Основные функциональные элементы ЭВМ, часть 1

Триггер в переводе с английского – защёлка. Это электронный модуль, способный длительно находиться в одном устойчивом состоянии и менять его под действием внешнего сигнала. Это цифровая автоматическая ячейка, которая умеет запоминать и хранить двоичный код данных, размером в 1 бит. То, как работает триггер, зависит от его структуры и назначения. В основе всякой подобной ячейки располагается восстанавливающее кольцо из пары инверторов. Устройство содержит прямой и инверсный выходы.


Общая структурная схема защёлки

Место триггеров в цифровой схемотехнике

Сам рс триггер, как один из структурных элементов в схемотехнике, не содержит в своём составе какого-то отдельного блока или устройства памяти. Он является простейшей логической ячейкой, которая запоминает своё предыдущее и настоящее состояния на входах и выходах. Память является результатом алгоритма работы переключателя. Выходы устройства находятся в состоянии либо логического нуля, либо единицы. При их изменении схема «защёлкивает» это положение и запоминает до тех пор, пока устройство управления вводом, выполненное из логических элементов, не даст команду об изменении состояния.

Классификация

Прежде, чем рассматривать работу триггеров, необходимо разобраться в обозначениях входов и выходов подобных устройств.

Триггер — понятие и классификация

Входа (порты) у триггера бывают:

  • R (reset) – устанавливает положение 0, раздельный порт;
  • S (set) – устанавливает положение 1, раздельный порт;
  • J – порт универсальных защёлок, устанавливает статус 1;
  • K – порт универсальных защёлок, устанавливает статус 0;
  • T – счётный порт, меняет положение защёлки.

Информация. Высокий уровень потенциала на входе или выходе равняется логической единице, низкий – логическому нулю. У микросхем марки ТТЛ логической единицей считается потенциал от 2,4…5В, логическим нулём – 0…0,4 В при напряжении питания 5 В. Для логических сборок других серий диапазоны потенциалов могут отличаться.

У защёлки в наличии два выходных порта:

  • Q – прямой;
  • Q¯ – инверсный.

При единице на прямом (Q = 0) «защёлка» находится в состоянии «1». В случае низкого потенциала на выходе (Q = 1) статус защёлки – «0».

У инверсного выхода все наоборот. При нуле у выхода Q¯ переключатель находится в состоянии единицы. Инверсия положения нужна для внедрения различных схематических решений.

Внимание! Типы портов определяют названия электронных переключателей, так, имея порта R и S, он носит имя RS-триггер.

Последовательностное логическое устройство (ПЛУ), которым является «защёлка», – это своеобразный блок для постройки различных комбинаций в схемах логических цепей. Бистабильное состояние RS-защёлки помогает компоновать такие логические схемы, как счётчики, регистры хранения, устройства памяти или регистры сдвига. Независимо от метода устройства логических связей, основные виды электронных переключателей можно разделить по способу ввода данных:

  • синхронный тип;
  • асинхронный тип;
  • комбинированный.

Всё зависит от того, как посылается команда управления на изменение состояния «защёлки».

Синхронные устройства

Для того чтобы rs триггер не менял своего положения от сочетания задержанных командных импульсов на его портах, применяют синхронизирующую команду. Это тактовый импульс, который подаётся на синхронизирующий порт. Сменившиеся сигналы на входах такой «защёлки» не смогут изменить состояния на выходе, пока не придёт тактовый (синхронизирующий) импульс. Эти импульсы вырабатывают тактовые генераторы. Длина тактовых сигналов намного меньше их периода. Импульсы определяют частоту замены информации, привязав её к дискретным временным периодам – tl, t2,…,tn-1,tn, tn+l. Это позволяет синхронизировать процессы работы отдельных узлов оборудования в едином ритме.

Действие схемы следующее:

  • если на порту С присутствует ноль, статус триггера не меняется, поскольку информация с портов S и R не передаётся на защёлку;
  • если на порту С появляется логическая единица, то переключатель принимает команды с S и R входов и меняет своё положение.

У таких схем повышенная помехоустойчивость, что выгодно отличает их от асинхронных устройств, последние могут перевернуться не только от сигнала, но и от помехи. Синхронная структура применяется в технике, связанной с преобразованием или обработкой цифровых данных.

Важно! При применении RS-защёлки с инверсными входами необходимо заменить элементы схемы «И» на элементы «И — НЕ».

Асинхронные модели

Устройство, меняющее своё состояние немедленно при изменении команды на логических портах, называют асинхронным триггером. Он имеет в своём составе только порты: R (сброс) и S (установка). Ограничения для пользования подобными схемами связано с соперничеством между сигналами, которые при попадании на разные входы RS-триггера движутся разными путями, как бы состязаясь между собой. При этом возникают временные задержки и сдвиги, вызванные разными причинами: изменения температуры, долгий срок службы и прочее. Такая «гонка» вызывает частые ошибочные переворачивания ячейки.

Тактовая синхронизация в данном случае не эффективна, потому асинхронные ячейки применяются в качестве асинхронных счётчиков, различных ключей, делителей частоты и им подобных схемных решений.

Комбинированные схемы

Модуль, состоящий из комбинации нескольких ячеек, называется комбинированным триггером. Возможны комбинации от двух и более функциональных ячеек.

Таблица комбинаций двух типов ячеек памяти

Тип устройстваRSRSEJKTDDV
RSХХХХХХХ
RХХХХХХ
SХХХХХ
EХХХХ
JKХХХ
TХХ
DХ
DV

Типы триггеровЗдесь Х – объединение двух типов возможно.

Подразделение этих устройств по типам можно рассмотреть по таблицам переходов состояния.

Выделяются следующие типы ячеек памяти состояния:

  • rs-защёлка – асинхронная и синхронная;
  • jk-защёлка;
  • d-защёлка;
  • t-защёлка.

Последний элемент списка – устройство составное, выполняется из синхронной rs-ячейки памяти.

RS-триггеры

Рассматривают два вида подобных ячеек: асинхронная и синхронная защёлка. При подробном изучении видна значительная разница в работе и сфере применения.

RS-триггер асинхронный

Самый простой вид защёлки, редко применяется как самостоятельное устройство, является ячейкой для построения более сложных блоков. Построены асинхронные соты на элементах:

  • 2 ИЛИ – НЕ, триггерная сота с прямыми портами;
  • 2 И-НЕ, триггерная сота с инверсными портами.

Фиксированные положения триггеру обеспечивают обратные связи. Это подключение выхода одного к любому входному порту другого логического элемента.

RS-триггер синхронный

Основа регистров, делителей частоты и различных счётчиков – триггерная сота памяти. В подобных устройствах зафиксированную раньше информацию нужно передать на выход и записать в следующую ячейку по сигналу тактового импульса. Импульс подаётся на С-порт (статический или динамический).

К сведению. Статический С-вход выполняет синхронизацию по изменению уровня потенциала сигнала, динамический С-вход синхронизирует изменение состояния не по уровню, а моменту его изменения. Переключение на динамическом С-входе может осуществляться по фронту импульса (прямой) или по его срезу (инверсный).

Состоящие из пары синхронных rs-триггеров и инвертора двухступенчатые RS-триггеры управляются полным (задействованы и фронт, и срез) динамическим тактовым импульсом. Такие ячейки памяти называются master-slave (мастер-помощник).

JK-триггер

Отличительной чертой этого типа «защёлки» является отсутствие запрещённого сочетания сигналов на портах. При J = K = 1 положение защёлки переворачивается на обратное, по сравнению к текущим Q0.

JK-переключатель отличается от RS-ячейки памяти только одним: если на J и K подаётся «1», то он меняет своё пребывание на противоположное положение. Происходит инверсия, причём у этой ячейки памяти отсутствуют запрещённые состояния главных портов.

Внимание! Если провести аналогию обозначения входов, то J и K, соответственно, аналогичны входам S и R у RS-триггера. Практическое применение нашли только синхронные jk-триггеры с динамической синхронизацией.

Что такое RS триггер

Это сота памяти, способная находиться в одном из стабильных положений: «0» или «1». Переворачиваться, т.е. менять их, она может под воздействием тактовых сигнальных импульсов. Ни записать, ни стереть хранимый бит элементарный элемент, собранный на двух инверторах, не может. Принцип работы rs триггеров, выполненных на двух компонентах 2И-НЕ, позволяет это сделать.

Основы электроакустики

Триггером называют логическую схему с положительной обратной связью, имеющую два устойчивых состояния – единичное и нулевое, которые обозначаются соответственно 1 и 0 (рис.23.1, а). В основе любого триггера находится кольцо из двух инверторов (рис. 23.1, б, в). Триггер является элементом памяти последовательностных логических устройств, на схемах он обозначается буквой Т

При подаче питания в результате переходных процессов произвольно один из инверторов устанавливается в единичное состояние, а другой – в нулевое. В дальнейшем состояние логических элементов (ЛЭ) сохраняется, так как сигнал с выхода одного ЛЭ поддерживает состояние другого ЛЭ. Общепринято такую схему называть элементом памяти или защелкой.

Входы триггера разделяют на информационные и управляющие (вспомогательные). Это разделение в значительной степени условно.

Информационные входы используются для управления состоянием триггера. Управляющие входы обычно используются для предварительной установки триггера в некоторое состояние и для синхронизации. Как правило, триггеры имеют 2 выхода: прямой и инверсный.

Рис. 23.1. Структурная схема триггера

Триггеры классифицируют по способу приема информации, принципу построения и функциональным возможностям.

По способу приема информации различают асинхронные и синхронные триггеры. Асинхронный триггер изменяет свое состояние непосредственно в момент появления соответствующего информационного сигнала.

Синхронные триггеры реагируют на информационные сигналы только при наличии соответствующего сигнала на так называемом входе синхронизации С (от англ. clock). Этот вход также обозначают терминами «строб», «такт».

Синхронные триггеры в свою очередь подразделяют на триггеры со статическим (статические) и динамическим (динамические) управлением по входу синхронизации С.

Статические триггеры воспринимают информационные сигналы при подаче на вход С логической единицы (прямой вход) или логического нуля (инверсный вход).

Динамические триггеры воспринимают информационные сигналы при изменении (перепаде) сигнала на входе С от 0 к 1 (прямой динамический С-вход) или от 1 к 0 (инверсный динамический С-вход).

По способу построения различают одно- и двухступенчатые триггеры. В одноступенчатом триггере имеется одна ступень запоминания информации, а в двухступенчатом – две такие ступени. Вначале информация записывается в первую ступень, а затем переписывается во вторую и появляется на выходе. Двухступенчатый триггер обозначают ТТ.

По функциональным возможностям триггеры разделяют на следующие классы:

  • — с раздельной установкой состояния 0 и 1 (RS-триггеры);
  • — универсальные (JK-триггеры);
  • — с приемом информации по одному входу D (D-триггеры, или триггеры задержки);
  • — со счетным входом Т (Т-триггеры).

Входы триггеров обычно обозначают следующим образом:

  • — S – вход для установки в состояние «1»;
  • — R – вход для установки в состояние «0»;
  • — J – вход для установки в состояние «1» в универсальном триггере;
  • — К – вход для установки в состояние «0» в универсальном триггере;
  • — Т – счетный (общий) вход;
  • — D – вход для установки в состояние «1» или в состояние «0»;
  • — V – дополнительный управляющий вход для разрешения приема информации (иногда используют букву Е вместо V).

Рассмотрим некоторые типы триггеров и их реализацию на логических элементах.

Условное графическое обозначение асинхронного RS-триггера и таблица его переходов приведены на рис. 23.2.

Рис. 23.2. RS-триггер

Триггер имеет два информационных входа: S (от англ. set) и R (от англ. reset). Закон функционирования триггеров удобно описывать таблицей переходов, которую иногда также называют таблицей истинности (рис. 23.2). Через St, Rt, Qt обозначены соответствующие логические сигналы, имеющие место в некоторый момент времени t, а через Qt+1 выходной сигнал в следующий момент времени t+1.

Комбинацию входных сигналов St = 1, Rt = 1 часто называют запрещенной, так как после нее триггер оказывается в состоянии (1 или 0), предсказать которое заранее невозможно. Подобных ситуаций нужно избегать.

Рассматриваемый триггер может быть реализован на двух элементах ИЛИ-НЕ (рис. 23.3,а) или И-НЕ (рис.23.3,б).

Эти схемы функционируют в полном соответствии приведенной выше таблицей переходов, которая на рис. 23.2 приведена в сокращенном виде. Полная таблица истинности (таблица переходов) RS-триггера на элементах ИЛИ-НЕ имеет следующий вид (рис. 23.4).

Рис. 23.3. RS-триггер на элементах ИЛИ-НЕ (а) и И-НЕ (б)

Рис. 23.4. Таблица истинности RS-триггера на элементах ИЛИ-НЕ

В асинхронном RS-триггере на элементах И-НЕ переключение производится логическим «0», подаваемым на вход R или S, т. е. реализуется обратная рассмотренной ранее таблице переходов (рис. 23.4). Запрещенная комбинация соответствует логическим «0» на обоих входах.

Микросхема К564ТР2 содержит 4 асинхронных RS-триггера и один управляющий вход (рис. 23.5). При подаче на вход V низкого уровня выходы триггеров отключаются от выводов микросхем и переходят в третье (высокоимпедансное) состояние. При подаче на вход V логического сигнала «1» триггеры работают в соответствии с вышеприведенной таблицей переходов.

Рис. 23.5. RS-триггер К564ТР2

Рассмотрим синхронный RS-триггер (рис. 23.6). Если на входе С – логический «0», то и на выходе верхнего входного элемента «И-НЕ», и на выходе нижнего будет логическая «1». А это, как отмечалось выше, обеспечивает хранение информации. Таким образом, если на входе С – логический «0», то воздействие на входы R, S не приводит к изменению состояния триггера. Если же на вход синхронизации С подана логическая единица, то схема реагирует на входные сигналы так же, как и рассмотренная ранее.

В рассмотренных выше RS-триггерах с обратными связями возможны неопределенности, обусловленные одновременным изменением информации на прямом и инверсном выходах, связанных с R и S входами. Для устранения этого эффекта применяются двухступенчатые триггеры.

При использовании двухступенчатого RS-триггера (рис.23.7) допускается соединение его входов и выходов. Двухступенчатый триггер состоит из двух синхронных RS-триггеров и дополнительного элемента НЕ. При подаче входных управляющих сигналов и синхросигнала (рис.23.8) производится запись информации в первый триггер (момент t1). При этом второй триггер не изменяет своего состояния, так как на его синхровход с инвертора подается логический ноль. Только по окончании записи в первый триггер при изменении синхросигнала с единицы на ноль производится запись во второй триггер двухступенчатой системы (t2).

Рис. 23.6. Синхронный RS-триггер

Рис. 23.7. Структурная схема двухступенчатого триггера

Рис. 23.8. Временная диаграмма работы двухступенчатого триггера

Таким образом, двухступенчатый триггер переключается по заднему фронту синхронизирующего импульса. Такая синхронизация называется динамической. Наличие динамической синхронизации отмечено наклонной чертой. Использование в триггере двух ступеней обозначается двумя буквами ТТ.

Рассмотрим в качестве примера RS-триггер типа 136ТР1 – синхронный триггер. Триггер имеет сложные входы R и S , вызывающие изменение состояния триггера при действии фронта синхроимпульса (перепадом с 0 на 1). Информационные входы R и S имеют входную логику «3И» (рис. 23.9).

Входы R и S (выводы 2 и 13) – установочные входы (установки 1 и 0 соответственно) действуют независимо, подан синхроимпульс или нет.

Рис. 23.9. Синхронный RS-триггер К136ТР1: а – УГО, б – таблица истинности

В таблице (рис. 23.10, б) приняты следующие обозначения:

  • — любое состояние S, R-сигналов на выводах 2, 13 ИМС;
  • – произведение сигналов на выводах 9, 10, 11 ИМС;
  • – произведение сигналов на выводах 3, 4, 5 ИМС.

Таблица истинности

D триггер — устройство и элементы с управлением по фронту

Таблица переходов состояний (таблица истинности) поясняет работу RS-триггера на элементах «И-НЕ». На ней Q 0 – текущий статус ячейки до попадания активного сигнала на порт. Когда логическая единица отсутствует на входах R и S, «защёлка» сохраняет положение Q 0. Активный импульс R = 1 перекидывает защёлку в положение 0, импульс S = 1 – в положение 1. Звездочка в таблице указывает на положение при запрещенном сочетании приходящих сигналов.

Такой тип имеет раздельное назначение логических состояний нуля и единицы по информационным портам.

Краткие теоретические сведения

Триггеры предназначены для запоминания двоичной информации. Использование триггеров позволяет реализовывать устройства оперативной памяти (то есть памяти, информация в которой хранится только на время вычислений).

Однако триггеры могут использоваться и для построения некоторых цифровых устройств с памятью, таких как счётчики, преобразователи последовательного кода в параллельный или цифровые линии задержки.

RS-триггер

Основным триггером, на котором базируются все остальные триггеры является RS-триггер. RS-триггер имеет два логических входа:

  • R – установка 0 (от слова reset);
  • S – установка 1 (от слова set).

RS-триггер имеет два выхода:

  • Q – прямой;
  • Q- обратный (инверсный).

Состояние триггера определяется состоянием прямого выхода. Простейший RS-триггер состоит из двух логических элементов, охваченных перекрёстной положительной обратной связью.

Рассмотрим работу триггера:

Пусть R=0, S=1. Нижний логический элемент выполняет логическую функцию ИЛИ-НЕ, т.е. 1 на любом его входе приводит к тому, что на его выходе будет логический ноль Q=0. На выходе Q будет 1 (Q=1), т.к. на оба входа верхнего элемента поданы нули (один ноль – со входа R, другой – с выхода ). Триггер находится в единичном состоянии. Если теперь убрать сигнал установки (R=0, S=0), на выходе ситуация не изменится, т.к. несмотря на то, что на нижний вход нижнего логического элемента будет поступать 0, на его верхний вход поступает 1 с выхода верхнего логического элемента.

Будет интересно➡ Что такое мостовой выпрямитель и как он устроен

Триггер будет находиться в единичном состоянии, пока на вход R не поступит сигнал сброса. Пусть теперь R=1, S=0. Тогда Q=0, а =1. Триггер переключился в “0”. Если после этого убрать сигнал сброса (R=0, S=0), то все равно триггер не изменит своего состояния. Для описания работы триггера используют таблицу состояний (переходов). Обозначим:

  • Q(t) – состояние триггера до поступления управляющих сигналов (изменения на входах R и S);
  • Q(t+1) – состояние триггера после изменения на входах R и S.

Таблица переходов RS триггера в базисе ИЛИ-НЕ

RSQ(t)Q(t+1)Пояснения
Режим хранения информации R=S=0
11
11Режим установки единицы S=1
111
1Режим установки нуля R=1
11
11*R=S=1 запрещённая комбинация
111*

RS-триггер можно построить и на элементах “И-НЕ” (рисунок 2.2).

Входы R и S инверсные (активный уровень “0”). Переход (переключение) этого триггера из одного состояния в другое происходит при установке на одном из входов “0”. Комбинация R=S=0 является запрещённой.

Таблица переходов RS триггера в базисе “2И-НЕ”

RSQ(t)Q(t+1)Пояснения
*R=S=0 запрещённая комбинация
1*
1Режим установки нуля R=0
11
11Режим установки единицы S=0
111
11Режим хранения информации R=S=1
1111

Синхронный RS-триггер

Схема RS-триггера позволяет запоминать состояние логической схемы, но так как при изменении входных сигналов может возникать переходный процесс (в цифровых схемах этот процесс называется “опасные гонки”), то запоминать состояния логической схемы нужно только в определённые моменты времени, когда все переходные процессы закончены, и сигнал на выходе комбинационной схемы соответствует выполняемой ею функции. Это означает, что большинство цифровых схем требуют сигнала синхронизации (тактового сигнала).

Все переходные процессы в комбинационной логической схеме должны закончиться за время периода синхросигнала, подаваемого на входы триггеров. Триггеры, запоминающие входные сигналы только в момент времени, определяемый сигналом синхронизации, называются синхронными. Принципиальная схема синхронного RS триггера приведена.

Таблица переходов синхронного RS-триггера

RSCQ(t)Q(t+1)Пояснения
1Режим хранения информации R = S = 0
111
111Режим установки единицы S =1
1111
11Режим установки нуля R=1
111
111*R = S = 1 запрещённая комбинация
1111*

В таблице 2.3. под сигналом С подразумевается синхроимпульс. Без синхроимпульса синхронный RS триггер сохраняет своё состояние.

Временные диаграммы

Импульсный стабилизатор напряжения

Кроме таблиц истинности, помогает разобраться в работе ячейки битовой памяти временная диаграмма. При этом на графике при изучении импульсов рассматривают следующие параметры:

  • длительность импульса – временной интервал от фронта до спада;
  • период – интервал от фронта предыдущего импульса до фронта последующего;
  • скважность – отношение периода импульса к его длительности.

Диаграмма графически отображает сигнальные импульсы на входах и выходах в одних и тех же временных точках.

Классификация последовательных схем

Последовательные схемы допускается классифицировать по следующим показателям:

  • одноступенчатые защёлки, в которых содержатся элемент памяти и устройство управления, их маркируют буквой Т;
  • двухступенчатые ячейки: статического и динамического управления, используются для защиты от гонок сигналов, обозначаются буквами ТТ;
  • переключатели, имеющие сложную логику: одно,- и двухступенчатые соты.

Одноступенчатые ячейки применяются в качестве первых ступеней в переключателях ТТ с динамической схемой управления, имеют такое же управление. При самостоятельном использовании управление в большинстве своём статическое.

Двухступенчатые устройства имеют как статическое, так и динамическое управление.

Состояние «Установлен»

RS-переключатель в этом состоянии имеет установленную цепь с Q, равным нулю, и Q¯, равным единице, и независим от управляемого сигнала. При этом на R присутствует ноль, на S – логическая единица.

Состояние «Сброшен»

Это тоже неизменная ситуация. Для её организации необходимо выставить исходные условия. На R подаётся «1», на S – «0». При этом выход Q должен иметь «1», Q¯ – значение «0». Обратные связи обеспечивают и фиксируют независимое от последующих значений на входах значение.

Классификация триггеров

  • по способу приема информации;
  • по принципу построения;
  • по функциональным возможностям.

Асинхронный триггер

Асинхронный триггер — изменяет свое состояние непосредственно в момент появления соответствующего информационного сигнала.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Синхронные триггеры — реагируют на информационные сигналы только при наличии соответствующего сигнала на так называемом входе синхронизации C (от англ. clock). Этот вход также обозначают терминами «строб», «такт».

Синхронные триггеры

Синхронные триггеры в свою очередь подразделяют на триггеры со статическим (статические) и динамическим (динамические) управлением по входу синхронизации C. Статические триггеры воспринимают информационные сигналы при подаче на вход C логической единицы (прямой вход) или логического нуля (инверсный вход).

Динамические триггеры воспринимают информационные сигналы при изменении (перепаде) сигнала на входе C от 0 к 1 (прямой динамический С-вход) или от 1 к 0 (инверсный динамический С-вход).

Статические триггеры

Статические триггеры в свою очередь подразделяют на одноступенчатые (однотактные) и двухступенчатые (двухтактные). В одноступенчатом триггере имеется одна ступень запоминания информации, а в двухступенчатом — две такие ступени. Вначале информация записывается в первую ступень, а затем переписывается во вторую и появляется на выходе. Двухступенчатый триггер обозначают через ТТ.

Диаграмма переключения RS-триггера

Состояния переключения, установки и сброса можно просмотреть на временной диаграмме. На ней отмечено, что переключатель переходит в положение установки при появлении нуля на его S-входе и единице на входе R, фиксированный сброс при подаче нуля на порт R и единицы на S.

Внимание! Если ноль подать на два входа (R и S) синхронно, то переключатель из-за неопределённого состояния на вводах может перевернуться в любое непредсказуемое положение, при этом произойдёт повреждение данных.

RS-триггер на логических элементах

Простейший способ его сделать – соединить вместе пару двухвходовых логических элементов И-НЕ. При этом обратная связь с выхода одного элемента подается на вход другого (см. схему ниже).

Как правило, в данной схеме входные сигналы показывают инверсными (с верхним подчеркиванием), хотя в дальнейшем при анализе работы используют обозначения прямых (неинвертированных) входов. Это сильно затрудняет понимание логики работы триггера. Поэтому мы не будем вводить инвертирование входов на этапе рассмотрения работы схемы на элементах И-НЕ, а учтем это в дальнейшем при ее модификации.

Сколько входов и выходов имеет RS-триггер? Из схемы выше видно, что он содержит S-вход и R-вход, которые служат, соответственно, для установки и сброса схемы, а также прямой Q и инверсный Q̃ выходы. Но данный простейший триггер относится к виду асинхронных, его условное обозначение показано ниже.

В синхронном устройстве имеется еще и вход C для тактовых импульсов.

Модификация схемы триггера

Чтобы смена состояний происходила на подъёме уровня сигнала у rs-триггера, необходимо на его выходах иметь:

  • при установке – Q = 1, а Q¯ = 0;
  • при сбросе – Q = 0, а Q¯ = 1.

Чтобы это организовать, поступающие сигналы защёлки инвертируют. В результате этого изменение состояния выполняется при поступлении положительных сигналов. При модификации добавляются в качестве инверторов 2 элемента И-НЕ.

D – триггер

D-триггер имеет 1 информационный вход (D-вход). Бывают только синхронные D-триггеры. Состояние информационного входа передаётся на выход под действием синхроимпульса (вход С).

Таблица переходов D-триггера

CDQ(t)Q(t+1)Пояснения
*Режим хранения информации
*11
1*Режим записи информации
11*1

Если на входе D – “1”, то по приходу синхроимпульса Q = 1. Если на D “0”, то Q =0.

Как синхронизировать работу триггера

Подключение двухпортового элемента «И» в последовательную цепь схемы триггера с каждым из входов позволит менять его статус, независимо от состояний на R,- или S-входах. Новый порт С получится при объединении двух портов ячеек «И». В результате доработки статус на выходах Q и Q¯ будет меняться только тогда, когда на С будет приходить высокий потенциал. Предусмотрено подключение генераторов тактовых импульсов на этот новый вход.

Универсальный триггер (JK-триггер)

Такой триггер имеет информационные входы J и К, которые по своему влиянию аналогичны входам S и R тактируемого RS-триггера:

  • при J=1, K=0 триггер по тактовому импульсу устанавливается в состояние Q=1;
  • при J= 0, К=1 – переключается в состояние Q=0;
  • при J=K=0 – хранит ранее принятую информацию.

Но в отличие от синхронного RS-триггера одновременное присутствие логических 1 на информационных входах не является для JK-триггера запрещённой комбинацией и приводит триггер в противоположное состояние.

Таблица переходов JK триггера

KJCQ(t)Q(t+1)
1
111
111
1111
11
111
1111
1111

Цифровая электроника – ЯБ-триггеры с доминирующим Я-входом

Наличие запрещенных комбинаций для тактируемых &У-триггеров вызвало идею построения триггера, который принудительно устанавливает Qx в 0 при S= 1 и R = 1, при подаче синхроимпульса. Это становится возможным благодаря особенному подключению входов. На рис. 7.35 показано такое соединение входов. При S = 1 и R = 1, 1-сигнал не может воздействовать на триггер, так как на выходе элемента НЕ действует 0. И-элемент запирается. 1-сигнал на R разрешает сброс. Режим установки при S = 1 и R = 0 остается возможен, так как теперь на выходе элемента НЕ действует 1 и И-элемент имеет на выходе 1.

Интересная статья: Что такое твердотельное реле?

Такой триггер называется .RS’-триггером с доминирующим /?-входом, или ^триггером. Правило его работы следует из условного обозначения на рис. 7.36 (см. также разд. 7.1). Оно гласит: если оба входа триггера S, R и вход Т имеют уровень 1, то при сигнале синхронизации 1 Q{ устанавливается на 0, a Q2 — на 1. Таблица истинности тактируемого ЛУ-триггера с доминирующим R-входом представлена на рис. 7.37. Разумеется, существует также тактируемый RS-триггер с доминирующим ^-входом (см. контрольный тест).

Будет интересно➡ Правила безопасности при работе с электричеством

Регистры на триггерах

Так как один переключатель является однобитовой ячейкой памяти, то, чтобы сохранить несколько бит, нужно увеличить количество единичных хранилищ. Цепочка из таких ячеек носит названия регистра. Регистр позволяет временно хранить цифровые данные двоичных разрядов. Количество разрядов зависит от количества однобитовых ячеек.

Использование элементарных электронных цифровых устройств – триггеров, позволяет составлять сложные схемы управления логическими устройствами. Одна элементарная защёлка памяти своим бистабильным состоянием помогает осуществлять самые сложные схемные решения.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]