Как определить полярность электролитических конденсаторов, где плюс и минус?


По внешнему виду

Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.

Итоги и практические рекомендации

Нет особого смысла покупать сложное и дорогостоящее оборудование для того, чтобы произвести тестирование конденсаторов. Вполне возможно применять с данной целью обычный мультиметр с подходящим диапазоном. Самое важное — это грамотно и правильно использовать его возможности.

Хотя мультиметр не является узкоспециализированным прибором и его возможности ограничены, для диагностических мероприятий и ремонта огромного количества популярных радиоэлектронных приборов, этого вполне хватит.

Дополняйте, пожалуйста, своим комментариями расположенный ниже блок, публикуйте фотографии и задавайте вопросы любой сложности по предложенной теме статьи. Расскажите о своём опыте, как вы проводили диагностику конденсаторов на эффективность и работоспособность. Делитесь рекомендациями и полезной информацией, которая может пригодится пользователям сайта.

Также вам может быть интересно как соединять провода между собой.

Что будет если перепутать полярность

Если ошибиться с полярностью электролитического конденсатора – он обязательно выйдет из строя! Сопротивление конденсатора при обратной полярности небольшое, поэтому через его цепь потечет значительный ток. Это вызовет быстрый перегрев, закипание электролита, пары которого разорвут корпус. Такой же эффект вызовет и увеличение рабочего напряжения выше указанного на корпусе. Чтобы исключить нехорошие последствия, верхняя крышка корпуса делается профилированной, с канавками-углублениями на верхней крышке.

Будет интересно Чем отличается пусковой конденсатор от рабочего?

При повышенном давлении внутри крышка расходится по этим канавкам, выпуская пары наружу. Следует отметить, что электролитические конденсаторы, использующиеся в компьютерных блоках питания и материнских платах, могут выйти из строя после нескольких лет эксплуатации в нормальном рабочем режиме. Дело в том, что в конденсаторах из-за наличия электролита постоянно протекают электрохимические процессы, усугубляющиеся тяжелым режимом работы и повышенной температурой.

Параллельное соединение конденсаторов

Несколько конденсаторов могут включаться последовательно или параллельно. При параллельном соединении ёмкости всех конденсаторов суммируются. При последовательном соединении общая ёмкость батареи конденсаторов меньше самой маленькой, так как складываются величины, обратные емкости. Но зато напряжение, при котором можно работать такая батарея, будет больше рабочего напряжения одного конденсатора.

Интересный вопрос: почему бы не поставить один конденсатор емкостью, эквивалентной емкости батареи конденсаторов?

Дело в том, что у параллельно соединенных конденсаторов суммарное ESR будет гораздо меньше, чем ESR одного конденсатора. Потому что при параллельном соединении сопротивлений общее сопротивление уменьшается.

Какими ещё параметрами характеризуются конденсаторы?

Вообще говоря, таких параметров много. У нас тут не нобелевская лекция, поэтому ограничимся только необходимым минимумом, который пригодится в практической деятельности. Номинальное рабочее напряжение. Конденсатор может использоваться в режимах, когда напряжение на нём не превышает рабочего.

Чем больше рабочее напряжение электролитического конденсатора при равной ёмкости, тем больше его габариты.

Рабочее напряжение на керамических и других конденсаторах может явно не указываться или не указываться вообще — особенно, если конденсатор имеет маленькие размеры.

Полная информация о всех параметрах конденсатора имеется в соответствующем даташите (справочных данных), который имеется на сайте фирмы — производителя.

ESR (Equivalent Series Resistance) — эквивалентное последовательное сопротивление. Выводы конденсатора и их контакты с обкладками имеет не нулевое, хотя и очень небольшое сопротивление. Это сопротивление активное, поэтому, в соответствии с законами Ома и Джоуля-Ленца, при протекании тока на этом сопротивление будет рассеиваться тепло.

Поэтому на электролитических конденсаторах обычно указывает максимальную рабочую температуру.

В компьютерных блоках питания и материнских платах используются специальные конденсаторы — с пониженным ESR.

Величина ESR может для таких конденсаторов быть в пределах от сотых до десятых долей Ома.

Величиной ESR можно узнать по специальной маркировке (чаще всего 2 латинских буквы) на корпусе конденсатора. Соответствие этих букв реальным значениям ESR указывается в даташите.

Особенности проверки конденсаторов разных типов

Существует множество типов радиодеталей, которые отличаются материалом диэлектрика, пластин, видом электролита, поэтому они имеют разные способы диагностики рабочего состояния.

Для проверки годности керамического конденсатора задают наибольший предел измерения омметра. Признаком исправности будет измеренное сопротивление не менее 2 МОм. При других значениях деталь меняют.

Для испытания танталового конденсатора выбирают наибольший предел измерения в омах. При сопротивлении равном 0 его меняют. Перед проверкой электролитического конденсатора большой ёмкости и высокого напряжения необходима максимальная разрядка. Остаточное напряжение испортит прибор.

SMD конденсаторы неполярные, поэтому их проверяют как керамические, определяя годность в режиме омметра.

У плёночного конденсатора с коротким замыканием показание будет равно 0. При внутреннем обрыве аналоговый мультиметр покажет бесконечность, цифровой – 1.

Проверка без выпаивания

Исследовать радиодеталь не выпаивая, нельзя, показание будет неверным от влияния других элементов схемы.Вносит погрешность в измерение соседство трансформаторов, индуктивности, предохранителей. Параллельное или последовательное соединение их будет увеличивать или уменьшать итог тестирования. Для правильной оценки состояния конденсатор выпаивают.

Без выпаивания можно приблизительно определить работу участка схемы. Для этого прикасаются щупами к ножкам детали и измеряют сопротивление. Если показание увеличивается, затем уменьшается – деталь исправна.

Необходимо помнить, что контроль конденсаторов возможен только до максимальной величины 200 мкФ. Электроизмерительные приборы не измеряют большие параметры. При значении менее 0,25 мкФ конденсаторы проверяют только на короткое замыкание.

Полярность светодиода как определить плюс и минус

При использовании светодиодов в создании различных схем их необходимо установить правильно. Пайка в большинстве случаев проблем не создает, определить полярность немного сложнее, если нет опыта работы с тестирующим оборудованием.

Как определить полярность тестером мультиметром

Проще всего проверить светодиод мультиметром. При подключении щипов в режиме «прозвонка» к электродам можно получить 2 результата: светодиод светится и выдает на экран число, зависящее от цвета излучения, или показывает очень большое число. При первом варианте можно сделать вывод, что источник света исправен и подключен к мультиметру правильно (плюс к плюсу, минус к минусу).

Второй метод использования мультиметра – переключение на проверку сопротивления. Если красный щуп касается плюса, черный – минуса, на экране появляется значение в пределах 1600–1800.

Если у мультиметра есть отсек PNP, для определения полярности светодиода требуются отсеки E (эмиттер – «+») и C (коллектор – «-»). Источник света светится, если катод вставлен в «C», анод – в «E».

Если используется отсек мультиметра NPN, светодиод светиться, если ножки меняются местами.

По внешнему виду

В производстве светодиодов используются разные корпусы. Широко применяются DIP-элементы с цилиндрическим корпусом различного диаметра. Изготавливается множество SMD для поверхностного монтажа. Свехяркие источники света отличаются размерами корпусов и кристаллов. Опытный радиолюбитель определяет катод и анод по внешним признакам.

  • длиннее ножка анода;
  • силуэт в колбе меньше у анода, форма катода напоминает флажок;
  • у источника с мощностью более 1 Вт на ножке анода есть маркировка «+».
  • катод обозначается срезом на корпусе;
  • теплоотвод на обратной стороне корпуса располагается ближе к аноду;
  • пиктограмма «П» к аноду обращена верхней полкой, верх пиктограммы «Т» обращен к катоду.

Некоторые производители наносят на корпуса SMD-светодиодов определенные символы, которые позволяют определить полярность.

Важно! Существуют SMD, изготовленные по другому принципу (некоторые производители не соблюдают стандарты). На сложных моделях всегда имеются обозначения «+» и «−»

Любая неполупроводниковая радиолампа (стабилитрон) состоит из анода, катода и сетки. Катодом всегда служит разогретый электрод, изготовленный в форме цилиндра. Электроны при термоэмиссии двигаются к аноду (коробочке или пластине) – вольфрамовому проводнику с большим сопротивлением.

Для определения работоспособности стабилитрона используется мультиметр в режиме прозвона. Если положительный щуп приложить к аноду, отрицательный – к катоду, стабилитрон откроется, на экране будет видно значение напряжения. Если поменять щупы местами, стабилитрон закроется, на экране появится цифра 1.

Путем подачи питания

Чтобы использовать тестирование с помощью подключения к питанию, требуется источник с напряжением 3-6 В и резистор с любой мощностью на 300–470 Ом. Резистор припаивается к одной ножке мультиметра. Затем нужно коснуться щупами выводов. Светодиод светится, если плюсовой щуп касается анода, минусовой – катода.

Технической документации

Большой объем информации (размеры, цоколевку, электрические параметры) о полупроводниковом источнике света предоставляют производители в технической документации. Она выдается при покупке больших партий электронных элементов вместе с другой сопроводительной документацией. Если покупать один или несколько светодиодов, продавец техдокументацию не предоставит.

Если известна марка изделия, данные можно найти в справочниках и сети интернет.

На схеме полупроводниковый источник света обозначается пиктограммой в форме треугольника, на вершине которого начерчена линия, перпендикулярная основанию. Вершина направлена на катод. Для обозначения светодиода используются 2 стрелки над изображением.

Как определить, где анод, а где катод?

При определении катода и анода необходимо в первую очередь ориентироваться на направление тока, а не на полярность источника питания. Несмотря на то, что эти понятия тесно связаны с полярностью тока, они больше обусловлены направлениями векторов электричества.

Например, в аккумуляторах, при перезарядке, происходит изменение ролей катода и анода. Это связано с тем, что во время зарядки изменяется направление электрического тока. Электрод, выполнявший роль электрода при работе аккумулятора в режиме источника питания во время зарядки выполняет функции катода и наоборот – катод превращается в анод.

На рис. 1, изображено процесс электролиза, при котором происходит перемещение анионов (отрицательных ионов) и катионов (положительных ионов). Анионы устремляются к аноду, а положительные катионы – в сторону катода.

Рис. 1. Электролиз

При электролизе перемещаются носители зарядов разных знаков, однако, по определению, анодом является тот электрод, в который втекает ток. На рисунке анод подсоединён к положительному полюсу источника тока, а значит, ток условно втекает в этот электрод.

Обратите внимание на рисунок 2, где изображена схема гальванического элемента. Рис

2

Гальванический элемент

2. Гальванический элемент

Рис. 2. Гальванический элемент

Плюсовой вывод источника тока является катодом, а не анодом, как можно было бы ожидать. При внимательном изучении принципа работы гальванического элемента можно понять, почему анод является отрицательным полюсом.

Обратите внимание на рисунок строения гальванического источника тока. Стрелки (вверху) указывают направление движения электронов, однако направлением тока условно принято считать перемещение от плюса к минусу

То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления

Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места

То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления. Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места.

При определении позиций анода и катода в радиоэлектронных элементах пользуются справочными материалами.

На назначение электродов указывает:

  • форма корпуса (рис. 3);
  • длина выводов (для светодиодов) (рис. 4);
  • метки на корпусах приборов или знака анода;
  • различная толщина выводов диода.

Рис. 3. Диод

Рис. 4. Электроды светодиода Определение назначений выводов у полупроводниковых диодов можно определить с помощью измерительных приборов. Например, все типы диодов (кроме стабилитронов) проводят ток только в одном направлении. Если вы подключили тестер или омметр к диоду, и он показал незначительное сопротивление, то к положительному щупу прибора подключен анод, а к отрицательному – катод.

Если известен тип проводимости транзистора, то с помощью того же тестера можно определить выводы эмиттера и коллектора. Между ними сопротивление бесконечно велико (тока нет), а между базой и каждым из них проводимость будет (только в одну сторону, как у диода). Зная тип проводимости, по аналогии с диодом, можно определить: где анод, а где катод, а значит определить выводы коллектора или эмиттера (см. рис. 5).

Рис. 5. Транзистор на схемах и его электроды

Что касается вакуумных диодов, то их невозможно проверить путем измерения обычными приборами. Поэтому их выводы расположены таким образом, чтобы исключить ошибки при подключении. В электронных лампах выводы точно совпадают с расположением контактов гнезда, предназначенного для этого радиоэлемента.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен — для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие — на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП — батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

Электролитический конденсатор является странным электронным компонентом, сочетающим в себе свойства пассивного элемента и полупроводникового прибора. В различие от обыкновенного конденсатора, он является полярным элементом.

Инструкция

1.

У электролитических конденсаторов отечественного производства, итоги которых расположены радиально либо аксиально, для определения полярности обнаружьте знак плюса, расположенный на корпусе. Тот из итогов, ближе к которому он размещен, является позитивным. Аналогичным образом промаркированы и некоторые ветхие конденсаторы чешского производства.

2.

Конденсаторы коаксиальной конструкции, у которых корпус рассчитан на соединение с шасси; обыкновенно предуготовлены для применения в фильтрах анодного напряжения устройств, исполненных на лампах. От того что оно является правильным, минусовая обкладка у них в большинстве случаев выведена на корпус, а плюсовая – на центральный контакт. Но из этого правила могут быть и исключения, следственно в случае всяких сомнений поищите на корпусе прибора маркировку (обозначение плюса либо минуса) либо, при отсутствии таковой, проверьте полярность методом, описанным ниже.

3.

Нестандартный случай появляется при проверке электролитических конденсаторов типа К50-16. Такой прибор имеет пластмассовое дно, а маркировка полярности помещена прямо на нем. Изредка знаки минуса и плюса расположены таким образом, что итоги проходят прямо через их центры.

4.

Конденсатор устаревшего типа ЭТО непосвященный может принять за диод. Обыкновенно полярность на его корпусе указана методом, описанным в шаге 1. При отсутствии маркировки знайте, что итог, расположенный со стороны утолщения корпуса, подключен к правильной обкладке. Ни в коем случае не разбирайте такие конденсаторы – в них содержатся ядовитые вещества!

5.

Полярность современных электролитических конденсаторов привозного производства, самостоятельно от их конструкции, определяйте по полосе, расположенной рядом с минусовым итогом. Она нанесена цветом, контрастным к цвету корпуса, и является прерывистой, т.е. как бы состоит из минусов.

6.

Для определения полярности конденсатора, не имеющего маркировки, соберите цепь, состоящую из источника непрерывного напряжения в несколько вольт, резистора на один килоом и микроамперметра, объединенных ступенчато. Всецело разрядите прибор, и лишь после этого включите в эту цепь. Позже полной зарядки прочитайте показания прибора. После этого отключите конденсатор от цепи, вновь всецело разрядите, включите в цепь, дождитесь полной зарядки и прочитайте новые показания. Сравните их с предыдущими. При подключении в положительной полярности утрата приметно поменьше.

В автомагазинах продаются свинцово-кислотные аккумуляторные батареи прямой (ими комплектуются все отечественные автомобили) и обратной полярности (устанавливаются на некоторых машинах зарубежного производства). Перед покупкой батареи, нужно верно определить ее полярность

.

Вам понадобится

  • Вольтметр

Инструкция

1.

Срок службы всякий аккумуляторной батареи лимитирован и составляет, как водится, не больше пяти лет. Отработав положенное время, непременно наступает момент замены энергоблока. И если у обладателей автомобилей отечественного производства задача заключается в том, дабы предпочесть АКБ соответствующей емкости и отдать предпочтение определенной торговой марке, то владельцам привозных машин нужно узнать перед покупкой
полярность
аккумулятора.

2.

Для достижения поставленной задачи батарея извлекается из аккумуляторного гнезда и располагается таким образом, что при визуальном осмотре сверху ее клеммы обязаны быть внизу. Обратите внимание, что одна из них немножко тоньше иной (она минусовая).

3.

Если минусовая клемма расположена на аккумуляторе слева (внизу), то батарея обратной полярности.

4.

В тех случаях, когда больше тонкая клемма справа – АКБ прямой полярности.

5.

Дабы окончательно удостовериться в правильности определения полярности аккумулятора, присоедините к нему вольтметр. При этом алый щуп прибора снимает напряжение с толстой клеммы, а черный – с тонкой. Показание на шкале без знака «минус» подтверждает исследуемые параметры АКБ.

Видео по теме

Обратите внимание!

Установка аккумулятора ненадлежащей полярности в автомобиль пугает тем, что к его клеммам не получиться присоединить кабели.

Всякий диод меняет свою проводимость в зависимости от полярности приложенного к нему напряжения. Расположение же электродов на его корпусе указано не неизменно. Если соответствующая маркировка отсутствует, определить, какой электрод подключен к какому итогу, дозволено и самосильно.

Инструкция

1.

Первым делом, определите
полярность
напряжения на щупах того измерительного прибора, которым вы пользуетесь. Если он универсальный, переведите его в режим омметра. Возьмите всякий диод, на корпусе которого обозначено расположение электродов. На этом обозначении «треугольник» соответствует аноду, а «полосочка» – катоду. Испробуйте подключать щупы к диоду в разных полярностях. Если он проводит ток, значит, щуп с правильным потенциалом подключен к аноду, а с негативным – к катоду. Помните, что
полярность
в режиме измерения сопротивления на стрелочных приборах может отличаться от той, которая указана для режимов измерения напряжения и тока. А вот на цифровых приборах она традиционно идентична во всех режимах, но осуществить проверку все равно не помешает.

2.

Если проверяется вакуумный диод с прямым накалом, раньше каждого, обнаружьте у него сочетание штырьков, между которыми ток проходит само­стоятельно от полярности подключения измерительного прибора. Это – нить накала, она же является и катодом. По справочнику обнаружьте номинальное напряжение накала
диода
. Подайте на нить накала непрерывное напряжение соответствующей величины. Щуп прибора, на котором находится негативный потенциал, подключите к одному из штырьков нити накала, а позитивным щупом прикасайтесь по очереди к остальным итогам лампы. Найдя штырек, при прикосновении щупа к которому отображается сопротивление, меньшее бесконечности, сделайте итог, что это – анод. Сильные вакуумные диоды с прямым накалом (кенотроны) могут иметь два анода.

3.

У вакуумного
диода
с косвенным накалом подогреватель изолирован от катода. Обнаружив его, подайте на него переменное напряжение, действующее значение которого равно указанному в справочнике. После этого среди остальных итогов обнаружьте два таких, между которыми при определенной полярности проходит ток. Тот из них, к которому подключен щуп с позитивным потенциалом, является анодом, противоположный – катодом. Помните, что многие вакуумные диоды с косвенным накалом имеют по два анода, а некоторые – и два катода.

4.

Полупроводниковый диод имеет каждого два итога. Соответственно, прибор к нему дозволено подключить каждого двумя методами. Обнаружьте такое расположение элемента, при котором ток через него проходит. Щуп с позитивным потенциалом при этом окажется подключенным к аноду, а с негативным – к катоду.

На 1-й взор, обозначать на динамике полярность

нет смысла, от того что подается на него переменное напряжение. Но когда в акустической системе несколько динамических головок, их нужно включать синфазно. Принято обозначать на итогах головки такую
полярность
, при которой диффузор перемещается вперед.

Инструкция

1.

Изготовьте для проверки динамиков особый пробник. Для этого возьмите обычный карманный фонарь на основе лампы накаливания. Удалите из него выключатель, а взамен последнего подключите два щупа. У них неукоснительно обязаны быть изолированные ручки, от того что в момент отключения напряжения на итогах головки появляется напряжение самоиндукции. Проверьте
полярность
напряжения на щупах при помощи контрольного вольтметра. Нанесите на них соответствующие обозначения. Удостоверитесь, что если щупы замкнуть, лампа светится.

2.

Отключите усилитель и каждый стереокомплекс (в том числе и из розетки). Отключите оба итога динамической головки от остальных цепей акустической системы. Подключите щупы к итогам головки, не касаясь ни последних, ни металлических частей щупов. В данный момент наблюдательно глядите на диффузор. Если при подключении он перемещается наружу, а при отключении – вовнутрь,
полярность
положительная. Если же отслеживается обратная картина, поменяйте
полярность
подключения щупов, позже чего повторите проверку. После этого обозначьте на каркасе динамической головки несмываемым фломастером
полярность
, соответствующую полярности подключения щупов.

3.

Осуществите аналогичную операцию в отношении остальных динамиков в предела одной акустической системы. Самостоятельно от того, как они подключены (напрямую либо через кроссовер), подключите их синфазно таким образом, дабы красному контакту на задней стенке колонки соответствовали плюсовые итоги головок.

4.

Так же проверьте и при необходимости переделайте вторую акустическую систему. Закрыв корпуса обеих колонок, проверьте, верно ли они подключены к усилителю. На кабеле, которым осуществляется такое соединение, имеются особые красные метки. Во всех случаях проводник с меткой подключайте к красной клемме, а проводник без метки – к черной.

5.

Включите стереокомплекс. Сравните его звучание с тем, которое имело место до переделки.

Видео по теме

Казалось бы, для чего обозначать полярность на динамике стереосистемы? На него чай подается переменное напряжение. Впрочем если акустических головок в системе несколько, включать их надобно синфазно. На итогах той либо другой головки обозначают то значение полярности, при котором диффузор перемещается в направлении вперед.

Вам понадобится

  • – карманный фонарь с лампой накаливания;
  • – щупы с изолированными ручками;
  • – несмываемый маркер;
  • – вольтметр.

Инструкция

1.

Дабы определить полярность динамика, сделайте устройство-пробник. Возьмите обыкновенный карманный фонарь с лампой накаливания. Отсоедините от него выключатель, взамен которого надобно будет подключить два щупа. Щупы обязаны быть с изолированными ручками, так как, когда напряжение отключается, на итогах головки возникает напряжение самоиндукции.

2.

С поддержкой контрольного вольтметра осуществите проверку полярности на щупах, позже чего нанесите на щупы соответствующие обозначения. Когда щупы замыкаются, лампа должна гореть.

3.

Отключите усилитель и вообще всю акустическую систему, выньте шнур из розетки. После этого отключите от остальных цепей системы итоги динамической головки. Дальше подключите оба щупа к итогам головки, чураясь касания итогов и металлических частей самих щупов. И на диффузор глядите наблюдательно. Если он при подключении перемещается наружу, и вовнутрь – при отключении, значит, полярность положительная. Если картина отслеживается противоположная, необходимо поменять полярность подключения щупов, а после этого повторить проверку.

4.

На каркасе головки обозначьте полярность, желанно несмываемым маркером, которая соответствует полярности подключения щупов.

5.

Проделайте те же самые операции и для остальных динамиков акустической системы. И не значимо, через кроссовер они подключены либо напрямую, необходимо их подключить синфазно так, дабы плюсовые итоги головок соответствовали контакту красного цвета на задней стенке собственно колонки.

6.

Проверьте и переделайте, если надобно, вторую акустическую систему. Проверьте, закрыв корпуса 2-х колонок, положительно ли осуществлено их подключение к усилителю. На осуществляющем такое соединение кабеле дозволено подметить красные метки. В любом случае, проводник с меткой должен подключаться к клемме красного цвета, а тот, что без метки – к клемме черного цвета.

7.

Включите стереосистему и сравните звучание, которая она издает сейчас, с тем звучанием, что она издавала до вашего вмешательства.

Медики и психофизиологи давным-давно обратили внимание на тот факт, что тот либо другой цвет идентично влияет на всех людей. Скажем, алый цвет оказывает возбуждающее влияние, фиолетовый беспокоит, синий успокаивает, а зеленый создает чувство стабильности в жизни.

Самый знаменитый эксперт, тот, что занимался постижением воздействия цветов на душевное состояние людей, Макс Люшер. Он выделил четыре психотипа людей, базируясь на их цветовых предпочтениях.

Цветовые типы личности

Красный психотип

Люди, отдающие предпочтение красному, дюже энергичны, их дозволено сравнить с «нерушимым мотором». Они, как водится, непрерывно находятся в возбуждении и любят это состояние. В итоге напряжения они дюже зачастую испытывают нервозное истощение и раздражение.

Желтый психотип

Людям этого типа дюже главна их личная воля и вероятность самореализации. Они любят эксперименты, не страшатся изменений в жизни. Из-за своей автономности они зачастую ощущают себя неудовлетворительно любимыми и утраченными.

Синий психотип

Для этих людей дюже значимым в жизни является мирный темп жизни, они любят покой и умиротворенность. Из-за того, что они выбирают «ровное существование», без сюрпризов и незапланированных действий, эти люди зачастую тоскуют и испытывают отчужденность, находясь рядом с людьми, которые их любят.

Зеленый психотип

Люди этого склада нрава любят руководить обстановкой и собой. Они заблаговременно просчитывают становление событий, знают, что хотят получить и что готовы за это отдать. Спонтанность не входит в список их качеств. Для этих людей значимо, как они выглядят в глазах окружающих и они воспользуются всякий вероятностью, дабы повысить свой ранг.

Видео по теме

Обратите внимание!

Всецело разряжайте конденсатор перед проверкой и прикосновением к его итогам. При сборке либо ремонте конструкции неизменно устанавливайте прибор только в верной полярности, напротив допустим его обрыв.

Электрические конденсаторы – обычные составляющие любой импульсной, электрической или электронной схемы. Главная их задача – это накапливать заряд, поэтому они называются пассивными устройствами. Электрические конденсаторы состоят из двух металлических электродов в виде пластин (обкладок). Между ними размещается диэлектрик, толщина которого намного меньше самих размеров обкладок.

Как проверить неполярный конденсатор мультиметром

Эксплуатация радиоэлектроники подразумевает и устранение неисправностей в оборудовании. Поэтому, рассматривая неполярные емкости, нельзя абстрагироваться от темы диагностики их работоспособности.

Как показывает практика, в большинстве случаев причиной выхода из строя емкости является пробой, что приводит к уменьшению сопротивления утечки. То есть, элемент становится, практически, проводником. Такую неисправность часто можно определить по внешнему виду емкости (см. рисунок 5), если это не помогло, потребуется простейший цифровой или аналоговый мультиметр.

Рисунок 5. «Выгоревшая» (пробитая) емкость

С помощью прибора следует замерить сопротивление утечки, в рабочих элементах оно должно быть бесконечно большим. Проверка выполняется следующим образом:

  • необходимо полностью демонтировать деталь, или отпаять один из ее выводов, чтобы исключить влияние других элементов цепи на показания мультиметра;
  • устанавливаем на приборе режим прозвонки или измерения сопротивления (выбираем максимальный предел);
  • подключаем щупы к выходным контактам (рисунок 6), при этом стараемся не прикасаться к ним, в противном случае прибор покажет сопротивление кожи;

Рисунок 6. Подключение емкости к измерительному прибору

Проводим измерение, если емкость исправна на экране отобразится единица (рисунок 7), что свидетельствует о бесконечно большом сопротивлении между обкладками.

К сожалению, данным способом можно только проверить емкость на пробой, для определения внутреннего обрыва такой метод не подходит. В этом случае отличить поломанную деталь от работоспособной, можно измерив ее емкость, некоторые модели мультиметров имеют такую функциональную возможность. Принцип проверки практически не отличается от тестирования на пробой, за исключением того, что прибор необходимо перевести в режим измерения емкости.

Измерение емкости конденсатора

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Назначение диода

Полупроводниковые диодные элементы присутствуют практически во всех бытовых электроприборах. Светодиоды используются в производстве осветительных приборов и LED-телевизоров.

Полупроводниковые диоды классифицируются по:

  • материалу кристалла (кремний, селен, фосфид индия, германий);
  • размерам (микросплавные, точечные, плоские);
  • технологии производства p-n перехода (диффузионные, сплавные, эпитаксиальные);
  • частоте (низкочастотные, высокочастотные, сверхвысокочастотные, импульсивные);
  • сфере использования (выпрямительные и специальные).

Диоды-выпрямители предназначены для преобразования переменного напряжения в постоянное. В схему устанавливаются в виде диодного моста, который можно использовать в радиоаппаратуре, блоке питания, зарядном устройстве.

Выпрямители делятся на:

  • слаботочные (до 0,3 ампер);
  • средней мощности (0,3-10 ампер);
  • силовые (10-100 000 А, до 6 кВ).

Полупроводниковые специальные диодные элементы:

  • варикапы (емкостные диоды);
  • тиристоры (с дополнительным выводом для переключения в открытое состояние);
  • симисторы (ток пропускают в 2-х направлениях);
  • стабилитроны (стабилизируют напряжение от 2 вольт в состоянии пробоя, отдельный вид стабиисторы (нормисторы) для напряжения 0,7-2 вольт);
  • диоды Шоттки (для низковольтных схем в паре со стабилитроном);
  • туннельные диодные элементы (с низким отрицательным сопротивлением);
  • динисторы (не содержат управляющих электродов, монтируются в переключатели);
  • магнитодиоды (вольт-амперные характеристики меняются в магнитном поле, монтируются в датчики движения, контрольные приборы);
  • фотодиоды (преобразуют энергию света в электрическую);
  • светодиоды (превращают электрическую энергию в свет).

При помощи батарейки

Если источник питания отсутствует, можно попытаться определить расположение выводов от гальванического элемента, но следует иметь в виду особенности такой проверки:

  • батарейка может выдавать напряжение, недостаточное для открытия p-n перехода.
  • бытовые гальванические элементы имеют небольшую мощность, и выдаваемый ток нагрузки невелик – он зависит от начальной мощности батарейки и от остаточного заряда.

В таблице приведены параметры некоторых отечественных светодиодов. Очевидно, что распространенные полуторавольтовые химические источники тока не смогут зажечь ни один прибор из списка.

Тип прибораПрямое падение напряжения, ВРабочий ток, мА
АЛ102А2,85
АЛ307А210
АЛ307В2,820

Чтобы увеличить напряжение, можно соединить батарейки последовательно. Для увеличения мощности – параллельно (только для элементов одного напряжения!). В итоге может получиться громоздкая конструкция, не гарантирующая конечного результата. Поэтому пользоваться таким методом лучше в тех случаях, когда других путей нет.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

Способы определения полярности конденсатора

По маркировке

У большинства конденсаторов-электролитов отечественных, а также ряда государств бывшего соцлагеря, обозначается лишь положительный вывод. Соответственно, второй – это минус. Но вот символика может быть разной. Она зависит от страны-изготовителя и года выпуска радиодетали. Последнее объясняется тем, что с течением времени изменяются нормативные документы, вступают в силу новые стандарты.

Примеры обозначения плюса конденсатора

  • Символ «+» на корпусе около одной из ножек. В некоторых сериях она проходит через его центр. Это относится к конденсаторам цилиндрической формы (бочкообразным), с «дном» из пластмассы. Например, К50-16.
  • У конденсаторов типа ЭТО полярность иногда не обозначается. Но определить ее визуально можно, если посмотреть на форму детали. Вывод «+» расположен со стороны, имеющий больший диаметр (на рисунке плюс вверху).

Если конденсатор (так называемая коаксиальная конструкция) предназначен для монтажа способом присоединения корпуса к «шасси» прибора (являющимся минусом любой схемы), то центральный контакт – плюс, без всякого сомнения.

Обозначение минуса

Это относится к конденсаторам импортного производства. Рядом с ножкой «–», на корпусе, имеется своеобразный штрих-код, представляющий собой прерывистую полосу или вертикальный ряд из черточек. Как вариант – длинная полоска вдоль осевой линии цилиндра, один конец которой указывает на минус. Она выделяется на общем фоне своим оттенком.

По геометрии

Если у конденсатора одна ножка длиннее другой, то это – плюс. В основном подобным образом также маркируются изделия импортные.

С помощью мультиметра

Такой способ определения полярности конденсатора практикуется, если его маркировка трудночитаема или полностью стерта. Для проверки необходимо собрать схему. Понадобится или мультиметр с внутренним сопротивлением порядка 100 кОм (режим – измерение I=, предел – микроамперы)

или источник постоянного тока + милливольтметр + нагрузка

Что сделать

  • Полностью разрядить конденсатор. Для этого достаточно его ножки замкнуть накоротко (жалом отвертки, пинцетом).
  • Подключить емкость в разрыв цепи.
  • После окончания процесса заряда зафиксировать значение тока (он будет постепенно уменьшаться).
  • Разрядить.
  • Снова включить в схему.
  • Считать показания прибора.

Рекомендация. Определение полярности прибором целесообразно делать в любом случае. Это позволит одновременно произвести и диагностику детали. Если электролит, имеющий большой номинал, заряжается сравнительно быстро от источника 9±3 В, то это свидетельство того, что он «подсох». То есть утратил часть своей емкости. Его лучше в схему не ставить, так как ее работа может быть некорректной, и придется заниматься дополнительными настройками.

Маркировка

Существует три основных параметра, характеризующие конденсатор: показатель номинальной емкости, допуска и штатного напряжения. В большинстве случаев применяется два метода маркировки – буквенно-числовой и числовой.

В первом случае буква обозначает величину емкости (μ, nF, pF) и играет роль десятичной запятой. Например, если неполярный конденсатор имеет маркировку 1 μ, значит это деталь с емкостью 1 мкф, а надпись 3μ3 – 3,3 мкФ.

Для обозначения допуска может использоваться буквенная кодировка, ее расшифровка представлена на рисунке 8.

Рисунок 8. Расшифровка буквенной маркировки допуска

Рабочее напряжение емкости также может обозначаться буквенным кодом, ниже приведена его раскодировка.

Емкости небольшого размера, например, в SMD исполнении принято маркировать трехзначным цифровым кодом.

Чтобы не запоминать все значения таблицы, воспользуйтесь следующим правилом расшифровки: значения приводятся в пикофарадах, первое и второе значение – мантисса, третье – степень с основанием 10. Например, надпись 331 будет означать 330 пФ (33*10).

Полярные и неполярные конденсаторы – в чем отличие

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества

Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать

Данные конденсаторы называются поэтому полярными. В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности?

Будет интересно Формула расчёта сопротивления конденсатора

В этом и попробуем сейчас разобраться. Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой. Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора. Отрицательная обкладка (катод) – просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов. Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

Будет интересно Что такое переменный конденсатор

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]