сразу выявит причину неполадок двигателя. Вот несколько самых распространенных симптомов:
- Мотор плохо заводится или не запускается вообще.
- На холостом ходу в работе двигателя появляются перебои и рывки.
- Машина может дергаться при движении на повышенных оборотах.
- Силовой агрегат глохнет во время движения.
При появлении одного из этих признаков, необходимо в первую очередь проверить исправность датчика Холла. Также не стоит исключать из вида и другие неисправности системы зажигания, встречающиеся в автомобилях.
Признаки неисправности датчика.
Публикации: Прочее (рубрикатор)
Tweet |
Легко ли сломать или разорвать стальной стержень? Если взять калькулятор и посчитать теоретическую прочность материала на разрыв, приняв в расчет энергию его химических связей, вы получите значения, намного превосходящие действительную прочность изделий. Так что же на самом деле происходит при приложении нагрузки, и почему так сильно различаются экспериментальные и теоретически рассчитанные значения прочности? Оказывается, при механическом напряжении материалы ведут себя согласно поговорке «где тонко, там и рвется», и в данном случае «тонким звеном» оказываются места локализации дефектов, т.е. те области, где нарушается непрерывная структура материала. Сравните, например, усилия, которые нужно приложить для того, чтобы сломать плитку обычного или пористого шоколада, свежесрубленную или сухую палку, обожженный или сырой кирпич. Именно благодаря дефектам мы можем разломить стекло по линии, проведенной стеклорезом, или открыть пакетик с соком или молоком по предварительно нанесенной перфорации.
Что же происходит с материалом при переходе от объемного состояния к наноструктурированному? Что будет, если постепенно уменьшать толщину стержня, станет ли он еще более хрупким? Именно такой вопрос задал себе в 1920 г. сотрудник Авиационного исследовательского центра в Фарнборо А.А. Гриффитс и нашел на него ответ, проведя эксперименты со стеклянными стержнями. Он обнаружив неочевидную, с первого взгляда, закономерность: при уменьшении диаметра стержня его удельная механическая прочность возрастала, причем значительно. Такое изменение прочности в зависимости от диаметра стержня связано с тем, что при уменьшении толщины, дефекты структуры все легче и легче выходят на поверхность, приводя к образованию практически идеальной решетки. Все больше и больше прочность материала приближается к теоретической. Рекордсменами среди макроскопических объектов являются нитевидные кристаллы, их прочность в десятки раз превышает прочность и гибкость объемного материала. Пробовали ли Вы согнуть или сплющить бабушкин бриллиант? И не пробуйте, в лучшем случае получите алмазный порошок! А вот алмазные «усы», выращенные в особых условиях, можно практически завязать в узел. При этом и в том, и в другом случае речь идеть об одном и том же структурном состоянии углерода – алмазе. Получается, что «усы», а не крупные бриллианты, — самые совершенные из кристалов!
Большинство наноструктур также практически не содержит дефектов, а для отдельных углеродных нанотрубок предел прочности на разрыв превышает 50 ГПа. Нанотрубки сложно разорвать как растягиванием, так и изгибом – при своей рекордной прочности они не являются хрупким материалом, и могут быть согнуты более чем на 90˚ без излома. Аналогичным образом было обнаружено, что прочность слоистых структур зависит от толщины отдельных слоев, а прочность некоторых объемных материалов – от размера образующих их зерен. Эти закономерности выражает закон Холла-Петча, согласно которому прочность материала возрастает при уменьшении размеров частиц по формуле, приведенной слева.
Однако не стоит думать, что безграничное уменьшение толщины стержня или размера зерен материала приведет к закономерному улучшению его механических свойств и достижению значений теоретической прочности. На самом же деле, практически любой материал состоит из зерен, границы которых сами являются дефектами, по которым может происходить разрыв. В ряде случаев (но не всегда) действует достаточно простая закономерность, что чем меньше размер зерен, тем меньше силы трения между ними, и тем проще деформировать материал. В частности, при определенных размерах зерен (< 50 нм) керамика может переходить из прочного состояния в сверхпластичное, когда даже при небольшом нагреве и малых нагрузках можно деформировать (прессовать или вытягивать) материал без разрушения. Этот переход объясняется сменой механизма деформации – уже не происходит деформации зерен при нагрузке, а они начинают скользить вдоль межзеренных границ (зернограничное проскальзывание). Разумеется, это расширяет технологические возможности. Так, можно получить керамику с наноразмерными зернами, прессованием или формованием задать форму детали (обычная керамика может быть прочной, но хрупкой и разрушатся даже при малых деформациях), а потом отжигом увеличить размер зерен, придав материалу хорошие прочностные характеристики.
Практическое использование уникальных механических свойств наноматериалов, зачастую ограничивается их высокой стоимостью. Однако вовсе не обязательно изготавливать всю деталь из наночастиц, достаточно армировать удобный в применении материал прочными нановолокнами и нанотрубками, подобно тому как, применяя стальные прутья – арматуру, увеличивают прочностные характеристики бетона. Сегодня в продаже уже появились первые продукты нанотехнологической эры: компании Easton Sports и Babolat выпустили бейсбольные биты и теннисные ракетки, армированные углеродными нанотрубками.
Литература:
Ch.P. Poole, F.J. Owens, Introduction in nanotechnology, John Wiley & Sons, 2003