Преобразователь тока в напряжение
Преобразователь тока в напряжение (или сокращенно I-U преобразователь) — это схемное решение, позволяющее преобразовывать выходной токовый сигнал источника в напряжение.
Так же его называют усилитель — преобразователь сопротивления. Такое название в технической литературе было дано за то, что простейший преобразователь тока в напряжение — это резистор.
Вся магия преобразования происходит по закону дедушки Ома. Ток iвх протекая через резистор R вызывает на нем падение напряжение Uвых. Величина этого напряжения прямо пропорциональна произведению сопротивления резистора и входного тока. Пожалуй формулой все звучит даже проще:
Uвых = R × iвх
Основной недостаток использования одного резистора состоит в его ненулевом сопротивлении. Это обстоятельство становится серьезной проблемой, когда источник не в состоянии обеспечить необходимый уровень напряжения на резисторе. Результатом буду просадки напряжения на выходе.
Еще больше сопротивление сказывается на работе преобразователя, если у источника тока малый выходной рабочий диапазон. К таким источникам относится, например, фотодиод. Его выходной ток составляет единицы мкА.
В случае же ЦАПа, особенно высококачественного, использование резистора для преобразования предпочтительнее. Почему и зачем читайте в статье Резистор для ЦАП с токовым выходом. Это обусловлено некоторыми фазовыми проблемами схем, которые будут рассмотрены. К счастью для нас, источникам вроде фотодиода фазовые искажения безразличны.
Принцип работы
Преобразователь напряжения 12/220В HP-1200
Основное требование, определяющее принцип работы преобразователей напряжения – возможность передать на выход полезную мощность с минимальными потерями (обеспечить максимальный КПД). Для этого в них нередко используются экономичные с точки зрения потерь модули, например, электронные инверторы. Электрический преобразователь напряжения, построенный по трансформаторной схеме – наиболее удобен для рассмотрения принципа работы. Суть его функционирования состоит в следующем:
- на вход устройства потенциал поступает с генератора переменного напряжения или подобного ему источника тока;
- схожий по форме сигнал снимается с выхода трансформатора (с его вторичной обмотки);
- при необходимости переменное выходное напряжение сначала выпрямляется специальным диодным блоком, а затем стабилизируется.
Добиться нужной эффективности от такой схемы очень сложно, поскольку в обмотках трансформатора теряется часть передаваемой мощности (из-за теплового рассеивания).
Чтобы получить от устройства высокий КПД, на выходе трансформатора устанавливаются ключевые схемы, работающие в экономичном режиме. При их работе, основанной на скоростном переключении транзисторов из закрытого состояния в открытое, потери мощности в обмотках существенно снижаются.
В преобразователях напряжения, рассчитанных на работу с высоковольтными источниками питания, традиционно используется явление самоиндукции. Она реализуется в выходных ферритовых сердечниках при резком прерывании тока в первичной обмотке. В качестве такого прерывателя используются все те же транзисторы, а получаемое на выходе импульсное напряжение затем выпрямляется. Такие схемы позволяют получать высокие потенциалы порядка нескольких десятков кВ. Они используются в цепях питания уже устаревших электронно-лучевых трубок, а также в телевизионных кинескопах. В этом случае удается получать неплохой КПД (до 80%).
Схема преобразователя ток-напряжение на ОУ
Схема преобразователя тока в напряжение, совсем не нова, но проверенна и безотказна. В общем виде она выглядит следующим образом:
Ток сигнала iвх втекает в инвертирующий вход. Поскольку входной ток идеального ОУ равен нулю, то весь входящий ток поступает на резистор R цепи обратной связи. Этот ток создает на резисторе падение напряжения по закону все того же Ома.
Как результат ОУ будет стараться поддерживать на сопротивлении нагрузки RН напряжение, пропорциональное величине входного тока. Коэффициент усиления схемы в, таком случае, имеет размерность сопротивления. Что еще раз объясняет советское название усилитель-преобразователь сопротивления:
K = Uвых ÷ iвх = R
Преобразователи постоянного напряжения в переменное
Эти устройства называют DC/AC‑инверторами. Они могут применяться как отдельная аппаратура или входить в состав источников бесперебойного питания и систем преобразования электроэнергии. Формирование переменного напряжения осуществляется с помощью транзисторов и ШИМ. Периодическое высокочастотное открывание/закрывание транзисторов в электросхеме обеспечивает изменение направление движения тока и получение синусоиды.
Важно не только то, как работает инвертор напряжения, но и какую топологию формирования синусоидального сигнала он использует. Есть два основных варианта:
Топология «полумост» со сквозной нейтралью. Она отличается минимальным количеством силовых транзисторов и достаточно простой схемой. К недостаткам относится необходимость применения двухполярного источника электропитания, удвоенное число высоковольтных конденсаторов. Этот вариант используют обычно для не очень мощных нагрузок (0,5-1 кВт).
Мостовая топология. Наиболее распространенная схема в силовых преобразователях. Характеризуется повышенной надежностью, не требует большой входной емкости, обеспечивает минимальные пульсации на транзисторах. К недостаткам относится повышенная сложность драйверов и увеличенное число транзисторов.
Преобразователь для заземленного источника
Рассмотрим несколько схем преобразователя тока в напряжение на ОУ, подходящие для любого случая. Начнем со схемы преобразователя для фотодиода.
Направление протекания тока показано стрелкой, и для данного случая величина выходного напряжения составит:
Uвых = − iвх × R
Знак минус появляется из-за выбранного направления протекания тока фотодиода. (Указано стрелкой на схеме выше)
На этой схеме так же показан дополнительный резистор в 1 МОм, с неинвертирующего(+) входа ОУ на землю. Схема останется работоспособной и без этого резистора, а вход операционного усилителя в таком случае заземляется напрямую.
Однако имея резистор в 1 МОм в цепи обратной связи, на каждый 1 мкА входного тока на выходе будет создан 1 Вольт напряжения. При таком коэффициенте усиления (миллион раз) резистор желателен из-за неидеальности операционных усилителей.
Преобразователь тока в напряжение используют и с источниками сигнала, подключенными к шине питания. Такая схема часто применяется с элементами вроде фототранзисторов. Фототранзистор потребляет (пропускает) ток, под действием внешнего источника света, положительной шины питания.
Области применения
Сфера применения многозонных преобразователей напряжения очень обширна. Они традиционно используются в следующих целях:
- в линейных устройствах для распределения и передачи электроэнергии;
- для проведения таких ответственных технологических операций, как сварка, термическая обработка и им подобных;
- при необходимости электроснабжения нагрузочных цепей в самых различных областях техники.
В первом случае вырабатываемая на электростанциях ЭДС повышается с помощью этих устройств с 6-24 кВ до 110-220 кВ – в таком виде ее легче «перегонять» по проводам на дальние расстояния. На районных подстанциях уже другие трансформаторные устройства обеспечивают ее снижение сначала до 10 (6,3) кВ, а затем – до привычных 380 Вольт.
При обслуживании технологического оборудования преобразователи напряжения применяются в качестве электротермических установок или сварочных трансформаторов.
В промышленности
Самая обширная область применения – обеспечение качественным питанием следующих промышленных образцов потребителей:
- аппаратуры, работающей в линиях автоматического управления и контроля;
- устройств телекоммуникации и связи;
- широкого спектра электроизмерительных приборов;
- специального радио- и телевизионного оборудования и тому подобное.
Преобразователь тока в напряжение для незаземленного источника
Такой преобразователь отличается наличием второго токочувствительного резистора в цепи прохождения сигнального тока, который заземлен. Схема симметричного преобразователя ток-напряжение это подобие дифференциального усилителя.
В следствии падения напряжения так же и на заземленном резисторе, потенциал входа ОУ падает ниже потенциала земли, а на выходе устанавливается напряжение:
Uвых = −2 × iвх × R
Симметричный преобразователь тока в напряжение — пример операционной схемы, которой необходим незаземленный (плавающий) источник сигнала. Таким источником может послужить все тот же фотодиод. При этом фотодиод может быть вынесен за пределы платы. Для еще большей минимизации помех, желательно использовать экранированный кабель, экран которого должен быть соединен с землей.
Понижение напряжения постоянного тока
В практике питания бытовых приборов существует масса примеров работы электрических устройств от постоянного тока. Но номинал рабочего напряжения может существенно отличаться, к примеру, если из 36 В вам нужно получить 12 В, или в ситуациях, когда от USB разъема персонального компьютера нужно запитать прибор от 3 В вместо имеющихся 5 вольт.
Для снижения такого уровня от блока питания или другого источника почти вполовину можно использовать как простые методы – включение в цепь дополнительного сопротивления, так и более эффективные – заменить стабилизатор напряжения в ветке обратной связи.
Рис. 1. Замена резистора или стабилитрона
На рисунке выше приведен пример схемы блока питания, в котором вы можете понизить вольтаж путем изменения параметров резистора и стабилитрона. Этот узел на рисунке обведен красным кругом, но в других моделях место установки, как и способ подсоединения, может отличаться. На некоторых схемах, чтобы понизить напряжение вы сможете воспользоваться лишь одним стабилитроном.
Если у вас нет возможности подключаться к блоку питания – можно обойтись и менее изящными методами. К примеру, вы можете понизить напряжение за счет включения в цепь резистора или подобрать диоды, второй вариант является более практичным для цепей постоянного тока. Этот принцип основан на падении напряжения за счет внутреннего сопротивления элементов. В зависимости от соотношения проводимости рабочей нагрузки и полупроводникового элемента может понадобиться около 3 – 4 диодов.
Рис. 2. Понижение постоянного напряжения диодами
На рисунке выше показана принципиальная схема понижения напряжения при помощи диодов. Для этого они включаются в цепь последовательно по отношению к нагрузке. При этом выходное напряжение окажется ниже входного ровно на такую величину, которая будет падать на каждом диоде в цепи. Это довольно простой и доступный способ, позволяющий понизить напряжение, но его основной недостаток – расход мощности для каждого диода, что приведет к дополнительным затратам электроэнергии.