Как сделать заземление треугольником — пошаговая инструкция


Вопросы, затрагиваемые в ПУЭ

Регламентирование порядка эксплуатации различных видов защитных систем может быть представлено в виде определённого набора требований, касающихся обустройства отдельных конструкций.

Согласно им, функциональная готовность контуров заземления, в состав которых входит целый набор конструктивных элементов, должна подтверждаться следующими техническими данными:

  • Описание конструкции и состава защитных устройств, применяемых в действующих электроустановках;
  • Формулы для расчета их размеров, а также нормы сопротивления заземляющих устройств (ЗУ);
  • Таблицы с корректировочными коэффициентами, позволяющими вводить поправки на качество и состояние грунта в месте размещения контура (с учётом материала отдельных элементов);
  • Порядок организации и проведения контрольных испытаний, имеющихся у систем заземления.

На заметку. Наличие документально подтверждённых данных о рабочих характеристиках и надёжности функционирования контура заземления частного дома, например, позволит исключить вероятность поражения электрическим током животных и жильцов.

При его обустройстве предписывается действовать в строгом соответствии с ПУЭ, а также соблюдать все требования, касающиеся эксплуатации данного защитного устройства.

Зачем делать заземление в частном доме

Эксплуатация электрических приборов в жилом доме сопровождается риском их замыкания либо повреждением изоляционного покрытия проводов. Такие участки являются опасными для жизни человека. Если он прикоснется к неисправному электрооборудованию, его ударит током, т.к. тело является хорошим проводником.

Поэтому для безопасности жильцов во всех загородных коттеджах обязательно оборудуют заземляющие устройства, которые также предупреждают преждевременный выход из строя бытовых электроприборов.

Конструкция контура

Составные части

Заземляющий контур

Уже упоминавшееся ранее сопротивление заземления (Rз) контура – основной параметр, контролируемый на всех этапах его эксплуатации и определяющий эффективность его применения. Эта величина должна быть настолько малой, чтобы обеспечить свободный путь аварийному току, стремящемуся стечь в землю.

Обратите внимание! Важнейшим фактором, оказывающим решающее влияние на величину сопротивления заземления, является качество и состояние грунта в месте обустройства ЗУ.

Исходя из этого, рассматриваемое ЗУ или заземляющий контур ЗК (что для нашего случая – одно и то же) должны иметь конструкцию, удовлетворяющую следующим требованиям:

  • В её составе необходимо предусмотреть набор металлических прутьев или штырей длиной не менее 2-х метров и диаметром от 10-ти до 25-ти миллиметров;
  • Они соединяются между собой (обязательно на сварку) пластинами из того же металла в конструкцию определённой формы, образуя так называемый «заземлитель»;
  • Кроме того, в комплект устройства входит подводящая медная шина (её ещё называют электротехнической) с сечением, определяемым типом защищаемого оборудования и величиной токов стекания (смотрите таблицу на рисунке ниже).

Дополнительная информация. Условно к этой конструкции можно отнести соединительные медные провода в виде жгута или оплётки.

Эти составляющие устройства необходимы для соединения элементов защищаемого оборудования со спуском (медной шиной).

Различие по месту устройства

Согласно положениям ПУЭ, защитный контур может иметь как наружное, так и внутреннее исполнение, причём к каждому из них предъявляются особые требования. Последними устанавливается не только допустимое сопротивление контура заземления, но и оговариваются условия измерения этого параметра в каждом частном случае (снаружи и внутри объекта).

При разделении систем заземления по их местонахождению следует помнить о том, что лишь для наружных конструкций корректен вопрос о том, как нормируется сопротивление заземлителя, поскольку внутри помещения он обычно отсутствует. Для внутренних конструкций характерна разводка по всему периметру помещений электротехнических шин, к которым посредством гибких медных проводников подсоединяются заземляемые части оборудования и приборов.

Для элементов конструкций, заземлённых снаружи объекта, вводится понятие сопротивления повторного заземления, появившееся вследствие особенной организации защиты на подстанции. Дело в том, что при формировании нулевого защитного или совмещённого с ним рабочего проводника на питающей станции нейтральная точка оборудования (понижающего трансформатора, в частности) уже заземляется один раз.

Поэтому когда на ответном конце того же провода (обычно это PEN или PE шина, выводимая непосредственно на щиток потребителя) делается ещё одно местное заземление, его с полным основанием можно назвать повторным. Организация этого вида защиты показана на рисунке ниже.

Важно! Наличие местного или повторного заземления позволяет подстраховаться на случай повреждения защитного нулевого провода PEN (PE – в системе электропитания TN-C-S).

Такая неисправность в технической литературе обычно встречается под наименованием «отгорание нуля».

Технические требования к организации заземления электроустановок

УЗ используют для защиты людей и оборудования от разрушительного действия электрического тока. Безопасность обеспечивается путем соединения защищаемых корпусов электроустановок с землей. Работы по организации заземляющих сетей регламентируются положениями ГОСТ 12.1.030-81, согласно которым защитное заземление электроустановки следует выполнять при следующих параметрах:

  • при значениях номинального напряжения 380 B и более переменного тока и более 440 B и более постоянного тока – при любых значениях;
  • при значениях номинального напряжения 42-380 B переменного тока 110-440 B. Для работ связанных с повышенной опасностью.

Правильно организованная система заземления электроустановок способна нейтрализовать избыточный потенциал любой мощности и защитить людей, оборудование и здания от воздействия электрического тока будь то скачки, вызванные включением или отключением силового оборудования или грозовое воздействие.

Принцип работы основан на разнице сопротивлений человеческого тела и УЗ. Избыточный потенциал отводится в направлении меньшего показателя, т. е. в сторону защитного контура.

Выбор естественных заземлителей

Согласно правилам устройства электроустановок, их корпуса должны быть подключены к искусственным или естественным заземлителям. В качестве естественных используют следующие металлические объекты:

  • каркасы подземных металлоконструкций, имеющие непосредственный контакт с грунтом;
  • защитные кожухи кабелей, проложенных под землей;
  • металлические трубы, за исключением газо- и нефтепроводов;
  • железнодорожные рельсы.

Контакт объекта с естественным заземлителем должен осуществляться минимум в двух местах. Преимущества этого метода в простоте, эффективности и сокращении затрат на организацию системы электробезопасности.

Нельзя выбирать в качестве естественных заземлителей следующие объекты:

  • трубопроводы горючих и взрывчатых газов и жидкостей;
  • трубы, покрытые антикоррозийной изоляцией;
  • канализационные трубопроводы;
  • трубы централизованного отопления.

Сопротивление стеканию тока

Заземление работает по следующему принципу: ток, стекающий в землю через место замыкания, проходит вначале на корпус электроустановки и с него через УЗ в грунт. Очевидно, что при организации сетей заземления до 1000 Вольт, важно создать цепочку, обеспечивающую стекание избыточного заряда в землю.

Значения сопротивления заземления для сетей различного назначения:

Назначение сети Максимальное значение сопротивления, Ом
Частные дома 220, 380 Вольт 30
Промышленное оборудование 4
Источник тока при напряжении 660, 380 и 220 Вольт 2, 4, 8
Частный дом при подключении газопровода 10
Устройства защиты линий связи 2 (реже 4)
Телекоммуникационное оборудование 2 или 4

Чтобы получить показатели сопротивления, установленные нормативами, следует придерживаться типовых процедур:

  • Увеличить площадь соприкосновения деталей заземляющего устройства с грунтом.
  • Обеспечить качественный контакт между элементами устройства и соединительными шинами.
  • Усилить проводимости почвы увлажнением или повышением ее солености.

Для контроля за соответствием сопротивления предписанным нормам следует проверять его уровень не реже одного раза в шесть лет.

Работа УЗ при нарушении защитной изоляции электрооборудования

Нарушение целостности защитной изоляции нередко приводит к замыканию фазы на корпус. Дальнейшее развитие событий зависит от качества системы электробезопасности. Возможны следующие варианты:

  1. Заземление отсутствует, устройство защитного отключения не установлено. Самая неблагоприятная ситуация. При прикосновении к корпусу ощущается сильный удар.
  2. Корпус подключен к системе заземления, УЗО отсутствует. Если ток утечки будет велик, сработает автомат и отключит питающую линию или цепочку. Этот вариант может привести к накоплению избыточного потенциала на корпусе, если сопротивление переходов и номинал предохранителей будут велики. Такая ситуация опасна для людей.
  3. Заземление отсутствует, устройство защитного отключения установлено. Ток утечки вызовет срабатывание УЗО и человек успеет ощутить только слабый удар током.
  4. Корпус подключен к заземлению, УЗО установлено – наиболее надежный вариант, обеспечивающий защиту людей и техники благодаря тому, что защитные устройства дополняют и отчасти дублируют друг друга. При замыкании фазы на корпус, избыточный потенциал стекает через систему заземления. Одновременно устройство защитного отключения реагирует на утечку и отключает подачу тока, исключая возможность поражения током людей. Если ток утечки значительно превышает возможности УЗО, может сработать автомат и продублировать его функцию.

Влияние почвы на сопротивление Rз

Расчет заземления

Практически доказано, что сопротивление заземляющего устройства в значительной степени определяется состоянием грунта в месте расположения заземлителя. В свою очередь, характеристики почвы в зоне проведения защитных работ зависят от следующих факторов:

  • Влажность почвы на участке проведения работ;

Дополнительная информация. При оценке влажности следует знать, что сланцы и глина хорошо удерживают воду, а песчаные почвы, напротив, плохо.

  • Наличие в почве каменистых составляющих, в которых обустроить заземление попросту невозможно (в этом случае приходится выбирать другое место);
  • Возможность искусственного увлажнения грунта в особо засушливые летние периоды;
  • Химический состав почвы (наличие в ней солевых составляющих).

В зависимости от состава грунта, он может быть отнесён к тому или иному виду (смотрите фото ниже).

Исходя из особенностей формирования сопротивления заземлителя, предполагающих его снижение при увлажнении и повышении солевой концентрации, в случае крайней необходимости в грунт искусственно вводятся порции влажного химиката NaCl.

Хорошие грунты с точки зрения обустройства заземления – это суглинистые почвы с высоким содержанием торфяных составляющих и солей.

Что лучше – самодельные контуры или покупной комплект

Для обустройства заземления загородного дома можно купить уже готовый комплект устройства. Это позволит быстро установить конструкцию, часто даже без использования сварочного оборудования. Для соединения отдельных элементов производители изготавливают специальные крепежи.

Заводские конструкции считаются более надежными, т.к. все детали изготавливаются из нержавеющего металла, дополнительно обрабатываются защитными составами. Но они дорого стоят – от 7000 до 10000 руб.

Система заземления, собранная своими руками из имеющихся дома материалов, позволяет хозяевам частного коттеджа существенно сэкономить. А если правильно рассчитать схему и качественно выполнить монтажные работы, самодельная конструкция прослужит не меньше, чем заводская.

Устройство и типы контуров

Задача и особенности заземления трансформаторов.

Стандартный контур заземления изготавливается не только в виде оптимального для большинства условий треугольника; он может иметь форму линии, прямоугольника, угла или даже дуги (овала). При рассмотрении каждой из этих конструкций с точки зрения их сопротивления необходимо отметить следующее:

  • Основой конструкции являются забиваемые в землю штыри или стержни;
  • Между собой они соединяются нарезанными по длине металлическими полосами (так называемой «металлосвязью»);
  • К одному из штырей или к полоске металла приваривается медная шина, прокладываемая в отдельной канавке, как это изображено на приведённом ниже рисунке.

Выбор треугольника в качестве основного вида заземлителя объясняется тем, что в этом случае удаётся получить максимальную зону рассеивания при небольшой занимаемой площади. Материальные затраты на такую конструкцию минимальны, а величина сопротивления растеканию в грунте при правильном её обустройстве соответствует нормативам.

Расстояние между штырями треугольного контура обычно выбирается равным длине, а максимальное удаление одного от другого может быть вдвое больше. Так, если штыри заглубляются в землю на 250 сантиметров, оно может достигать 5-ти метров. Лишь при соблюдении этих условий удаётся получить оптимальные характеристики зарытого в землю сооружения.

Линейный контур представляет собой цепочку штырей, вбитых в землю с определённым шагом, равным примерно 5-10 метров (смотрите рисунок далее по тексту).

В отдельных случаях, зависящих от условий местности, конструкция сооружается в виде полукруга; при этом штыри располагаются на том же удалении один от другого. В таком распределённом устройстве сопротивление должно быть минимальным именно в точках соприкосновения прутьев с грунтом. Для достижения требуемого показателя Rз штырей забивается как можно больше.

Все остальные типы конструкций являются модификациями описанных выше заземлителей, а предъявляемые к ним требования по сопротивлению стекания являются производными от уже рассмотренных.

Виды материала (профили)

Согласно требованиям ПУЭ, содержащим указания на то, каким должно быть сопротивление растекания тока в грунте, в большинстве случаев этот показатель устанавливается на уровне не более 4 Ом. Для получения этого значения обычно приходится приложить немало усилий, направленных на то, чтобы придерживаться заданных теми же требованиями технологий.

В первую очередь, это касается используемых при сборке заземляющего контура материалов, подбираемых, исходя из следующих условий:

  • При выборе штырей предпочтение должно отдаваться заготовкам из черного металла;
  • Наиболее часто применяется пруток типоразмером 16-20 мм или уголок с параметрами 50х50х5 мм и толщиной металла около 5 мм;
  • Применять в качестве элементов контура арматуру не допускается, поскольку она обладает каленой поверхностью, влияющей на нормальное стекание тока;
  • Для этих целей подходит именно чистый пруток, а не его арматурный заменитель.

Обратите внимание! Для районов с засушливым летом лучше всего подходят трубные толстостенные металлические заготовки, нижний конец которых сплющивается на конус, а затем в этой части трубы просверливаются несколько отверстий.

Согласно положениям ПУЭ, перед их размещением в грунте сначала бурятся лунки нужной длины, поскольку забить их вручную достаточно проблематично. В случае особо засушливого лета и резком ухудшении параметров заземлителя в полые части труб заливается концентрированный соляной раствор, что позволяет получить такое сопротивление, какое должно быть в соответствии с требованиями ПУЭ. Длина трубных заготовок выбирается в пределах 2,5-3 метра, что вполне хватает для большинства российских регионов.

К этому виду профильных заготовок предъявляются особые требования, касающиеся порядка их размещения в почве и состоящие в следующем:

  • Во-первых, трубные элементы защитного контура должны размещаться на глубине, превышающей уровень промерзания грунта не менее чем на 80-100 см;
  • Во-вторых, в особо засушливых местностях примерно треть длины заземлителя должна достигать влажных слоёв почвы;
  • В-третьих, при выполнении второго условия следует ориентироваться на особенности расположения в данном регионе так называемых «грунтовых вод». В случае если они находятся на значительной глубине, по правилу, сформулированному в положениях ПУЭ, необходимо будет подготовить более длинные трубные отрезки.

С видом и профилем используемых при обустройстве заземлителя штыревых заготовок можно ознакомиться на размещённом ниже рисунке.

На практике в большинстве регионов России обычно применяются стальной уголок и полоса из того же металла. Для того чтобы получить более точные параметры используемых элементов заземления, потребуются данные геологических обследований. При наличии этой информации можно будет привлечь к обсчёту параметров заземлителя специалистов.

Из чего делается металлосвязь

Соединяющие штыри элементы (металлосвязь) обычно изготавливается из следующих электротехнических материалов:

  • Типовая медная шина, имеющая сечение на менее 10 мм2;
  • Алюминиевая полоса с поперечным сечением порядка 16 мм2;
  • Стальная полоска 100 мм2 (типоразмер – 25х5 мм).

Классическая металлосвязь делается обычно в виде нарезанных по размеру стальных полос, крепящихся на сварку к уголкам или оголовкам прутка.

Важно! От качества сварочного сочленения зависит, сможет ли данное заземляющее устройство или контур пройти проверочные испытания на соответствие переходного сопротивления нормируемому значению (4 Ома).

При применении более дорогих алюминиевых (медных) полосок к ним на сварку крепится болт подходящего типоразмера, на котором впоследствии фиксируются подводящие шины. Главное, на что нужно обращать внимание при обустройстве любых соединений, – это надёжность получаемого в результате контакта.

Для этого перед оформлением болтового сочленения необходимо тщательно зачистить обе соединяемые детали до появления блеска чистого металла. Дополнительно эти места желательно обработать шкуркой, а после закручивания болта хорошо его поджать, что обеспечит более надёжный контакт.

Глава 1.7 заземление и защитные меры электробезопасности

МИНИСТЕРСТВО ТОПЛИВА И ЭНЕРГЕТИКИ УКРАИНЫ

ПРИКАЗ

28 августа 2006 г.

305 г. Киев

Об утверждении и введении в действие новой редакции главы 1.7 Правил устройства электроустановок

С целью введения в действие новой редакции главы 1.7 « Заземление и защитные меры электробезопасности» Правил устройства электроустановок (далее — ПУЭ)

ПРИКАЗЫВАЮ:

1. Утвердить в новой редакции главу 1.7 ПУЭ «Заземление и защитные меры электробезопасности», которая вступает в силу с 1 января 2007 года (прилагается).

2. Хозрасчетному подразделению «Научно-инженерный энергосервисный (Белоусов В.И.) внести главу 1.7 ПУЭ в реестр и компьютерный банк данных действующих нормативных документов Минтопэнерго.

3. Объединению энергетических предприятий «Отраслевой резервно-инвестиционный фонд развития энергетики» (Коданевой В.Т.) обеспечить издание и распространение главы 1.7 ПУЭ на основании заказов заинтересованных организаций и фактической оплаты.

4. Департаменту по вопросам электроэнергетики (Меженный С.Я.), Объединению энергетических предприятий «Отраслевой резервно-инвестиционный фонд развития энергетики» (Коданева В.Т.) и институту «Укрсельэнергопроект» (Лях В.В.) в течение месяца со дня подписания приказа разработать программу мероприятий по внедрению новой главы 1.7 ПУЭ.

5. Институту «Укрсельэнергопроект» (Лях В.В.) обеспечить научно-техническое сопровождение процесса внедрения новой редакции главы 1.7 ПУЭ.

6. С момента введения в действие новой редакции главы 1.7 ПУЭ признать утратившей силу главу 1.7 ПУЭ шестого издания «Заземление и защитные меры электробезопасности», утвержденную 30 апреля 1980 г. Главтехуправлением и Госэнергонадзором Минэнерго СССР.

7. Контроль за выполнением настоящего приказа возложить на заместителя Министра топлива и энергетики Украины Шеберстова О. М.

Министр Ю. Бойко

УТВЕРЖДЕНО Приказ Министерства топлива и энергетики Украины 28.08.2006 г. №305

Область применения

1.7.1. Настоящая глава Правил распространяется на электроустановки переменного и постоянного тока, предназначенные для производства, преобразования, трансформации, передачи и распределения электроэнергии, которые проектируются, строятся или реконструируются, и содержит общие требования к их электробезопасности как в нормальном режиме работы электроустановок, так и в случае повреждения изоляции. Требования настоящей главы могут также применяться к действующим электроустановкам с целью повышения их электробезопасности.

Меры электробезопасности в электроустановках напряжением до 1 кВ зданий и сооружений (жилых, административно-бытовых, общественных, цеховых и т.п.) регламентируются ДБН В.2.5-27-2006 и другими действующими в Украине нормативными документами.

1.7.2. В отношении мер электробезопасности электроустановки подразделяют на:

— электроустановки напряжением до 1 кВ в электрических сетях с глухозаземленной нейтралью;

— электроустановки напряжением до I кВ в электрических сетях с изолированной нейтралью;

— электроустановки напряжением выше 1 кВ в электрических сетях с изолированной, компенсированной или (и) заземленной через резистор нейтралью;

— электроустановки напряжением выше 1 кВ в электрических сетях с глухо-заземленной или эффективно заземленной нейтралью.

Примечание.

Требования настоящей главы к электроустановкам напряжением до 1 кВ касаются также электроустановок напряжением до 1,5 кВ постоянного и выпрямленного тока, переменная составляющая которого не превышает 10% действующего значения.

Термины и определения понятий

1.7.3. Электробезопасность

— отсутствие угрозы со стороны электроустановки жизни, здоровью и имуществу людей, животным, растениям и окружающей среде, превышающей допустимый риск.

1.7.4. Электрическая сеть с эффективно заземленной нейтралью

— трехфазная электрическая сеть напряжением выше 1 кВ, в которой коэффициент замыкания на землю не превышает
1,4.
Коэффициент замыкания на землю в трехфазной сети

— отношение разницы потенциалов между неповрежденной фазой и землей в точке замыкания на землю другой или двух других фаз к разнице потенциалов между фазой и землей в этой точке до замыкания.

1.7.5. Глухозаземленная нейтраль

— нейтраль генератора или трансформатора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока). Глухозаземленными могут быть также вывод источника однофазного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка источника в трехпроводных сетях переменного и постоянного тока.

Средняя точка

— общая точка между двумя симметричными элементами цепи, противоположные концы которых присоединены к различным линейным проводникам той же цепи.

Линейный (фазный) проводник

— проводник, который в нормальном режиме работы электроустановки находится под напряжением и используется для передачи и распределения электрической энергии, но не является проводником средней точки или нейтральным проводником.

1.7.6. Изолированная нейтраль

— нейтраль генератора или трансформатора, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения и других подобных им устройств, наличие которых практически не влияет на ток замыкания на землю.

Компенсированная нейтраль

— нейтраль генератора или трансформатора, присоединенная к заземляющему устройству через дугогасящие реакторы для компенсации емкостного тока в сети при однофазных замыканиях на землю.

Заземленная через резистор нейтраль

— нейтраль генератора или трансформатора в сети с изолированной либо компенсированной нейтралью, присоединенная к заземляющему устройству через резистор, например, для защиты сети от перенапряжений или (и) выполнения селективной защиты в случае замыкания на землю, что приводит к увеличению тока замыкания.

1.7.7. Проводящая часть

— любая часть, имеющая свойство проводить электрический ток.

1.7.8. Проводник

— проводящая часть, предназначенная для проведения электрического тока определенного значения.

1.7.9. Токоведущая часть

— проводник или проводящая часть, которые находятся в процессе их нормальной работы под напряжением, включая нейтральный проводник, но не PEN-проводник.

1.7.10. Открытая проводящая часть

— проводящая часть электроустановки, доступная для прикосновения, которая в процессе работы не находится под рабочим напряжением, но может оказаться под напряжением в случае повреждения изоляции токопроводящих частей (например, корпуса электрооборудования и т.п.).

Источник: https://ohranatruda.in.ua/pages/4996/

Самостоятельное изготовление

После подготовки всех необходимых материалов и выбора подходящего места для обустройства заземления можно переходить к непосредственным операциям по сборке заземляющего контура. На подготовительной стадии нарезаются трубные или другие профильные отрезки, размер которых выбирается на 20-30 см больше расчётного (это нужно для компенсации изгиба вершины заготовки при её вбивании в землю).

Дополнительная информация. Для облегчения забивания таких отрезков рекомендуется заострить их нижний срез посредством болгарки с обрезным диском.

Одновременно с подготовкой точечных штыревых заземлителей начинается этап земляных работ, состоящих в подготовке канавок со скошенными краями (для лучшего удерживания грунта от осыпания).

Порядок производимых при земляных работах операций выглядит следующим образом:

  • Сначала подготавливается (расчищается) площадка под будущий контур заземления и делается его разметка;
  • Затем по уже нанесённой разметке выкапываются канавки глубиной 70-80 см и шириной порядка 50 см (глубина выбирается из соображения минимальной коррозии металлосвязей);
  • После этого нарезанные по длине штыри забиваются в намеченных точках так, чтобы над поверхностью выступало около 20 см (смотрите фото ниже);

  • По завершении монтажа всех вертикальных элементов верхние их части срезаются, а контактные площадки тщательно зачищаются, после чего к ним привариваются металлосвязи;
  • После того, как все сварочные швы остынут, они зачищаются болгаркой со шлифовальным диском, а затем окрашиваются специальной защитной краской на основе гудрона;

Обратите внимание! Покраске подвергаются лишь места образования сварных сочленений, наиболее подверженные коррозии.

  • Далее от ближайшей к жилому строению точки КЗ прокапывают канавку на ту же глубину, что была вырыта под металлосвязи (её ширина может быть чуть меньше, поскольку соединительная полоса делается цельной, не требующей проведения сварных работ);
  • Затем в подготовленную траншею укладывается полоса металла с типоразмером не менее 25х4 мм, которая впоследствии приваривается к штырю или перемычке (металлосвязи);
  • На заключительной стадии работ у самой стены дома уже проложенная металлическая полоса поднимается на высоту порядка 200 мм, где к ней на болт или сварку подсоединяется шина (провод), идущая на ГЗШ распределительного щитка (фото ниже).

Для подключения готового заземления в действующую цепь электроснабжения потребуется ознакомиться с существующими схемами организации заземления.

Ввод в дом

На шину заземления распределительной системы контур заводится с помощью стальной полосы с типоразмером 24х4 мм или же медной и гибкой проволоки сечением 10 мм². В отдельных случаях, специально оговариваемых в ПУЭ, для этого допускается применять алюминиевый провод сечением 16 мм² (смотрите рисунок ниже).

При возможности выбора между предложенными выше вариантами предпочтение отдаётся медному проводу, имеющему наиболее подходящие для выполнения поставленной задачи характеристики.

В заключительной части обзора обратим внимание пользователей на то, что сделать заземляющий контур своими руками не очень просто, поскольку при проведении этих работ необходимо строгое соблюдение требований ПУЭ. Для тех, кто полностью не уверен в своих силах, всегда имеется «запасной» выход – пригласить представителей организации, специализирующейся на изготовлении заземлений.

Что потребуется для заземления

Для самостоятельного обустройства системы заземления загородного жилого дома понадобятся следующие инструменты и материалы:

  • штыковая лопата;
  • кувалда;
  • комплект гаечных ключей;
  • сварочный аппарат;
  • перфоратор;
  • болгарка;
  • уголок 50х50 мм из нержавеющей стали (длиной 2 м);
  • медный провод сечением 6 мм²;
  • полоска из нержавейки 4х40 мм (ее длина равна расстоянию от крыльца жилого здания до места расположения контура заземления);
  • 3 металлические полоски (длина каждой – 120 см, минимальная толщина – 4 мм, ширина – 4 см);
  • болт М10 или М8.

На толщине электродов экономить не рекомендуется – от этого зависит надежность и срок эксплуатации заземляющей конструкции.

Видео

1305 ₽ Подробнее

435 ₽ Подробнее

Батарейки

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]