Мегаомметры (измерители сопротивления изоляции)


Сопротивление изоляции, физика процесса

Наиболее часто встречающимся видом измерения в моей практике является измерение сопротивление изоляции. Данный вид измерения можно производить на кабеле (до и после высоковольтных испытаний), обмотке статора турбогенератора, электродвигателе, трансформаторе, даже в релейной защите мегерить цепи приходится постоянно. В общем, на любом электрооборудовании, которое имеет изоляцию, необходимо следить за её величиной и выявлять возможные несоответствия для предотвращения возможных неблагоприятных для оборудования последствий.

Поговорим о физической модели сопротивления изоляции. Более подробно о классах и видах изоляции будет написано в отдельной статье. Уточним же, что факторами, портящими изоляцию являются токи, протекающие в оборудовании и сверхтоки (пусковые, токи кз). В этом материале я остановлюсь на схеме замещения изоляции. Это будет схема, состоящая из двух активных сопротивлений и двух емкостей. Значит, что мы имеем:

  • С1 — геометрическая емкость
  • С2- абсорбционная емкость
  • R1 – сопротивление изоляции
  • R2 – сопротивление, потери в котором вызываются абсорбционными токами

Зачем Вам это знать? Ну, я не знаю, возможно, покрасоваться перед не знающими эти основы людьми. Или же, чтобы понять характер прохождения постоянного тока через изоляцию.

Первая цепь состоит из емкости С1. Эта емкость называется геометрической, она характеризуется геометрическими характеристиками изоляции, её расположения относительно земли. Эта емкость разряжается мгновенно, при заземлении изоляции после испытания. Та самая бдыщ, искра при поднесении заземления к испытуемой фазе после опыта.

Вторая цепь имеет в своем составе два элемента – емкость С2 и активное сопротивление R2. Эта цепь имитирует потери при подаче на изоляцию переменного напряжения. R2 характеризует строение и качество изоляции. Чем более изоляция потрепана, тем меньшая величина R2. Емкость С2 называется абсорбционной емкостью. Эта емкость заряжается, при подаче постоянного напряжения, не мгновенно, а за время пропорциональное произведению R2 на С2. Чем лучше диэлектрические свойства изоляции, тем дольше будет заряжаться емкость С2, потому что величина R2 будет больше у здоровой изоляции. В общем, эта емкость отвечает на вопрос, почему после искры надо держать заземление еще пару минут на испытуемой жиле. Она разряжается медленно и заряжается не мгновенно.

Третья ветка состоит из активного сопротивления R3, которое характеризует ток утечки изоляции и потери. Ток возрастает при увлажнении изоляции, пропорционален площади изоляции и обратно пропорционален толщине изоляции. Вот такая электрическая модель изоляции.

Характеристики, которыми должен обладать прибор для проверки сопротивления изоляции

При провер

ке качества и текущего состояния изоляции используется специальное устройство, которое получило наименование мегомметра. Оно позволяет измерять показатели в миллионах Ом, что и послужило причиной для выбора подобного его названия.

Стандартный прибор для проверки сопротивления изоляции, который используется для проверки линий с рабочим напряжением до 1 кВ, должен работать с применением испытательного тока, напряжение которого будет равно соответственно 250-1000 Вольт.

Если же предполагается исследовать высоковольтные установки, измерение сопротивления изоляции должно производиться с применением напряжения 2500 Вольт. Кроме того, особенностью прибора должно быть наличие документов, подтверждающих государственную регистрацию данной модели, а также прохождение обязательной ежегодной поверки.

История развития мегаомметра

Поговорим про историю развития мегаомметров. Откуда взялось такое название? Вероятно из-за названия измеряемой величины. Кстати, также мегаомметр называют мегер, или говорят промегерить цепь. Знакомо? Оказывается, и возможно, вы это знали, это название происходит от названия древнейшей фирмы по производству измерительного оборудования под названием «Megger». Эта компания появилась еще в 19 веке, а первые тестеры выпускали еще в 1951 году.

Первые мегаомметры, тогда еще мегомметры, были с ручками. Ты крутишь ручку, вырабатывается постоянное напряжение, и ты производишь испытания. Крутить надо было с частотой 120 об/мин. Однако, долго крутить могли не все. Ведь измерения необходимо производить одну минуту, для определения коэффициента абсорбции. Поэтому наука шагнула вперед, и появились аналогичные мегаомметры, но с питанием от сети и кнопкой подачи напряжения. Держать кнопку куда удобнее, чем крутить ручку. Однако тут встает неудобство в том плане, что необходимо найти розетку.

Однако и на этом прогресс не остановился, и появились электронные мегаомметры. Они уже с подсветкой, не обязательно держать кнопку подачи напряжения на протяжении всего испытания, однако, при испытании кабеля, остаточная емкость может спалить прибор (ну я не проверял, но так говорят некоторые инженера).

Какие измерительные приборы могут применяться

На первый взгляд может показаться, что было бы логично для этой цели использовать мультиметр. Однако в большинстве случаев ток, который проходит через проводку, настолько мал, что этим измерительным прибором не получится его точно измерить. В таких случаях удобно воспользоваться мегаомметром, с помощью которого можно измерить напряжение и электроток. Эти приборы могут быть аналоговыми или цифровыми. На основании закона Ома по полученным данным определяется величина сопротивления.

Принцип работы прибора можно пояснить на примере электромеханического варианта мегаомметра.

Чтобы подать ток, используется ручной генератор (a). Фактически речь идёт о ручке, которую для получения энергии необходимо покрутить. При этом нужно, чтобы скорость вращения была не меньше двух оборотов в секунду. К стрелке прибора подсоединён аналоговый амперметр (b).

Шкала прибора (c) проградуирована таким образом, чтобы показывать величину сопротивления. В схеме используется несколько резисторов (d). Сколько их — зависит от модели прибора. Имеется переключатель шкалы измерений (е). При этом можно измерять сопротивление в Омах или мегаОмах. Имеются входные клеммы (f), к которым подключаются провода.

Одним из достоинств такого прибора является то, что он не нуждается в дополнительном питании, поскольку для измерений применяется ток, полученный с помощью ручного генератора. Однако при его использовании необходимо учитывать присущие ему недостатки:

  • Чтобы обеспечить нужную точность измерений, прибор должен оставаться неподвижным. Однако при вращении рукоятки этого добиться трудно.
  • На точность оказывает влияние то, насколько равномерно выполняют вращение рукоятки. Необходимо обеспечить подачу постоянного напряжения при измерении. Соблюдение этого условия не всегда возможно.
  • Замер сопротивления изоляции осуществить таким устройством в одиночку сложно. Поэтому с ним обычно работают вдвоем: один человек крутит ручку, второй непосредственно проверяет сопротивление изоляции кабеля или другого оборудования.

В приборе применяется нелинейная шкала, что отрицательно сказывается на точности измерений. В последующих моделях производители перешли от вращения ручки для получения тока к использованию источника электропитания. Это помогло избавиться от большинства недостатков электромеханического варианта прибора.

Большинство современных мегаомметров являются цифровыми. В их конструкциях активно применяются микросхемы. Использование современных микропроцессоров и других микросхем позволяет обеспечить относительно высокую точность измерений. При работе с цифровыми устройствами достаточно задать исходные данные и выбрать нужный режим работы. Их достоинствами являются компактность и большая функциональность.

Как правильно мегаомметр, мегометр, мегомметр, мегаометр или еще как?)

Внимание, говорю правду. Подробнее об этом писал вот тут, но повторюсь еще раз. Правильно прибор для измерения мегаОмов называется мегаомметр. Ранее он назывался мегомметр (например, в книге 1966 года он так и именуется). Новые времена, новые правила. Правильно называть его мегаомметр, так давайте же и будем использовать это название в своей электротехнической жизни. И если мегомметр — это название устаревшее, то прочие интерпретации являются просто неправильными и неграмотными. Хотя можно, например, старые приборы с ручкой, выпущенные в советском союзе называть мегомметры, а новые цифровые, например электронные типа Sonel именовать мегаомметрами. Но это моё личное мнение, скорее даже шутка, чем мнение.

Периодичность использования приборов для проверки сопротивления изоляции

Для установок, которые не имеют статуса повышенной опасности, применяется исследование, которое проводится не реже одного раза в 2 года – это позволяет периодически контролировать состояние изоляции, не допуская ее серьезного повреждения, ведущего к поражению током человека и распространению пожаров. Если же установка предназначена для хранения опасных веществ или обладает повышенной вероятностью возгорания, стоит объединить визуальный осмотр проводки и ее испытание, проводя их раз в полгода.

Исключением из правила являются квартиры, в которых размещены электрические плиты или иные мощные нагревательные приборы – они подвергаются проверке раз в год – она также совмещается с визуальным осмотром. Кроме того, прибор для проверки сопротивления изоляции может использоваться и чаще, если на территории объекта проводится капитальный ремонт.

Пример технического отчета


Назад

Вперед

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

Основные типы и марки приборов мегаомметров из моей практики (устройство и принцип работы)

Мегаомметр ЭСО-210

Начнем с простеньких. Итак, первые участники сегодняшнего парада – украинские приборы ЭСО 210/3 и ЭСО 210/3Г. Буква «Г» говорит о том, что прибор работает от внутреннего генератора и имеет ручку. Модель без ручки работает от сети 220В и от кнопки. Они невелики по размеру и удобны в пользовании. Это верные помощники энергетиков. Ими удобно мегерить любое электрооборудование. А еще можно взять после испытания один из концов и разземлять им, ибо концы с обеих сторон имеют металлические наконечники. В моделях с ручкой в качестве источника напряжения выступает генератор переменного тока, в моделях с кнопкой — трансформатор, преобразующий переменное напряжение в постоянное.

Значит, пройдемся по настройкам прибора. Прибором можно испытывать, подавая постоянное напряжение величиной 500, 1000 или 2500 Вольт. Показания появляются на стрелочной шкале, которая имеет несколько пределов, которые переключаются выключателем. Это шкала «I», «II» и «IIx10».

Шкала «I» — нижние цифры верхней шкалы. Отсчет идет справа налево. Значения от 0 до 50 МОм.

Шкала «II» — верхние цифры верхней шкалы. Отсчет идет слева направо. Значения от 50МОм до 10 ГОм.

Шкала «IIx10» — аналогична шкале «II», однако, значения от 500МОм до 100 ГОм.

В приборе также имеется нижняя шкала от 0 до 600 В. Эта шкала имеется в приборе ЭСО-210/3 и при не нажатом положении кнопки подачи напряжения показывает напряжение на концах. В общем, поднесли концы мегаомметра к розетке, и стрелка поднялась до 220В. Но только правильно подключить их надо на измерение напряжения, а не сопротивления изоляции. Один на молнию, а второй на Ux.

При подаче напряжения загорается красная лампочка на шкале, что сигнализирует о наличии напряжения на концах прибора.

Как подсоединить щупы прибора? У нас имеется три отверстия для присоединения щупов – экран, высокое напряжение и третий измерительный (rx, u). Вообще два щупа спарены и один из них подписан. Ошибиться внимательному человеку непросто.

Мегаомметр sonel mic-2510

Шагнем далее и остановим свой взор на мощном польском приборе под названием Sonel – мегаомметр mic-2510. Этот мегаомметр является цифровым. Внешне он очень симпатичный, в комплект входит сумка, в которую складываются щупы типа крокодилы (достаточно мощные и надежные) и втычные. Кроме того, в комплект входит зарядное устройство. Сам же прибор работает на батарейке, что достаточно удобно. Не требуется подключение к сети и не требуется вращение ручки, как у старых моделей отечественных мегаомметров. Также имеется лента, для удобного расположения на шее. Вначале это казалось мне не очень удобно, но в итоге к этому привыкаешь и осознаешь все достоинства. Кроме надежной батарейки к плюсам можно отнести возможность подачи напряжения без поддержания кнопки. Для этого вначале нажимаешь старт, потом «энтер» и всё – следи за показаниями и не подпускай никого под напряжение.

Этим прибором можно измерять следующие величины двухпроводным способом и трехпроводным. Трехпроводный способ используется для измерений, где необходимо исключить влияние поверхностных токов – трансформаторы, кабели с экраном.

Также прибором можно измерять температуру с помощью термодатчиков, напряжение до 600 вольт, низкоомное сопротивление контактов.

Шкала прибора имеет значения 100, 250, 500, 1000, 2500 Вольт. Это достаточно широкий диапазон, который может удовлетворить нужды инженеров при проведении самых различных испытаний. От коэффициента абсорбции, до коэффициента поляризации. Максимально измеряемое сопротивление изоляции, которое способен измерить прибор составляет 2000 ГОм — впечатляющая величина.

Коэффициент поляризации характеризует степень старения изоляции. Чем он меньше, тем более изоляция изношена. Коэффициент поляризации на 2500В и замеряем сопротивление изоляции через 60 и 600с или через 1 и 10минут. Если он больше двух, то всё хорошо, если от 1 до 2 – то изоляция сомнительна, если же коэффициент поляризации меньше 1 – время бить тревогу. Западные шеф-инженеры не приветствуют высоковольтные испытания, тем же АИДом, а рады провести мегер-тест на 5кВ или 2,5кВ с измерением данного коэффициента.

Коэффициент абсорбции это отношения сопротивления изоляции через 60 и 15 секунд. Этот коэффициент характеризует увлажненность изоляции. Если он стремится к единице, то необходимо поднимать вопрос о сушке изоляции. Более подробно о его величине для разного типа оборудования описано в нормах испытания электрооборудования вашей страны.

В процессе работы я встречался и с другими приборами, но именно эти два показывают, как далеко шагнул прогресс в процессе производства мегаомметров. У каждого из увиденных мною приборов есть свои плюсы и минусы.

Как выбрать тестер сопротивления изоляции

Принимая решение о наиболее подходящем тестере сопротивления изоляции для заданных условий применения, следует рассмотреть шесть областей. Необходимо изучить оборудование, которое подлежит испытанию, требования к испытательному напряжению, условия проведения испытаний, другие возможные виды применения, уровень квалификации лиц, использующих тестер, а также меры безопасности при проведении измерений данного тестера сопротивления изоляции.

Оборудование, которое подлежит испытанию

Во-первых, составьте список типичного оборудования, для которого, как вы ожидаете, потребуется выполнить измерение сопротивления изоляции. Запишите номинальное напряжение оборудования (указанное на паспортной табличке оборудования) и приблизительное количество измерений сопротивления изоляции, которое вы планируете выполнять в год. Номинальное напряжение поможет определить, какое испытательное напряжение потребуется от тестера. Примерное количество измерений сопротивления изоляции в год может вас удивить. Чем больше количество проводимых измерений, тем более важны такие свойства контрольно-измерительного прибора, как общее качество, долговечность и удобство.

Требования к напряжению

Выходное испытательное напряжение, подаваемое на оборудование, должно определяться на основании величины испытательного напряжения сопротивления изоляции постоянного тока, рекомендованного изготовителем. Если испытательное напряжение не указано, следует использовать принятые в отрасли характеристики. В следующей таблице приведены рекомендации Международной ассоциации электрических испытаний

Для проверки различных компонентов котельной установки можно использовать тестер сопротивления изоляции, например, данный Fluke 1555. (NETA). Убедитесь в том, что вы выбрали тестер сопротивления изоляции, который обеспечит подачу необходимого выходного испытательного напряжения. Не все тестеры сопротивления изоляции одинаковы: одни из них подают напряжение лишь до 1000 В постоянного тока, а другие могут подавать испытательное напряжение от 5000 В постоянного тока и выше.

Условия проведения испытаний и другие возможные виды применения

При выборе дополнительных свойств тестера полезно учитывать условия проведения испытаний и другие возможные виды применения для данного тестера сопротивления изоляции. Например, дополнительным преимуществом может стать возможность применения одного прибора для измерений сопротивления изоляции в качестве типового цифрового мультиметра (DMM). Необходимо убедиться в отсутствии напряжения во всех цепях и оборудовании до того, как тестер сопротивления изоляции будет подключен к оборудованию. Поэтому часто бывает неудобно перемещать одновременно DMM для испытания напряжения и тестер сопротивления изоляции к разным участкам.

Номинальное напряжение оборудованияМинимальное напряжение постоянного тока для проверки сопротивления изоляцииРекомендованное минимальное сопротивления изоляции, МОм
25050025
6001000100
1 0001 000100
5 0002 5001 000
15 0002 5005 000
Рекомендованные значения испытательного напряжения и минимальной изоляции. Международная ассоциация электрических испытаний (NETA) предоставляет характерные значения испытательного напряжения и минимальной изоляции для оборудования различного номинального напряжения, которые следует применять в случае недоступности данных изготовителя.

Оценивая условия проведения испытаний, следует задать себе следующие вопросы: «Будет ли данный тестер сопротивления изоляции использоваться для диагностики, профилактического техобслуживания или же и того, и другого?», «Где будет использоваться данный прибор – только в условиях цеха или же на всем предприятии?». Существуют различные тестеры сопротивления изоляции: крупногабаритные плохо подходят для транспортировки, компактные гораздо более удобны. Специалисты по обслуживанию систем ОВКВ не только диагностируют целостность изоляции, но и проверяют наличие открытых плавких предохранителей и неисправных конденсаторов. Техническим специалистам, которые часто проводят проверки напряжения, проверки конденсаторов, измерения температуры и сопротивления изоляции, удобнее использовать контрольно-измерительный инструмент, в котором будут сочетаться все эти функции. И такие контрольно-измерительные приборы существуют. Также следует учитывать необходимые свойства прибора в зависимости от конкретного типа испытания сопротивления изоляции, который будет выполняться. На самом деле, может возникнуть следующий вопрос: если необходимо выполнить всего одно простое испытание изоляции, зачем вообще покупать тестер сопротивления изоляции, ведь типовой мультиметр уже обладает способностью измерять сопротивление?. Чтобы найти ответ на этот вопрос и лучше понять характеристики, требующиеся от тестера сопротивления изоляции, необходимо понимать, что происходит в процессе измерения сопротивления изоляции, и какова цель соответствующего испытания.

Цель измерения сопротивления изоляции

Измерение сопротивления изоляции дает качественную оценку состояния изоляции проводника и внутренней изоляции различных единиц электрооборудования. Когда начинается испытание сопротивления изоляции, напряжение постоянного тока подается на проводник или оборудование. При этом произойдет частичная утечка тока из контрольно-измерительного прибора в проводник и на изоляцию. Данный ток называется емкостныйзарядныйток, и его можно наблюдать по шкале измерительного прибора. Когда зарядный ток только начинает накапливаться, показание сопротивления на шкале прибора будет иметь низкое значение. Это можно представить в виде электронов, которые начинают перетекать в изоляцию и сохраняться в ней. Чем больше тока утекает из комплекта испытательного оборудования, тем ниже показание сопротивления в МОм. Изоляция быстро становится заряженной, при этом измерительный прибор начнет показывать более высокое значение сопротивления в МОм — при условии качественной изоляции. Второй тип тока, подверженного утечке, называется током поглощения или поляризации. Объем тока поглощения зависит от степени загрязнения изоляции. Например, если в изоляции присутствует влага, то ток поглощения будет высоким, а значение сопротивления будет ниже. Однако при этом важно понимать, что на накопление такого тока поглощения уходит больше времени, чем для емкостного зарядного тока. Следовательно, тестер изоляции, используемый в течение слишком короткого времени, зафиксирует только емкостный зарядный ток и не будет показывать наличие загрязнений в изоляции. Наконец, ток, утекающий через поврежденную изоляцию в нетоковедущие металлические компоненты, называется током утечки. Этот тип тока чаще всего учитывается при измерении сопротивления изоляции. Однако для большей точности диагностики и техобслуживания также необходимо учитывать ток поглощения или поляризации. Некоторые тестеры сопротивления изоляции можно запрограммировать так, чтобы необходимые испытания проводились с учетом всех видов тока.

Измерение тока поляризации

Поскольку для накопления тока поляризации требуется больше времени, сеанс работы тестера сопротивления изоляции более длительный. Отраслевой стандарт для этого испытания составляет десять минут. Чтобы определить загрязнение и общее состояние изоляции, следует снять первое показание тестера сопротивления изоляции на первой минуте, а второе — на десятой минуте. Показание на десятой минуте делят на показание на первой минуте, чтобы получить показатель поляризации. В рамках программы регулярного технического обслуживания следует записывать значения обоих точечных показаний и значения показателя поляризации. Необходимо всегда выполнять сопоставление последних полученных показаний и предыдущих показаний. Показатель поляризации никогда не должен быть менее 1,0.

Измерение тока утечки

Все тестеры сопротивления изоляции показывают ток утечки и получают данные для расчета величины загрязнения изоляции. Но для промышленных условий следует рассматривать те тестеры, которые получают такие данные автоматически. Ток утечки можно определить, подавая испытательное напряжение на компонент, подлежащий испытанию, а затем, через минуту, снимая показание сопротивления. Это часто называют испытаниемсточечным показанием. Испытание с точечным показанием позволяет емкостному зарядному току стабилизироваться и является отраслевым стандартом для определения тока утечки в изоляции. Минимальные значения сопротивления изоляции в мегаомах должны быть получены на основании результатов испытания с точечным показанием.

Выбирайте из двух вариантов: несколько функций или одна? С каким сопротивлением вы работаете?

Инструменты «два в одном»Инструменты с одной функцией
Параметры проверки изоляции1587157715031507
Испытательное напряжение50 В, 100 В, 250 В, 500 В, 1000 В500 В, 1000 В500 В, 1000 В50 В, 100 В, 250 В, 500 В, 1000 В250 В — 5000 В250 В — 10 000 В
Диапазон значений сопротивления изоляцииот 0,01 МОм до 2 ГОмот 0,01 МОм до 600 ГОмот 0,01 МОм до 2000 ГОмот 0,01 МОм до 10 ГОмот 200 кОм до 1 ТОмот 200 кОм до 2 ТОм
Определение PI/DAR
Автоматическая разрядка
Тест с линейно нарастающим значением (на пробой)
Сравнение Норма/ Неисправность
Расчетное кол-во измерений сопротивления изоляции1000100020002000РазноеРазное
Предупреждение при напряжении в цепи > 30 В
Память
Пробник для дистанционных измерений
Ток проверки на целостность низкоомной цепи/ контура заземленияисточник 200 мА (разрешение 10 мОм)
ДисплейЦифровой ЖК-дисплейЦифровой ЖК-дисплей/ аналоговый дисплей
Удерж./блок
1577: напряжение перем./пост. тока, ток, сопротивление, звуковой сигнал для проверки целостности, фоновая подсветка Только 1587: температура (контакт), низкочастотный фильтр, емкость, тестирование диодов, частота, мин./макс.

Уровень квалификации

Качество любого контрольно-измерительного прибора высоко ровно настолько, насколько высок уровень квалификации и знаний того, кто применяет этот прибор и анализирует его показания. Выбирая тестер сопротивления изоляции, обязательно учитывайте квалификацию лиц, которые будут выполнять измерения сопротивления изоляции. Очевидно, что простота и ограниченные функции прибора являются преимуществом, если требования заданных условий применения минимальны, равно как и требуемый уровень квалификации. Нет ничего более обескураживающего, чем видеть дорогой контрольно-испытательный инструмент лежащим в чехле на полке лишь потому, что он слишком сложен для использования кем-либо в цехе. Однако подготовка к измерению сопротивления изоляции не является сложной задачей. Для этой цели предназначены инструкции и основные рекомендации от изготовителя. Для неквалифицированного персонала следует рассмотреть возможность обучения на рабочем месте методам надлежащего и безопасного использования тестеров сопротивления изоляции. Убедитесь в том, что приобретаемый вами тестер сопротивления изоляции будет отвечать требованиям конкретных условий применения к выходному испытательному напряжению и другим функциям. Затем проведите обучение для персонала, который будет выполнять соответствующие испытания.

Безопасность

Безопасность имеет первостепенное значение всегда, когда речь заходит о проведении испытаний и диагностики. Поскольку тестер сопротивления изоляции вырабатывает значительную величину напряжения постоянного тока, его никогда нельзя подключать к цепи, находящейся под напряжением. Кроме того, выходное напряжение тестера способно вызвать неисправность электрической цепи. Запрещается подключать тестер сопротивления изоляции к источникам электропитания, ПЛК, регулируемым электроприводам, системам бесперебойного питания, устройствам зарядки аккумуляторных батарей и другим твердотельным приборам. Некоторые тестеры сопротивления изоляции имеют встроенные системы оповещения, которые уведомят технического специалиста в случае наличия напряжения в цепи.

Подобно всем контрольно-испытательным приборам, тестеры сопротивления изоляции следует подбирать по номиналу в соответствии с условиями их применения, чтобы они соответствовали средеэксплуатации, и испытывать при участии сотрудников признанной на национальном уровне испытательной лаборатории. Если предполагается использование еще и в качестве мультиметра, то тестер сопротивления изоляции следует сертифицировать по определенной категории. Измерительные провода должны быть долговечными, а также пройти испытания и сертификацию.

Изоляция должна удерживать заряд значительного напряжения в течение определенного времени после завершения испытания сопротивления изоляции. Большинство тестеров автоматически снимают заряд с изоляции после испытания; но некоторые этого не делают. Данный аспект очень важно учитывать при выборе тестера сопротивления изоляции. Некоторые тестеры указывают уровни напряжения, а также значения сопротивления изоляции. На таких тестерах существует возможность отслеживать снижение уровня напряжения до нуля после отключения выходного испытательного напряжения. Некоторые изготовители рекомендуют оставить тестер сопротивления изоляции подключенным к контролируемой цепи или оборудованию после завершения испытания на период, до четырех раз превышающий продолжительность проведения испытания, чтобы гарантировать безопасную разрядку. Большинство технических специалистов подключают контролируемую цепь к заземлению после окончания испытания, чтобы убедиться в том, что заряд изоляции снят. Тщательно изучите функцию саморазряда прибора в процессе выбора тестера сопротивления изоляции.

Заключение

Выбор подходящего тестера сопротивления изоляции обеспечивает эффективность поиска и устранения неисправностей, а также точность и полноту заполнения документации по техническому обслуживанию. Составьте список оборудования, требующего измерения сопротивления изоляции, определите величины испытательного напряжения, необходимые для этого оборудования и изоляции, определите условия проведения испытаний, тщательно обдумайте особые функции, которые вам требуются, проверьте уровень квалификации специалистов, а также изучите защитные функции испытательного оборудования. Каждый тестер сопротивления изоляции представляет собой ценный инструмент для специалистов по системам обогрева, вентиляции и кондиционирования воздуха — но только в том случае, если это подходящий тестер сопротивления изоляции для данной задачи!

Как пользоваться мегаомметром

Как же производятся измерения сопротивления изоляции (самое популярное измерение, которое выполняют мегаомметром) у различного электрооборудования. Рассмотрим, как испытывать, на примере энергосистемы РБ. Хотя, нормы в принципе одни и те же, за минимальными различиями.

Замер сопротивления изоляции мегаомметром, прозвонка с помощью мегаомметра

Перед началом измерения необходимо проверить, что прибор рабочий, для этого необходимо произвести подачу напряжения при закороченных концах и замкнутых. При замкнутых мы должны получить «0», а в разомкнутом состоянии должны иметь бесконечность (так как мы меряем сопротивление изоляции воздуха). Далее сажаем один конец на землю (заземляющий болт, шина, заземленный корпус оборудования), а второй на испытываемую фазу, обмотку. Два человека производят испытания, один держит концы, а второй подает напряжение. Записывается показание через 15 секунд и через 60. По окончании заземляется жила, на которую подавалось напряжение и через минуту-другую (в зависимости от величины и времени подачи напряжения) снимаются концы и измерения производятся на другой жиле по аналогичной схеме.

Как же прозвонить что угодно с помощью мегаомметра, прозвонка это проверка на целостность цепи. Прозвонка – это первый прибор электрика, который он должен собрать сам из лампочки, батарейки и проводков. Как же прозвонить с помощью мегаомметра? Мегаомметр не совсем прозванивает, он показывает, что отсутствует связь между фазой и землей, то есть отсутствие замыкания обмотки на землю. Однако если подать большое напряжение, то вполне можно спалить обмотку реле или двигателя.

Замер сопротивления изоляции электродвигателей мегаомметром

Значит, подходим мы к электродвигателю, например это 380-вольтовый мотор какого-нибудь насоса. Снимаем крышку, отсоединяем питающий кабель. Далее подаем 500В и смотрим. Если в конце минуты сопротивление меньше 1МОм, значит, не соответствует нормам. Коэффициент абсорбции не нормируется для маленьких электродвигателей. Напряжение подается между одной фазой и землей. Две другие фазы соединяются с корпусом. По окончании испытания производится заземление испытанной жилы.

Замер сопротивления изоляции кабелей мегаомметром

Значит, имеем кабель. С одной стороны он, например, подключен к пускателю, а с другой стороны к электродвигателю или приводу, который пускает электродвигатель. Нам необходимо промегерить этот кабель. Мы отключаем его от пускателя и от электродвигателя. Ставим человека у электродвигателя, если он в другом помещении, чтобы не подпускал никого к открытым жилам, которые мы будем испытывать. Далее подаем напряжение между жилой и землей 2500 В в течение минуты. Величина сопротивления изоляции для кабелей напряжением до 1000В должна составлять не ниже 0,5 МОм. Для кабелей напряжением выше 1кВ величина сопротивления изоляции не нормируется. Если мегаомметр показывает ноль, значит, жила пробита и надо искать место повреждения и расстояние до дефекта. Также измеряется сопротивление изоляции между жилами. Или объединяют три жилы и на землю и если величина неадекватная, то необходимо уже измерять каждую жилу на землю по отдельности.

Также в конце испытаний необходимо до снятия провода, по которому подавалось напряжение, повесить заземляющий провод на него. Чем больше напряжение подавалось, тем дольше необходимо ждать. Для высоковольтных кабелей это время достигает нескольких минут.

Пошаговая инструкция измерения сопротивления изоляции мегаомметром

Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2. Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

  • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке.

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Безопасность при работе мегаомметром

Так как мегаомметр подает высокое напряжение, то он является потенциальным источником опасности как для тех, кто это напряжение подает, так и для тех, кто находится рядом с оборудованием, кабелем, на который это напряжение подается.

О чем же необходимо помнить, при работе с мегаомметром? Во-первых, необходимо правильно подсоединять концы к прибору, во-вторых надо надежно закреплять концы, по которым подается напряжение к электрооборудованию. Также не стоит забывать про заземление испытываемого оборудования, как до измерения, так и по окончании для снятия остаточного заряда.

Нормативы

В результате проведения измерений получают фактическое значение сопротивления изоляции проводов. Его необходимо сравнить с нормативными данными. Чтобы понять, каким именно документом нужно пользоваться в конкретном случае, надо знать, какие существуют нормативы. Следует учитывать, что предельные значения, ими предусмотренные, могут существенно различаться. Существуют нормы сопротивления изоляции для:

  • Силовых или сигнальных кабелей, используемых в различных условиях.
  • Силовых электроустановок, предназначенных для промышленной эксплуатации.
  • Бытовых приборов, оснащенных сетевым шнуром.

Проверка электрического сопротивления изоляции зависит от напряжения, присутствующего в электросети. При этом надо учитывать, какая модель оборудования используется. Перед тем как проверить, следует ознакомиться с соответствующими документами, в которых указываются нормы сопротивления изоляции провода или кабеля. Далее приводится список наиболее распространенных ситуаций, для которых указывается допустимое сопротивление изоляции:

  • При использовании электрических плит сопротивление изоляции — не меньше 1 МОм.
  • Если кабель проложен в местности, где климатические условия можно считать нормальными, минимальное сопротивление изоляции составляет 0.5 МОм.
  • Для изоляции электрооборудования, потребляющего напряжение до 1000 В, предельное сопротивление равно 1 МОм.
  • Если питающее напряжение электроприбора находится в пределах 100–380 В, то ограничение равно 0.5 МОм.
  • В тех случаях, когда питающее напряжение не превышает 50 В, сопротивление изоляции должно быть не менее 0.3 МОм.
  • Для кабелей и проводов, используемых в щитовых установках, норма сопротивления изоляции составляет 1 МОм.

Фокусы с мегаомметром

Про фокусы с мегаомметром могу только отметить, что есть у нас один работник, которого мы мегерили на 500 вольт, тут, как он говорит главное держать концы плотно и не отпускать. Внимание!!! Не советую вам это повторять !!!. Зрелище было стремное конечно. А теоретически ток небольшой и термическое воздействие не напрягает.

В общем, желаю вам удачи в вашей работе с мегаомметром, и будьте внимательны, ведь наша профессия не только очень интересная, но и достаточно опасная. ТБ превыше всего!!!

Подробнее про измерение Rx кабеля мегаомметром

Так же можно ознакомиться и с мультиметром

Как проводится проверка

Проведение замеров сопротивления изоляции в большинстве случаев осуществляется с целью проверки соединительных проводов и кабелей. Если они подвергаются различным воздействиям, особенно важно быть твёрдо уверенным в том, что сопротивление изоляции соответствует требованиям безопасности.

Измерение проводится на основе закона Ома. При этом к изоляции прикладывается определённое напряжение, а затем измеряется протекающий через неё ток. Для вычисления сопротивления используется формула закона Ома: Rиз = U/I.

Измерение сопротивления изоляции выполняется не только с целью контроля безопасности электросети, но и при проведении регулярного обслуживания. Замеры сопротивления изоляции элементов электропроводки необходимы в тех случаях, когда изоляция остаётся неповреждённой. Если же она отсутствует или в определённых местах имеются порезы провода или другие повреждения, то проводить измерение в этот момент нет смысла. Сначала требуется отремонтировать провод или заменить его на исправный.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]