Замеры сопротивления изоляции электропроводки и их периодичность измерения


Опасность поражения электрическим током людей, порча электротехники, дополнительная нагрузка на сеть и короткое замыкание с вероятностью возгорания – далеко не редкость даже при вполне исправной внешне электропроводке. Причиной этому является истончение и потеря электроизоляционных качеств у оболочки проводников. Разберем, какие меры безопасности необходимо предпринять в таком случае, что такое замеры сопротивления изоляции, периодичность их проведения, почему возникает утечка тока и каковы могут быть ее последствия, по каким причинам ухудшается изоляция, какие методы и приборы применяются и как выглядит инструкция по проведению измерений.

Своевременная проверка сопротивления изоляции позволяет избежать аварии в электросети Источник remkip.ru

Проверка: испытание или измерение?

На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают – испытание электрической прочности изоляции и измерение сопротивления изоляции.

Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования установок для испытания кабелей повышенным напряжением. Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.

При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром (доступны мегомметры с диапазоном до 999 ГОм).

Проведение измерений

Надёжность изоляции определяется в несколько шагов:

  1. Электрик «ЛАБСИЗ» осматривает электроцепь. Видимые нарушения изолирующего слоя, открытые отрезки проводов сразу фиксируются в протоколе. Исследуются все элементы: кабели, контакты, заземления.
  2. Обесточивается проверяемый контур. На время испытаний отключаются приборы, лампы выкручиваются из патронов. Выключатели питания переводятся в положение «Отключено». Это нужно, чтобы чувствительная техника не перегорела при подаче на линию сильных токов.
  3. Проверяется отсутствие в цепи напряжения. Специалисты «ЛАБСИЗ» применяют чувствительные вольтметры, исключающие наличие постороннего тока.
  4. На линию подаётся напряжение. Проводится замер сопротивления изоляции, выключателей, светильников, розеток. Исследования параметров изолирующего слоя проводятся между всеми фазами и пофазно. Отдельно делаются измерения сопротивления между фазой и заземлением. Периодичность фиксирования данных — раз в 60 секунд.
  5. Контур освобождается от ёмкостного заряда. Для этого применяется компактный заземлитель. Подключать бытовую технику до снятия напряжения нельзя.

Проводить исследования и составлять технический отчёт должен квалифицированный электрик. Документ, подготовленный специалистом «ЛАБСИЗ», отвечает требованиям закона, может предъявляться при официальных проверках.

Типовые причины неисправности изоляция

Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.

Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.

Электрические нагрузки

В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.

Механические нагрузки

Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.

Химические воздействия

Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.

Напряжения, связанные с колебаниями температуры:

В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.

Загрязнение окружающей среды

Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.

В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.

Внешние загрязнения:

В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.

Принцип измерения сопротивления изоляции и влияющие на него факторы

Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.

На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.

Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:

  • Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
  • Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
  • Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.

На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.

Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.

Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.

Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.

Влияние температуры

Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.

Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.

Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)

Особенности выполнения измерений

Для большинства электроустановок и линий электропередач установленный производителем срок службы в номинальных условиях эксплуатации составляет не более 30-40 лет. На практике условия эксплуатации значительно отличаются, что приводит к быстрому снижению рабочего ресурса электрической изоляции. Постепенное разрушение и старение электрической изоляции будет хорошо прослеживаться в случае регулярного замера её величины сопротивления.

Стоимость замера сопротивления изоляции значительно ниже убытков вследствие возможного аварийного режима электрооборудовании. При этом пострадать может не только материальное имущество, но и люди. По этой причине ПТЭЭП строго регламентирует случаи, когда обязательно проводят диагностику состояния диэлектрических свойств изоляции:

  • После капитальных и текущих ремонтов электрооборудования различного предназначения.
  • Подключение к электрической сети нового электрооборудования.
  • Выполнение предписаний Ростехнадзора или МЧС РФ.
  • Профилактические испытания электрооборудования, периодичность которых устанавливает принятая у заказчика система ТОиР.

В качестве основного прибора для измерения величины сопротивления изоляции используют мегомметр с уровнем напряжения 1000 В и 2500 В.

Методы тестирования и интерпретация результатов

Кратковременное или точечное измерение

Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.

Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.

На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.

В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.

Резкое падение в точке B указывает на повреждение изоляции.

В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.

Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)

Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.

Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.

Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.

Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.

Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.

Показатель поляризации (PI)

При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.

Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.

Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.

PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение PI (нормы) Состояние изоляции
Проблемное
От 2 до 4 Хорошее
> 4 Отличное

Коэффициент диэлектрической абсорбции (DAR)

Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:

DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение DAR (нормы) Состояние изоляции
Неудовлетворительное
Нормальное
>1,6 Отличное

Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)

Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.

Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.

Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.

Метод испытания рассеиванием в диэлектрике (DD)

Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.

Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.

Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:

DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)

Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.

DD (нормы) Состояние
> 7 Очень плохое
От 4 до 7 Плохое
От 2 до 4 Сомнительное
Нормальное

Внимание: Данный метод измерения зависим от температуры, поэтому каждая попытка тестирования должна выполняться при стандартной температуре или, по крайней мере, температура должна фиксироваться вместе с результатом теста.

Тестирование изоляции с высоким сопротивлением: использование гнезда G на мегомметре

При измерении значений сопротивления изоляции (выше 1 ГОм) на точность измерений могут повлиять токи утечки, протекающие по поверхности изоляционного материала через имеющиеся на ней влагу и загрязнения. Значение сопротивления больше не является высоким, и поэтому пренебрежимо малым по сравнению с сопротивлением оцениваемой изоляции. Для устранения снижающей точность измерения изоляции поверхностной утечки тока на некоторых мегомметрах имеется третье гнездо с обозначением G (Guard). Это гнездо шунтирует измерительную цепь и повторно вводит поверхностный ток в одну из точек тестирования, минуя цепь измерения (смотрите рисунок ниже).

При выборе первой схемы, без использования гнезда G, одновременно измеряется ток утечки i и нежелательный поверхностный ток I1, поэтому сопротивление изоляции измеряется неверно.

Однако при выборе второй схемы измеряется только ток утечки i. Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно.

Гнездо G необходимо соединить с поверхностью, по которой протекают поверхностные токи, и которая не относится к таким изоляторам, как изоляционные материалы кабелей или трансформаторов. Знание возможных путей протекания испытательных токов через тестируемый элемент имеет решающее значение для выбора места соединения с гнездом G.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома для участка цепи ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) — мегаомметры старого образца.

  • Цифровые (электронные) – современные измерительные устройства.

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

  • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
  • На отображаемые данные влияет равномерность вращения динамо-машины.
  • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
  • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Нормы испытательного напряжения для кабелей/оборудования

Рабочее напряжение кабеля/оборудования Нормы испытательного напряжения постоянного тока
От 24 до 50 В От 50 до 100 В постоянного тока
От 50 до 100 В От 100 до 250 В постоянного тока
От 100 до 240 В От 250 до 500 В постоянного тока
От 440 до 550 В От 500 до 1000 В постоянного тока
2400 В От 1000 до 2500 В постоянного тока
4100 В От 1000 до 5000 В постоянного тока
От 5000 до 12 000 В От 2500 до 5000 В постоянного тока
> 12 000 В От 5000 до 10 000 В постоянного тока

В приведенной выше таблице показаны рекомендованные нормы испытательного напряжения в соответствии с рабочими напряжениями установок и оборудования (значения взяты из руководства IEEE 43-2000).

Кроме того, эти значения задаются для электрических приборов в самых разнообразных местных и международных стандартах (IEC 60204, IEC 60439, IEC 60598 и т.д.).

Во Франции, например, стандарт NFC15-100 предусматривает значения испытательного напряжения и минимального сопротивления изоляции для электроустановок (500 В постоянного тока и 0,5 МОм при номинальном напряжении от 50 до 500 В).

Однако вам настоятельно рекомендуется обратиться к изготовителю кабеля/оборудования, чтобы узнать их собственные рекомендации по требуемому испытательному напряжению.

Преимущества «ЛАБСИЗ»

Компания проводит измерения в Москве и области. Чтобы заказать услугу:

  • оставьте заявку на сайте;
  • ответьте на звонок консультанта;
  • подпишите договор — в нём указаны цена на замеры сопротивления изоляции, дата начала работ.

Специалист выезжает на место после подписания договора. На все виды испытаний даётся гарантия. Цена замера изоляции определяется по единому прайсу. Напишите нам — предотвратите короткое замыкание уже сегодня!

Безопасность при тестировании изоляции

Перед тестированием

A. Чтобы испытательное напряжение не было приложено к другому оборудованию, имеющему электрическое соединение с тестируемой цепью, испытание должно проводиться на отключенной, не проводящей электрический ток установке.

B. Убедитесь, что цепь разряжена. Ее можно разрядить, замкнув накоротко выводы оборудования и/или замкнув их на землю на определенное время (смотрите время разряда).

C. Если тестируемое оборудование находится в огнеопасной или взрывоопасной среде, необходима специальная защита, поскольку, если изоляция повреждена, при разряде изоляции (до и после испытания), а также во время тестирования могут возникать искры.

D. Из-за наличия напряжения постоянного тока, величина которого может быть достаточно высокой, рекомендуется ограничить доступ другого персонала и надевать средства индивидуальной защиты (например, защитные перчатки), предназначенные для работы на электрооборудовании.

E. Используйте только те соединительные кабели, которые подходят для проводимого испытания; убедитесь, что кабели находятся в хорошем состоянии. В лучшем случае неподходящие кабели приведут к ошибкам измерения, но гораздо важнее, что они могут быть опасными.

После тестирования

К концу испытания изоляция накапливает значительную энергию, которую необходимо сбросить до выполнения любых других операций. Простое правило безопасности заключается в том, чтобы предоставить оборудованию возможность разряжаться в течение времени, в пять раз превышающего время зарядки (время последнего теста). Для разрядки оборудования можно накоротко замкнуть его выводы и/или соединить их с землей. Все изготовленные компанией Chauvin Arnoux мегомметры оборудованы встроенными цепями разрядки, которые автоматически обеспечивают требуемую безопасность.

Результаты работы по замерам сопротивления изоляции

Периодические электроизмерения сопротивления позволяют вовремя оценивать состояние изолирующей оболочки и при необходимости принимать меры по частичной замене проводки, которые, в свою очередь, исключают поломки оборудования и возможность возгорания в помещении. Также проверка требуется для надзорных органов. Например, Ростехнадзор, при отсутствии технического отчета и протоколов с результатами измерений, накладывает на предприятие ответственность согласно статье 9.11 КоАП РФ. Кроме того, протоколы результатов измерений могут потребовать инспекторы Государственной жилищной инспекции.

Следует знать, что юридически значимыми считаются протоколы, которые составляет электроизмерительная лаборатория с собственным свидетельством о регистрации в Ростехнадзоре, то есть такая, как«МОСЭНЕРГОТЕСТ».

После того, как специалисты электролаборатории проведут измерения сопротивления и оформят все результаты необходимым образом, сотрудник«МОСЭНЕРГОТЕСТ» представит заказчику технический отчет электролаборатории. В него будут входить не только протоколы с результатами тестирования сопротивления изолирующей оболочки кабеля и проводов, но и дефектная ведомость с замечаниями и рекомендацию по устранению недочетов, а также копия свидетельства о регистрации лаборатории.

Если у вас еще есть вопросы по поводу работы лаборатории«МОСЭНЕРГОТЕСТ», пишите нам в специальной форме обратной связи на сайте или звоните, а также связывайтесь с нами посредством электронной почты. Желательно, чтобы свои требования вы озвучили сразу при обращении в нашу компанию – это позволит нам оценить примерные объемы работ и предоставить вам смету на их исполнение.

Часто задаваемые вопросы

Результат моих измерений – x МОм. Это нормально?

Какое должно быть сопротивление изоляции — на этот вопрос нет единого ответа. Точный ответ на него могут дать производитель оборудования или соответствующие стандарты. Для низковольтных установок минимальным значением можно считать значение 1 МОм. Для установок или оборудования с более высоким рабочим напряжением можно использовать правило, определяющее минимальное значение 1 МОм на кВ, в то время как рекомендации IEEE, касающиеся вращающихся машин, определяют минимальное сопротивление изоляции (n + 1) МОм, где n – рабочее напряжение в кВ.

Какие измерительные провода следует использовать для подключения мегомметра к тестируемой установке?

Используемые на мегомметрах провода должны иметь спецификации, подходящие для выполняемых измерений с точки зрения используемых напряжений или качества изоляционных материалов. Использование несоответствующих измерительных проводов может привести к ошибкам измерения или даже оказаться опасным.

Какие меры предосторожности следует принимать при измерении высокого сопротивления изоляции?

При измерении высоких значений сопротивления изоляции в дополнение к указанным выше правилам безопасности необходимо соблюдать следующие меры предосторожности.

  • Используйте специальное гнездо G (Guard) (описывается в специальном разделе выше).
  • Используйте чистые, сухие провода.
  • Прокладывайте провода на расстоянии друг от друга и без контакта с любыми объектами или с полом. Это позволит ограничить возможность возникновения токов утечки в самой измерительной линии.
  • Не касайтесь проводов и не перемещайте их во время измерения, чтобы избежать возникновения вызывающих помехи емкостных эффектов.
  • Для стабилизации измерения выждите необходимое время.

Почему два последовательных измерения не всегда дают одинаковый результат?

Применение высокого напряжения создает электрическое поле, которое поляризует изоляционные материалы. Важно понимать, что для возвращения изоляционных материалов после завершения тестирования в состояние, в котором они находились до испытания, потребуется значительное время. В некоторых случаях на это может потребоваться больше времени, чем указанное выше время разрядки.

Как протестировать изоляцию, если я не могу отключить установку?

Если невозможно отключить питание тестируемой установки или оборудования, мегомметр использовать нельзя. В некоторых случаях можно провести тестирование без снятия напряжения, используя для измерения тока утечки специальные клещи, но этот метод гораздо менее точен.

Утечка тока в новых проводниках и ее последствия

Возникновение тока утечки происходит как в старой, так и новой проводке. В первом случае причиной является естественное разрушение оболочки – ввиду завершения срока службы. Во втором случае оснований может быть намного больше.

Смотрите также: Каталог компаний, что специализируются на электротехнических работах любой сложности

Повреждения имеют следующий механический характер:

  1. В ходе монтажа – при фиксации скобками, продевании через гофру, прокладывании в штробу.
  2. При неправильной зачистке изоляционного слоя.
  3. В момент закрепления в щитке, розетке, распредкоробке.
  4. В следствие неосторожных отделочных работ.

Снижение сопротивления изоляционной оболочки приводит к появлению такого явления, как утечка тока. В результате электрический ток с проводника начинает проникать на электропроводящие части приборов, конструкций, сооружений, так или иначе связанные с землей. Образуется своего рода альтернативная электросхема. Только в отличие от нормальной, работающей для дома, она только потребляет электроэнергию, а также приводит к нестабильности первой и высокому риску таких серьезных последствий, как пожар или поражение током домочадцев.

Совет! Проверку сопротивления изоляции проводов и кабелей в своем доме, независимо от рекомендаций по периодичности, указанной в нормативной документации, необходимо проводить как минимум 2 раза. Первый раз проводники нужно проверять сразу после монтажа, второй – после выполнения внутренней отделки.

Как выбрать измеритель сопротивления изоляции (мегомметр)?

При выборе измерителя сопротивления изоляции необходимо задать следующие ключевые вопросы:

  • Какое максимальное испытательное напряжение необходимо?
  • Какие методы измерения будут использоваться (точечные измерения, PI, DAR, DD, ступенчатое изменение напряжения)?
  • Какое максимальное значение сопротивления изоляции будет измеряться?
  • Как будет подаваться питание на мегомметр?
  • Каковы возможности хранения результатов измерений?

Нормы сопротивления изоляции для электрических цепей и установок

Нормативные показатели по допустимому сопротивлению изоляции у электроустановок вводятся отдельно для каждого электротехнического объекта отдельно. Требования к этому показателю существенно отличаются для таких типов оборудования, как:

  1. Силовой или сигнальный кабели, прокладываемые в различных условиях эксплуатации.
  2. Действующие промышленные электроустановки с рабочей проводкой.
  3. Бытовые приборы, имеющие внутреннюю разводку и оснащенные сетевым шнуром.

Основной показатель, из величины которого исходят при нормировании допустимого сопротивления изоляции – действующее в контролируемой цепи напряжение. Причем учитывается не только его абсолютное значение, но и тип питания (однофазное или трехфазное). Ниже приводится перечень некоторых электротехнических устройств и цепей с указанием соответствующего им нормы сопротивления изоляции:

  • кабельные проводки, расположенные на местностях и объектах без отклонений климатических условий от нормальных – 0,5 МОм;
  • стационарные электрические плиты –1 МОм;
  • щитовые с расположенными в них электропроводками и кабелями –1 МОм;
  • электротехнические приемники, работающие от напряжений до 50 Вольт – 0,3 МОм;
  • электромоторы и агрегаты с питающим напряжением 100-380 Вольт – не менее 0,5 МОм.

И, наконец, согласно ПУЭ для любых устройств, включаемых в электрические линии с действующим напряжением до 1 кВ, этот показатель не может быть менее 1 МОм. Определить, какое должно быть сопротивление защитной оболочки эксплуатируемого оборудования поможет изучение сопроводительной документации на конкретный образец.

Примеры измерений сопротивления изоляции

Измерение изоляции на электрической установке, электрооборудовании

Измерение изоляции на вращающейся машине (электродвигатель)

Измерение изоляции на электроинструменте

Измерение изоляции на трансформаторе

Измерение сопротивления изоляции трансформатора производят следующим образом:

a. Между высоковольтной обмоткой и низковольтной обмоткой и землей

b. Между низковольтной обмоткой и высоковольтной обмоткой и землей

c. Между высоковольтной обмоткой и низковольтной обмоткой

d. Между высоковольтной обмоткой и землей

e. Между низковольтной обмоткой и землей

Когда нужно производить проверку сопротивления изоляции

Диэлектрическую проверку всех цепей питания обязательно производят в ходе пуско-наладочных работ. Протокол измерения сопротивления изоляции – одно из оснований для разрешения эксплуатации объекта. Специалисты лаборатории тщательно проверяют все цепи питания, определяют значения сопротивления монтажа. Полученные измерения дают реальную картину качества всех кабельных работ.

Состояние изоляции постоянно меняется, на ее значение могут влиять условия эксплуатации, выполняемые на объекте работы, возможные аварийные ситуации, перегрузка электроустановок. Поэтому ответственное за электрохозяйство лицо (главный энергетик, главный инженер) должен составить график периодической проверки, учитывая собственные документы электробезопасности, требования завода-изготовителя оборудования. Согласно требованиям ПТЭЭП, провести замеры сопротивления изоляции нужно:

  1. Особо опасные помещения. Проверка производится не реже 1 раза в год. Сведения о том, какие объекты можно отнести к этой категории можно взять из ПУЭ. Обычно это электрощитовые, чердаки, технические этажи, подвалы и помещения, где установлены котлы и бойлеры. Точный список опасных помещений (по степени поражения электрическим током) должен быть на каждом предприятии. Можно недорого заказать эту услугу у специалистов электроизмерительной лаборатории. Список помещений должен совпадать с проектной документацией, планами БТИ. Затем отдельным приказом по предприятию устанавливается особая периодичность именно для этих объектов.
  2. Обычны по степени опасности помещения. Те объекты, которые не вошли в список особо опасных, считаются обычными. В них работу можно производить с периодичностью не реже 1 раза в 3 года. Однако после любого вмешательства в работу устройств с заменой монтажа, кабелей – нужно провести внеочередную проверку сопротивления диэлектрической оболочки проводов.
  3. Объекты особого назначения. К ним можно отнести помещения общественного питания, химчистки, медицинские и образовательные учреждения. В них, согласно требованиям НТД, проведение замеров сопротивления изоляции следует производить не реже 1 раза в год, а для помещений особой опасности и того чаще – 1 раз в полгода.

Самостоятельно определить категорию помещений и периодичность замеров сопротивления изоляции кабеля в Москве достаточно сложно – нужно пользоваться комплексом нормативных документов (ПУЭ, ПТЭЭП, НТД) и специальными таблицами, поэтому надежнее обратиться в электроизмерительную лабораторию.

Выбираем приборы

Посмотреть приборы для проверки изоляции высоковольтных кабелей.
См. также:

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]