Электрический ток и его источники – таблица, роль и определение


Что такое источник тока

Если в определённом объекте на одной клемме будет избыток электронов, а на другой недостаток, то после его включения в цепь в ней появится электрическое поле, которое обеспечит наличие тока и напряжения, необходимых для правильной работы схемы.

При этом электроны будут перемещаться с той клеммы, где имеется их избыток на ту, где их не хватает. Если не принимается никаких дополнительных мер, то после перемещения носителей на новое место произойдёт уравнивание зарядов, а напряжение и ток станут равны нулю. В результате электрическое поле исчезнет.

Как известно, источники постоянного тока действуют так, что заряды на клеммах поддерживаются постоянными. Обязательным условием при этом является перемещение электронов обратно на ту клемму, где должен быть их избыток. Такой перенос происходит в результате проведённой работы. Она осуществляется в постоянном режиме.

На практике со временем источник постоянного тока постепенно разряжается, и количество зарядов на его клеммах уменьшается. Как пример можно привести постепенную разрядку аккумулятора электронного гаджета.

Силы, которые выполняют работу по восстановлению зарядов клемм, могут иметь различную природу. Чаще всего они представляют собой результат определённых химических процессов.

Электрическая цепь. Электрический ток в металлах

На прошлом уроке мы с вами говорили об электрическом токе и источниках тока. Давайте с вами вспомним, что электрическим током называется упорядоченное движение заряженных частиц.

Также мы узнали, что для создания и поддержания тока в цепи необходимы источники тока.

Но что же такое электрическая цепь? И если это цепь, то из каких звеньев она состоит?

Электрическая цепь — это совокупность устройств и элементов, предназначенных для протекания электрического тока.

Любая электрическая цепь содержит:

1) источник тока

, создающий необходимое напряжение;

2) нагрузку

, то есть то устройство, в котором нужно создать ток. Нагрузкой может быть нагреватель или лампа накаливания, электродвигатель или звонок, различные электробытовые приборы.

Звеньями же цепи являются соединительные провода и ключ

, служащий для удобства и безопасности работы.

В качестве примера рассмотрим простейшую электрическую цепь. Она состоит из источника тока, ключа, который может замыкать и размыкать цепь, лампочки и соединительных проводов. Лампочка загорается только тогда, когда ключ замкнут.

Посмотрите ещё раз на рисунок электрической цепи. Если каждый раз её зарисовывать, то работа будет слишком долгой и трудоёмкой. Поэтому ввели условные обозначения для основных звеньев электрических цепей.

Чертежи, на которых в условных обозначениях изображены соединения электрических приборов, называют схемами.

На рисунке вы видите простейшую электрическую цепь и её схему. Сравните их.

Мы уже долгое время говорим об электрическом токе, но так и не выяснили, каково его направление в электрической цепи.

За направление электрического тока в цепи принято направление, в котором движутся (или могли бы двигаться) в проводнике положительные заряды, т. е. от положительного полюса источника к отрицательному.

Это соглашение было принято условно ещё в девятнадцатом веке, когда ещё не до конца понимали природу электрического тока и считали, что перемещаться могут только положительные заряды.

Конечно, после открытия электрона, который в большинстве случаев является носителем тока, стало понятно, что выбор был сделан неудачно, но старую договорённость менять не стали.

Мы уже знаем, что электрический ток может протекать через различные вещества: металлы, электролиты, и, при определённых условиях, через газы. Как уже говорилось, для возникновения электрического тока в любом веществе необходимо, чтобы там имелись носители зарядов, которые смогут перемещаться под действием электрического поля.

Так, например, в металлах носителями свободных зарядов являются электроны.

Вы знаете, что все металлы в твёрдом состоянии обладают определённой кристаллической структурой. Поэтому
всякий металл надо рассматривать как пространственную кристаллическую решётку, в узлах которой расположены положительные ионы.В пространстве же между ионами хаотично движутся свободные электроны, совокупность которых называют электронным газом.
Вследствие беспорядочного характера движения электронов переноса электрического заряда в каком-либо определённом направлении не получается. Но если внутри металла создать электрическое поле, то под влиянием его сил все свободные электроны придут в упорядоченное движение в направлении действия этих сил.

Однако неправильно думать, что электроны начнут двигаться прямолинейно. Траектория их движения также останется сложной, из-за взаимодействия с другими частицами. Движение электронов в этом случае напоминает дрейф льдин во время ледохода, когда они, двигаясь беспорядочно и сталкиваясь друг с другом, дрейфуют по течению реки.

А нельзя ли непосредственно на опыте проверить, что электрический ток в металле представляет собой поток электронов?

Конечно же можно. Идея одного такого опыта заключается в следующем. Если начать очень быстро вращать кусок металла, то увлечённый кристаллической решёткой электронный газ будет вместе с ним вращаться (на подобие жидкости во вращающемся сосуде). При внезапной остановке куска металла электронный газ должен некоторое время продолжать движение по инерции, подобно тому, как продолжает ещё вращаться жидкость в сосуде после его остановки. Задача заключалась в том, чтобы найти способ обнаружить это инерционное движение электронов.

И она была решена в1913 г. русскими физиками Леонидом Исааковичем Мандельштамом и Николаем Дмитриевичем Папалекси, а также в 1916 г. американскими учёными Ричардом Толменом и Томасом Стюартом. Опыт был проведён следующим образом. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы проволоки посредством гибких проводников соединялись с чувствительным прибором — гальванометром, который позволяет судить о наличии тока.

При резком торможении катушки в течение долей секунды гальванометр обнаруживал ток. Причём направление этого тока, а о нём судили по направлению отклонения стрелки гальванометра, показывало, что он вызван движением отрицательно заряженных частичек, то есть электронов.

Таким образом удалось доказать, что электрический ток в металлах представляет собой направленное движение электронов.

Но скорость этого движения мала — всего то несколько миллиметров в секунду, что в сотни миллионов раз меньше, чем средняя скорость теплового движения электронов. Поэтому, например, за 2 ч упорядоченного движения, электрон пройдёт менее 5 м.

Хотя мы знаем, что как только мы повернём выключатель, лампа, находящаяся в нескольких метрах от него, моментально загорается. Поэтому помните: скорость распространения тока и скорость направленного движения электронов — это не одно и то же.

Когда говорят о скорости протекания тока в проводнике, то имеют в виду скорость распространения электрического поля внутри проводника

, которое и приводит в направленное движение электроны. А оно распространяется со скоростью около 300 000 км/с, то есть со скоростью света.

Нечто аналогичное мы имеем в явлении движения газа в газопроводах. Например, когда в саратовском конце газопровода Москва — Саратов, наполненного газом, поднимается давление, то оно со скоростью звука в газе (а это около 500 м/с) распространяется по трубам и быстро передаётся в Москву.

Но газ, находящийся в данный момент под Саратовом, попадёт в Москву гораздо позже, так как скорость его движения по трубам значительно меньше скорости передачи давления.

Различные виды источников тока

Наиболее распространённой разновидностью являются источники питания постоянного тока, имеющие химическую природу. Это батарейки и аккумуляторы. В результате происходящих внутри них химических реакций электроны с внешних оболочек атомов отрываются и перемещаются на отрицательную клемму.

Следовательно, можно утверждать, что внутри аккумулятора или батарейки проходит ток, причём его движение определяется происходящими химическими процессами. Как правило, такие источники тока позволяют использовать относительно небольшое напряжение.

Источники энергии могут быть и электромеханическими. С их помощью получают довольно высокое напряжение. Электромеханические устройства производят электроэнергию за счет выполнения механической работы. Этот способ нашел широкое применение в промышленности.

Принцип действия теплового источника постоянного электрического тока основан на таком явлении, как нагрев. Под воздействием высокой температуры в месте контакта двух металлов или полупроводниковых структур возникает электродвижущая сила. Она будет тем больше, чем выше затраты тепловой энергии. Электроток протекает от нагретого участка к холодному.

Термоэлектрические источники практически не используются для энергетического обеспечения электрооборудования, поскольку в них возникает небольшая разность потенциалов. Основные потребители такой электрической энергии — датчики температуры.

Использование световых источников в технике получает всё большее распространение. В таких устройствах электроны под воздействием фотонов света получают дополнительную энергию и покидают свои атомы, образуя электрический ток. Этот экологичный вариант получения электроэнергии возможен, например, в пустынной местности, где практически всегда солнечная погода. Фотоэлектрический источник питания выгодно устанавливать на крышах домов, чтобы обеспечивать граждан и организации электрической энергией.

Источники питания. Классификация и основные характеристики

  1. Блоки питания. Виды, типы, основные характеристики.
  2. Драйвера. Виды, типы, основные характеристики.

ВОПРОС 1. Блок электропитания – это устройство, предназначенное для обеспечения питания электроприбора электрической энергией, при соответствии требованиям её параметров: напряжения, тока, и т. д. путём преобразования энергии других источников питания. Согласно ГОСТ Р 52907–2008 слово «вторичный» опускается.
Источник электропитания может быть интегрированным в общую схему (обычно в простых устройствах; либо когда недопустимо даже незначительное падение напряжения на подводящих проводах – например материнская плата компьютера имеет встроенные преобразователи напряжения для питания процессора), выполненным в виде модуля (блока питания, стойки электропитания и т. д.), или даже расположенным в отдельном помещении (цехе электропитания).

Задачи вторичного источника питания

Обеспечение передачи мощности – источник питания должен обеспечивать передачу заданной мощности с наименьшими потерями и соблюдением заданных характеристик на выходе без вреда для себя. Обычно мощность источника питания берут с некоторым запасом.

Преобразование формы напряжения – преобразование переменного напряжения в постоянное, и наоборот, а также преобразование частоты, формирование импульсов напряжения и т. д. Чаще всего необходимо преобразование переменного напряжения промышленной частоты в постоянное.

Преобразование величины напряжения – как повышение, так и понижение. Нередко необходим набор из нескольких напряжений различной величины для питания различных цепей.

Стабилизация – напряжение, ток и другие параметры на выходе источника питания должны лежать в определённых пределах, в зависимости от его назначения при влиянии большого количества дестабилизирующих факторов: изменения напряжения на входе, тока нагрузки и т. д. Чаще всего необходима стабилизация напряжения на нагрузке, однако иногда (например, для зарядки аккумуляторов) необходима стабилизация тока.

Защита – напряжение, или ток нагрузки в случае неисправности (например, короткого замыкания) каких-либо цепей может превысить допустимые пределы и вывести электроприбор, или сам источник питания из строя. Также во многих случаях требуется защита от прохождения тока по неправильному пути: например прохождения тока через землю при прикосновении человека или постороннего предмета к токоведущим частям.

Гальваническая развязка цепей – одна из мер защиты от протекания тока по неверному пути.

Регулировка – в процессе эксплуатации может потребоваться изменение каких-либо параметров для обеспечения правильной работы электроприбора.

Управление – может включать регулировку, включение/отключение каких-либо цепей, или источника питания в целом. Может быть как непосредственным (с помощью органов управления на корпусе устройства), так и дистанционным, а также программным (обеспечение включения/выключения, регулировка в заданное время или с наступлением каких-либо событий).

Контроль – отображение параметров на входе и на выходе источника питания, включения/выключения цепей, срабатывания защит. Также может быть непосредственным или дистанционным.

Чаще всего перед вторичными источниками питания стоит задача преобразования электроэнергии из сети переменного тока промышленной частоты (напр., в России – 220 В 50 Гц, в США – 120 В 60 Гц).

Две наиболее типичных конструкции – это трансформаторные и импульсные источники питания.

Трансформаторный (сетевой) источник питания

Трансформаторный блок питания.

Схема простейшего трансформаторного источника питания без стабилизации с двухполупериодным выпрямителем.

Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора или автотрансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр, сглаживающий колебания (пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.

Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков (варисторы), защиты от КЗ, стабилизаторы напряжения и тока.

Достоинства и недостатки

Достоинства трансформаторных БП:

  1. Простота конструкции;
  2. Надёжность;
  3. Доступность элементной базы;
  4. Отсутствие создаваемых радиопомех (в отличие от импульсных, создающих помехи за счет гармонических составляющих).

Недостатки трансформаторных БП;

  1. Большой вес и габариты, пропорционально мощности.Металлоёмкость;
  2. Компромисс между снижением КПД и стабильностью выходного напряжения: для обеспечения стабильного напряжения требуется стабилизатор, вносящий дополнительные потери;
  3. Слабая стойкость оборудования с таким БП к броскам напряжения и «отгоранию нуля» (обычно возникает в воздушных сетях сельской местности, приводит к повышению напряжения в розетках с 220 до 380 В). Печально известны в этом плане платы автоматики отопительных котлов (как правило они защищаются варистором, но часто и этого оказывается недостаточно). В то же время техника с импульсными БП (например, современные телевизоры) часто переносит повышения питания до 380 В без разрушения.

Импульсный источник питания

Самый простой и яркий представитель – блок питания для светодиодных лент, модулей и так далее с напряжением питания 5,12,24 В. Содержит небольшое количество деталей, легкий, маленький. Размеры 150 и вес грамм небольшие. Такой же трансформаторный блок питания весил бы килограмма три, а то и больше. В блоке питания для светодиодных лент тоже есть трансформатор, но он маленький, потому что работает на повышенной частоте. Надо отметить, что КПД такого блока – порядка 70-80%, при этом он выдает приличные помехи в электрическую сеть. Есть еще множество блоков, основанных на аналогичном принципе — для ноутбуков, принтеров и т. п. Итак, основное достоинство — небольшие габариты и малый вес. Гальваническая развязка также присутствует. Недостаток — тот же, что и у его трансформаторного собрата. Может сгореть от перегрузки !!! Так что если вы планируете освещение на 12 В светодиодных лент например — подсчитайте допустимую нагрузку на каждый трансформатор.

Желательно создавать 15 – 20 % запаса. То есть если у вас трансформатор на 150 Вт – лучше не вешайте на него больше, чем 100 Вт нагрузки. . Также стоит отметить, что импульсные блоки не любят включения без нагрузки. Именно поэтому не рекомендуется оставлять зарядные устройства для сотовых в розетке по окончании зарядки. Впрочем, это все делают, поэтому большинство нынешних импульсных блоков содержат защиту от включения без нагрузки.

Эти два простых представителя семейства блоков питания выполняют общую задачу — обеспечение нужного уровня напряжения для питания устройств, которые к ним подключены. Как уже было сказано выше – устройства сами решают – сколько тока им нужно. Достоинства и недостатки.

Достоинства импульсных БП:

  • cравнимые по выходной мощности с линейными стабилизаторами соответствующие им импульсные стабилизаторы обладают следующими основными достоинствами;
  • меньшим весом за счет того, что с повышением частоты можно использовать трансформаторы меньших размеров при той же передаваемой мощности. Масса линейных стабилизаторов складывается в основном из мощных тяжелых низкочастотных силовых трансформаторов и мощных радиаторов силовых элементов, работающих в линейном режиме;
  • значительно более высоким КПД (вплоть до 90-98 %) за счет того, что основные потери в импульсных стабилизаторах связаны с переходными процессами в моменты переключения ключевого элемента. Поскольку основную часть времени ключевые элементы находятся в одном из устойчивых состояний (то есть либо включен, либо выключен) потери энергии минимальны;
  • меньшей стоимостью, благодаря массовому выпуску унифицированной элементной базы и разработке ключевых транзисторов высокой мощности. Кроме этого следует отметить значительно более низкую стоимость импульсных трансформаторов при сравнимой передаваемой мощности, и возможность использования менее мощных силовых элементов, поскольку режим их работы ключевой;
  • сравнимой с линейными стабилизаторами надежностью. (Блоки питания вычислительной техники, оргтехники, бытовой электроники почти исключительно импульсные, линейные БП малой мощности сохранились только для питания слаботочных плат управления «белой» бытовой техники вроде стиральных машин, микроволновых печей и отопительных котлов и колонок);
  • широким диапазоном питающего напряжения и частоты, недостижимым для сравнимого по цене линейного. На практике это означает возможность использования одного и того же импульсного БП для носимой цифровой электроники в разных странах мира – Россия/США/Англия, сильно отличных по напряжению и частоте в стандартных розетках;
  • наличием в большинстве современных БП встроенных цепей защиты от различных непредвиденных ситуаций, например от короткого замыкания и от отсутствия нагрузки на выходе.

Недостатки импульсных БП:

  • Работа основной части схемы без гальванической развязки от сети, что, в частности, несколько затрудняет ремонт таких БП;
  • Все без исключения импульсные блоки питания являются источником высокочастотных помех, поскольку это связано с самим принципом их работы. Поэтому требуется предпринимать дополнительные меры помехоподавления, зачастую не позволяющие устранить помехи полностью. В связи с этим часто недопустимо применение импульсных БП для некоторых видов аппаратуры;
  • В распределённых системах электропитания: эффект гармоник кратных трём. При наличии эффективно действующих корректоров фактора мощности и фильтров во входных цепях этот недостаток обычно не актуален.

В нашей компании используются импульсные понижающие блоки питания, с выходным напряжением питания 5,12, 24 Вольта, открытые и влагозащищенные, с мощностью от 5 Вт и выше.

Блок питания 36W 12V негерметичный перф.

Блок питания 60W 12V герметичный алюм. корпус IP67

Блок питания 15W 12V герметичный алюм. корпус IP66

ВОПРОС 2. В общем случае драйвер – это источник тока для светодиодов. Для него обычно не бывает параметра «выходное напряжение». Только выходной ток и мощность. Впрочем, вы уже знаете, как можно определить допустимое выходное напряжение – делим мощность в ваттах на ток в амперах.

На практике это означает следующее. Допустим , параметры драйвера следующие : ток — 300 миллиампер, мощность – 3 ватта. Делим 3 на 0,3 — получаем 10 вольт. Это максимальное выходное напряжение , которое может обеспечить драйвер. Предположим, что у нас есть три светодиода, каждый из них рассчитан на 300 мА, а напряжение на диоде при этом должно быть около 3 вольт. Если мы подключим один диод к нашему драйверу, то напряжение на его выходе будет 3 вольта, а ток 300 мА. Подключим второй диод последовательно (см. пример с лампами выше) с первым — на выходе будет 6 вольт 300 мА, подключим третий – 9 вольт 300 мА. Если же мы подключим светодиоды параллельно – то эти 300 мА распределятся между ними примерно поровну, то есть примерно по 100 мА. Если мы подключим к драйверу на 300 мА трехваттные светодиоды с рабочим током 700 мА – они будут получать только 300 мА.

Исправный драйвер ни при каких условиях не выдаст больше тока, чем он рассчитан — как бы вы не подключали диоды. Надо отметить, что есть драйвера, которые рассчитаны на любое количество светодиодов, лишь бы их общая мощность не превышала мощность драйвера, а есть те, которые рассчитаны на определенное количество — 6 диодов, например. Некоторый разброс в меньшую сторону они, впрочем, допускают – можно подключить пять диодов или даже четыре. КПД универсальных драйверов хуже чем у их собратьев, рассчитанных на фиксированное количество диодов в силу некоторых особенностей работы импульсных схем. Также драйвера с фиксированным количеством диодов обычно содержат защиту от нештатных ситуаций. Если драйвер рассчитан на 5 диодов, а вы подключили три — вполне возможно, что защита сработает и диоды либо не включатся либо будут мигать , сигнализируя об аварийном режиме. Надо отметить, что большинство драйверов плохо переносят подключение к питающему напряжению без нагрузки – этим они сильно отличаются от обычного источника напряжения.

Итак , разницу между блоком питания и драйвером мы определили. Теперь рассмотрим основные типы драйверов для светодиодов, начиная с самых простых.

Резистор

Это простейший драйвер для светодиода. Выглядит как бочонок с двумя выводами. Резистором можно ограничить ток в цепи, подобрав нужное сопротивление. Недостаток — низкий КПД, отсутствие гальванической развязки. Способов надежно запитать светодиод от сети 220 В через резистор не существует, хотя во многих бытовых выключателях подобная схема используется.

Конденсаторная схема

Сходна со схемой на резисторе. Недостатки те же. Возможно изготовить конденсаторную схему достаточной надежности, но при этом стоимость и сложность схемы сильно возрастут.

Драйвер с низковольтным входом

В эту категорию входят драйверы, рассчитанные на подключение к первичному источнику напряжения — блоку питания или аккумулятору. Например, это драйверы для светодиодных фонарей или ламп, предназначенных для замены галогенных 12 В. Преимущество — небольшие габариты и вес, высокий КПД, надежность, безопасность при эксплуатации. Недостаток — требуется первичный источник напряжения.

Сетевой драйвер

Полностью готовы к использованию и содержат все необходимые элементы для питания светодиодов. Преимущество — высокий КПД, надежность, наличие гальванической развязки, безопасность при эксплуатации. Недостаток — высокая стоимость. Могут быть как в корпусе, так и без корпуса.

Применение драйверов на практике

Нужно учитывать особенности светодиодов, а именно падение напряжения на них. К примеру, красный 1 Вт светодиод имеет рабочий ток 300 мА и падение напряжения 1,8-2 В. Потребляемая им мощность составит 0,3 х 2 = 0,6 Вт. А вот синий или белый светодиод имеет при таком же токе падение напряжения 3-3,4 В, то есть мощность 1 Вт. Стало быть, драйвер с током 300 мА и мощностью 10 Вт «потянет» 10 белых или 15 красных светодиодов. Разница существенная. Типовая схема подключения 1 Вт светодиодов к драйверу с выходным током 300 мА выглядит так:

В светильниках, производимых компанией используются драйвера в основном на 300-330мА, как открытые так и герметичные.

Драйвер для светодиодов 18-25*1 IP40 220 V PF>0.9 300mA

Драйвер для светодиодов 5-10*1 открытый 220 V 300mA

Драйвер для светодиодов 18-25*1 IP65 220 V PF>0.9 300mA

Как действуют химические источники

Такие источники можно разделить на два типа:

  • Гальванические, принцип действия которых основан на применении электролитических реакций.
  • Аккумуляторные, способные подзаряжаться, используя для этого электрическую энергию.

Гальванические называют еще первичными источниками, а аккумуляторные — вторичными. Принцип действия первых основан на наличии электрического состава, в который погружены клеммы. Происходящие здесь химические процессы обеспечивают перемещение электронов таким образом, что на одной клемме постоянно присутствует недостаток электронов, а на второй — их избыток.

Для работы гальванических устройств не требуется использование дополнительного источника энергии для зарядки. Недостатком гальванических источников тока является то, что в процессе их эксплуатации происходят необратимые химические реакции, которые постепенно снижают эффективность работы батареи, и в конце концов приводят к прекращению её функционирования.

Клемму с положительным зарядом принято называть катодом, а с отрицательным — анодом. Первый обычно изготавливают из кадмия, свинца, цинка. Для второго применяют графит, оксид марганца, гидроксид никеля или оксид свинца.

Существуют разные виды гальванических батарей. Их название определяется применяемым электролитом. В основном используются:

  • Литиевые.
  • Щелочные.
  • Солевые, которые также называются сухими.

Батареи второго и третьего типа состоят из граффито-марганцевого стержня, который является катодом. Он расположен внутри цинкового стаканчика, выполняющего функции анода. Промежуток между ними заполнен электролитом.

Важно отметить, что последний не является жидкостью, а представляет собой пасту. В щелочных аккумуляторах применяется гидроксид калия, а в солевых — паста, сделанная на основе хлорида аммония.

Катод литиевого аккумулятора выполняется из производных лития на алюминиевой фольге, а анод — из графита на фольге из меди. Между ними расположен пористый сепаратор, пропитанный электролитом и выполняющий функции проводника.

Рабочий цикл аккумулятора, в отличие от батареи, заключается в том, что в процессе зарядки под воздействием электрической энергии здесь происходят химические реакции, обеспечивающие накопление зарядов на клеммах. То есть, сначала электрическая энергия преобразуется в химическую, а затем последняя вновь превращается в электрическую.

Однако такие преобразования не постоянны, они постепенно уменьшают эффективность работы источника питания. Со временем получаемый при перезарядке потенциал на клеммах становится меньше, а время разрядки короче. Наличие эффекта памяти существенно снижает эффективность использования источника энергии.

Эффект памяти проявляется следующим образом: если зарядка происходит до максимального значения, а разрядка до нулевого, то его влияние минимально. Если же аккумулятор начинают использовать, зарядив не полностью, то он запоминает последнее значение и в дальнейшем считает его максимальным. При последующих подзарядках аккумулятор его уже превосходить не будет.

Наиболее распространены следующие типы аккумуляторов:

  • Литий-ионные.
  • Щелочные никель-кадмиевые.
  • Свинцово-кислотные.

Каждая перечисленная здесь разновидность имеет соответствующее обозначение на своем корпусе, а также свои сильные и слабые стороны.

Свинцово-кислотные или никель-кадмиевые аккумуляторы обычно монтируют как блок. При этом катод предыдущего элемента соединяют с анодом последующего. В результате потребитель получает суммарную разность потенциалов.

Литий-ионные аккумуляторы более популярны, благодаря возможности многократной перезарядки практически без появления эффекта памяти.

Источник ЭДС и источник тока

При анализе электрических цепей, часто используют понятие идеального элемента, то есть такого элемента, в котором сосредоточен только один параметр, в отличие от реального элемента, в котором кроме одного основного параметра имеют место быть паразитные параметры. Например, резистор можно представить в виде идеального сопротивления, однако в реальном резисторе присутствует как емкость (например, между выводами), так и индуктивность (в проволочном резисторе, где используется намотанная на керамический каркас проволока). То есть идеальные элементы используются для упрощения анализа электрической цепи.

Источники энергии в электрических цепях при анализе схем также упрощают, кроме того их делят на два типа: источники ЭДС и источники тока. Рассмотрим каждый из них в отдельности.

Идеальный источник ЭДС характеризуется тем, что напряжение на его выводах не зависит от протекающего через него тока, то есть внутри такого источника ЭДС отсутствуют пассивные элементы (сопротивление R, индуктивность L, емкость С), и поэтому падение напряжения на пассивных элементах отсутствует.

Таким образом, напряжение на его выводах равно ЭДС, а ток теоретически не имеет ограничения, то есть если замкнуть его выходные зажимы, то электрический ток должен быть бесконечно большим. Поэтому идеальный источник ЭДС можно рассматривать, как источник бесконечной мощности. Однако в реальности ток имеет конечное значение, так как падение напряжения на внутреннем сопротивлении при коротком замыкании выводов уравновешивает ЭДС источника. Таким образом, реальный источник ЭДС можно изобразить в виде идеального источника ЭДС с последовательно подключённым пассивным элементом, который ограничивает мощность, отдаваемую во внешнюю цепь.

Источники ЭДС: идеальный (слева) и реальный (справа).

Идеальный источник тока характеризуется тем, что ток протекающий через него не зависит от напряжения, которое присутствует на его выводах, то есть сопротивление внутри источника тока бесконечно велико и поэтому параметры внешних элементов электрической цепи не влияют на ток протекающий через источник.

Таким образом, при бесконечном увеличении сопротивления также увеличивается напряжение на выводах идеального источника тока, поэтому и мощность растёт до бесконечности, то есть получается источник бесконечной мощности. Так как в реальности мощность всё же конечна, то реальный источник тока изображается, как идеальный источник тока с параллельно подключенным пассивным компонентом, характеризующим внутренние параметры источника тока, и ограничивает мощность, отдаваемую во внешнюю цепь.

Механические источники

При их использовании получают ток с помощью генераторов. Механическая энергия обеспечивает его вращение, а изменяющаяся энергия магнитного тока — образование переменного тока. Чтобы получить постоянное напряжение, необходимо воспользоваться выпрямителями. Такие устройства строятся на различных схемах. Выпрямители могут быть однополупериодными и двухполупериодными.

В первом случае поступающий ток, имеющий синусоидальную форму, преобразуется таким образом, что остаются только положительные импульсы, а отрицательные пропадают. Во втором — положительные остаются на месте, а отрицательные меняют полярность. В последнем случае преобразование энергии происходит более эффективно.

Схема выпрямителя, включающая входной трансформатор обеспечивает более низкие пульсации. Такие варианты приборов называют линейными.

Для выпрямления также применяются импульсные схемы. Сначала из переменного напряжения получают сигнал с частотой импульсов 15–60 кГц, который далее преобразуют в постоянный ток.

Последний вариант позволяет создавать более компактную схему. Использование таких устройств получает всё большее распространение в современной электротехнике.

Источники электрического тока, изобретение электромашины

Схема стабилизатора тока на полевом транзисторе

Выработка электричества с помощью генераторов – основное направление в производстве электроэнергии. Механические источники поделились на два вида генераторов:

  • машины, вырабатывающие постоянный ток;
  • генераторы, производящие переменный ток.

Источники переменного тока и постоянного – это генераторы, которые превращают механическую энергию вращения в электрическую. Заявление Эмиля Ленца, русского учёного, в 1833 году послужило толчком для работ над созданием генераторов. Ленц объявил о возможной взаимности магнитоэлектрических явлений. Это означало, что двигатели постоянного и переменного тока могли не только вращаться при подаче напряжения соответствующей природы, но и при вращении начинать вырабатывать это напряжение.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]