§65. Режимы работы трансформатора и его характеристики


Трансформатор

Трансформатор — это статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.

Трансформатор осуществляет преобразование переменного напряжения и/или гальваническую развязку в самых различных областях применения — электроэнергетике, электронике и радиотехнике.

Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.

При каких условиях ток и магнитный поток могут возникать и протекать в электрической цепи?

Согласно законам физики, чтобы произошло образование магнитного поля, и в системе появился электрический ток, следует учитывать ряд факторов, которые обязательно должны быть воплощены. Во-первых, магнитные потоки и электрический ток может образовываться и успешно протекать в тех случаях, если технически создана замкнутая силовая цепь. Во-вторых, в созданной системе должно присутствовали либо магнитное, либо электрическое сопротивление. А еще должен присутствовать внешний импульс, тот самый внешний источник напряжения положенной для созданной цепи энергии. Как дополнение, отметим, что показатели индуктивного сопротивления очень важны для создания условий нормальной работоспособности трансформатора.

Базовые принципы действия трансформатора

Работа трансформатора основана на двух базовых принципах:

  • Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)
  • Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)

На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток намагничивания создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.

В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.

Форма напряжения во вторичной обмотке связана с формой напряжения в первичной обмотке довольно сложным образом. Благодаря этой сложности удалось создать целый ряд специальных трансформаторов, которые могут выполнять роль усилителей тока, умножителей частоты, генераторов сигналов и т.д.

Исключение — силовой трансформатор. В случае классического трансформатора переменного тока, предложенного П.Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

В случае силового трансформатора, работающего в схеме Преобразователя Мотовилова, он преобразует постоянный силовой ток первичной обмотки в постоянный силовой ток вторичной обмотки при прямоугольном переменном напряжении на обеих обмотках. Последнее выпрямляется в постоянное напряжение так, что на входе и выходе схемы Мотовилова действуют постоянные токи при постоянном напряжении.

УСТРОЙСТВО ТРАНСФОРМАТОРА НАПРЯЖЕНИЯ

Основные узлы, которые входят в трансформатор это сердечник и обмотки. Сердечники трансформаторов бывают двух типов — броневые и стержневые. Для работы с низкочастотными напряжениями, в том числе и 50 Гц применяются стержневые магнитопроводы. В свою очередь они подразделяются на:

  • Ш-образные;
  • П-образные;
  • тороидальные.

Для изготовления сердечника используется специальное трансформаторное железо. От качества железа во многом зависят параметры трансформатора, такие как ток холостого хода (ТХХ) и КПД. Сердечник набирается из тонких листов железа, изолированных друг от друга слоем окиси или лака. Это делается для того, чтобы уменьшить потери в сердечнике за счет вихревых токов.

Как Ш-образный, так и П-образный сердечники могут собираться из отдельных пластин, а могут быть использованы уже готовые половинки, сделанные из навитых на специальную оправку сплошных лент железа, поклеенных и разрезанных на две части — витые сердечники. Такие сердечники называются ПЛ.

У каждого из типов свои достоинства и недостатки:

Наборные сердечники. Наиболее часто используются для сборки магнитопровода произвольного сечения, которое ограничивается только шириной пластин. Следует иметь ввиду, что наилучшие параметры имеют трансформаторы с поперечным сечением сердечника, близким к квадратному.

Недостатки — необходимость в плотном стягивании, повышенное магнитное поле рассеивания трансформатора и низкий коэффициент заполнения окна катушки (реальная площадь металла в сердечнике меньше геометрических размеров из-за неплотного прилегания пластин).

Витые. Собираются еще проще, поскольку весь сердечник состоит из двух частей для П-образного магнитопровода и четырех для Ш-образного. Характеристики значительно лучше, чем у наборного магнитопровода. Недостатки — соприкасающиеся поверхности должны иметь минимальный зазор во избежание ослабления магнитного поля.

При ударах пластины половинок зачастую отслаиваются и их очень трудно совместить для плотного прилегания. Существует только определенный ряд размеров магнитопроводов.

Тороидальные. Представляют собой кольцо, свитое из ленты трансформаторного железа Имеют самые лучшие характеристики из всех типов сердечников, минимальный ТХХ и практически полное отсутствие магнитного поля рассеивания.

Основной недостаток — сложность намотки, особенно проводов большого диаметра.

Классический трансформатор имеет одну первичную обмотку и одну или несколько вторичных. Обмотки изолируются друг от друга для исключения вероятности между обмоточного пробоя. Как первичная, так и вторичные обмотки могут иметь отводы.

В Ш-образных трансформаторах все обмотки наматываются на центральном стержне, а в П-образном первичная может размещаться на одном стержне, а вторичная на другом. Гораздо чаще обмотки делятся пополам и наматываются на обеих стержнях. Затем обе половины обмоток соединяются последовательно.

Такая намотка улучшает характеристики трансформатора и сокращает количество провода для обмоток.

Основные части конструкции трансформатора

Основными частями конструкции трансформатора являются:

  • магнитопровод
  • обмотки
  • каркас для обмоток
  • изоляция
  • система охлаждения
  • прочие элементы (для монтажа, доступа к выводам обмоток, защиты трансформатора и т.п.)

В практичной конструкции трансформатора производитель выбирает между тремя различными базовыми концепциями:

  • Стержневой
  • Броневой
  • Тороидальный

Любая из этих концепций не влияет на эксплуатационные характеристики или эксплуатационную надежность трансформатора, но имеются существенные различия в процессе их изготовления. Каждый производитель выбирает концепцию, которую он считает наиболее удобной с точки зрения изготовления, и стремится к применению этой концепции на всём объёме производства.

В то время как обмотки стержневого типа заключают в себе сердечник, сердечник броневого типа заключает в себе обмотки. Если смотреть на активный компонент (т.e. сердечник с обмотками) стержневого типа, обмотки хорошо видны, но они скрывают за собой стержни магнитной системы сердечника. Видно только верхнее и нижнее ярмо сердечника. В конструкции броневого типа сердечник скрывает в себе основную часть обмоток.

Ещё одно отличие состоит в том, что ось обмоток стержневого типа, как правило, имеет вертикальное положение, в то время как в броневой конструкции она может быть горизонтальной или вертикальной.

Общепринятые режимы трансформаторов: какие существуют варианты

Приемлемые технические характеристики трансформаторов позволяют агрегатам работать в разных состояниях. Так, новое оборудование, только что введенное эксплуатацию, проходит тестовый режим. Если необходимо, то и под присмотром специалистов. Иногда первичный этап работы называют введением в работу оборудования. В вот как только первый этап будет успешно завершен, стартует следующий и самый важный – номинальный режим, когда трансформаторы тока и их характеристики работают на результат, согласно инструкции и техническим параметрам. При сбоях в системе могут проявиться аномальные режимы работы силового оборудования, и к таким состояниям относят холостой ход, короткое замыкание, которое провоцирует поломки и остановку в сети, а также перенапряжение, способное нарушить работу слаженного механизма электрической магистрали.

Режимы работы трансформатора

Режим холостого хода

Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. По первичной обмотке протекает ток холостого хода, главной составляющей которого является реактивный ток намагничивания. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в сердечнике (т.н. «потери в стали»).

Режим нагрузки

Этот режим характеризуется работой трансформатора с подключенными источником в первичной и нагрузкой во вторичной цепи трансформатора. В вторичной обмотке протекает ток нагрузки, а в первичной — ток, который можно представить как сумму тока нагрузки (пересчитанного из соотношения числа витков обмоток и вторичного тока) и ток холостого хода. Данный режим является основным рабочим для трансформатора.

Режим короткого замыкания

Этот режим получается в результате замыкания вторичной цепи накоротко. Это разновидность режима нагрузки, при котором сопротивление вторичной обмотки является единственной нагрузкой. С помощью опыта короткого замыкания можно определить потери на нагрев обмоток в цепи трансформатора («потери в меди»). Это явление учитывается в схеме замещения реального трансформатора при помощи активного сопротивления.

Режим холостого хода

При равенстве вторичного тока нулю (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток, протекающий через первичную обмотку, равен переменному току намагничивания, нагрузочные токи отсутствуют. Для трансформатора с сердечником из магнитомягкого материала (ферромагнитного материала, трансформаторной стали) ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода. Мощность потерь можно вычислить, умножив активную составляющую тока холостого хода на напряжение, подаваемое на трансформатор.

Для трансформатора без ферромагнитного сердечника потери на перемагничивание отсутствуют, а ток холостого хода определяется сопротивлением индуктивности первичной обмотки, которое пропорционально частоте переменного тока и величине индуктивности.

Напряжение на вторичной обмотке в первом приближении определяется законом Фарадея.

Режим короткого замыкания

В режиме короткого замыкания, на первичную обмотку трансформатора подаётся переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчётному) току трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическом сопротивлении. Мощность потерь можно вычислить, умножив напряжение короткого замыкания на ток короткого замыкания.

Данный режим широко используется в измерительных трансформаторах тока.

Режим нагрузки

При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток нагрузки, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.

Мгновенный магнитный поток в магнитопроводе трансформатора определяется интегралом по времени от мгновенного значения ЭДС в первичной обмотке и в случае синусоидального напряжения сдвинут по фазе на 90° по отношению к ЭДС. Наведённая во вторичных обмотках ЭДС пропорциональна первой производной от магнитного потока и для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке.

Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

Существуют отличия в работе ТТ и .

  • Первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи и вообще, чем оно ближе к нулю, тем точнее аппарат. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.
  • ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.
  • Не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.

Классы точности ТТ

Виды трансформаторов

Силовой трансформатор

Силовой трансформатор переменного тока — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии. Слово «силовой» отражает работу данного вида трансформаторов с большими мощностями. Необходимость применения силовых трансформаторов обусловлена различной величиной рабочих напряжений ЛЭП (35-750 кВ), городских электросетей (как правило 6,10 кВ), напряжения, подаваемого конечным потребителям (0,4 кВ, они же 380/220 В) и напряжения, требуемого для работы электромашин и электроприборов (самые различные от единиц вольт до сотен киловольт).

Силовой трансформатор постоянного тока используется для непосредственного преобразования напряжения в цепях постоянного тока. Термин «силовой» показывает отличие таких трансформаторов от измерительных устройств класса «Трансформатор постоянного тока».

Автотрансформатор

Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно.

Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для соединения эффективно заземленных сетей с напряжением 110 кВ и выше при коэффициентах трансформации не более 3-4. Существенным достоинством является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.

Трансформатор тока

Трансформатор тока — трансформатор, питающийся от источника тока. Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации, кроме того, трансформатор тока осуществляет гальваническую развязку (отличие от шунтовых схем измерения тока). Номинальное значение тока вторичной обмотки 1А, 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации. ВНИМАНИЕ! Вторичная обмотка токового трансформатора должна быть надёжно замкнута на низкоомную нагрузку измерительного прибора или накоротко. При случайном или умышленном разрыве цепи возникает скачок напряжения, опасный для изоляции, окружающих электроприборов и жизни техперсонала! Поэтому по правилам технической эксплуатации необходимо неиспользуемые вторичные обмотки закорачивать, а все вторичные обмотки трансформаторов тока подлежат заземлению.

Трансформатор напряжения

Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.

Импульсный трансформатор

Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.

Разделительный трансформатор

Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаниях к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Сигнальные разделительные трансформаторы обеспечивают гальваническую развязку электрических цепей.

Согласующий трансформатор

Согласующий трансформатор — трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем при минимальном искажении формы сигнала. Одновременно согласующий трансформатор обеспечивает создание гальванической развязки между участками схем.

Пик-трансформатор

Пик-трансформатор — трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.

Сдвоенный дроссель

Сдвоенный дроссель (встречный индуктивный фильтр) — конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.

Трансфлюксор

Трансфлюксор — разновидность трансформатора, используемая для хранения информации. Основное отличие от обычного трансформатора — это большая величина остаточной намагниченности магнитопровода. Иными словами трансфлюксоры могут выполнять роль элементов памяти. Помимо этого трансфлюксоры часто снабжались дополнительными обмотками, обеспечивающими начальное намагничивание и задающими режимы их работы. Эта особенность позволяла (в сочетании с другими элементами) строить на трансфлюксорах схемы управляемых генераторов, элементов сравнения и искусственных нейронов.

Диагностика состояния трансформаторов

Повреждения или отклонения от нормального режима работы , возникающие в силовых трансформаторах, могут быть вызваны недоработкой конструкции, скрытыми дефектами, нарушениями правил перевозки, технологии монтажа, эксплуатации или некачественным ремонтом. Своевременное выявление возникающего дефекта позволяет принять меры по предупреждению его развития и сохранению работоспособного состояния трансформатора. Наиболее характерными повреждениями трансформаторов являются следующие: повреждение обмоток и изоляции, активной стали, фарфоровой и внутренней изоляции вводов, контактов устройства для регулирования напряжения, вспомогательных узлов и устройств. Диагностика состояния трансформатора носит комплексный характер: она осуществляется на стадии изготовления трансформатора, перед вводом его в работу и в процессе эксплуатации. После окончания монтажа перед вводом в работу проводятся испытания в объеме, предусмотренном ПУЭ: определение условий включения трансформатора, измерение характеристик изоляции и сопротивления обмоток постоянному току, проверка работы переключающего устройства и снятие круговой диаграммы, испытание бака с радиаторами гидравлическим давлением, проверка состояния силикагеля, фазировка трансформатора, испытание трансформаторного масла, испытание включением толчком на номинальное напряжение. Все работы по диагностике трансформаторов в процессе его эксплуатации делятся на четыре группы:

  • не требующие прикосновения к работающему трансформатору;
  • не требующие отключения, но связанные с необходимостью прикосновения к трансформатору или его вспомогательным устройствам;
  • выполняемые на отключенном трансформаторе;
  • выполняемые на трансформаторе, выведенном в ремонт.

К первой группе работ относятся периодические внешние осмотры с контролем за показаниями сигнальных устройств и средств контроля и измерения. При периодических осмотрах проверяется следующее:

  • состояние внешней изоляции, т.е. изоляторов вводов: нет ли на них трещин или сколов фарфора, какова степень загрязнения поверхности, не наблюдается ли коронирование;
  • исправность измерительных приборов, термометров, маслоуказателей, мембраны выхлопной трубы, газового реле. Окошко последнего должно быть заполнено маслом;
  • наличие или отсутствие подтекания масла;
  • состояние доступных для наблюдения контактных соединений. Их повышенный нагрев может быть выявлен с использованием термоиндикаторов или по внешнему виду контакта и шины: появление цветов побежалости, потемнение, выгорание краски, “струящийся “ воздух над контактом. Очень сильный нагрев может вызвать свечение контакта, особенно в темное время суток.

Эффективный контроль нагрева осуществляется с помощью тепловизора (микропроцессорный прибор с дисплеем, осуществляющий измерение температуры на расстоянии, без непосредственного контакта с контролируемым объектом). Одновременно осматриваются все контрольные средства, по показаниям которых можно судить о появлении какой-то неисправности или об опасности ее возникновения. Температура верхних слоев масла контролируется термометром. Если эта температура превышает допустимую, в первую очередь следует обратить внимание на исправность системы охлаждения. Если неисправностей в ней не обнаружено, то повышение температуры скорее всего обусловлено возникновением внутренних повреждений в трансформаторе: витковым замыканием в обмотке, ухудшением состояния контактных соединений, ухудшением циркуляции масла вследствие уменьшения сечения масляных каналов из-за разбухания изоляции или наличия постороннего предмета. Снижение уровня масла ниже допустимого может быть обусловлено наличием протечек в баке или радиаторах, ухудшением системы дыхания масла через расширитель или недостаточным количеством залитого масла. Работа трансформатора со сниженным уровнем масла не допускается, так как это может привести к ускоренному старению масла, срабатыванию газового реле и отключению трансформатора, ухудшению работы системы охлаждения. Если уровень снизится настолько, что изоляция обмоток окажется частично в воздухе, может произойти перекрытие по воздуху с замыканием между обмотками, что является серьезной аварией. При осмотрах могут быть выявлены и другие нарушения нормальной работы трансформатора, например, такие, как усиленный гул, чаще всего обусловленный повышенной вибрацией трансформатора или его элементов, нарушение наружных контактных соединений, сопровождаемое характерным потрескиванием, нарушение крепления ошиновки, деформация каких-либо элементов, повреждения дренажной системы и т.д. Персонал, заметивший при осмотре какое-либо нарушение в работе трансформатора, должен информировать об этом соответствующую службу предприятия и принять необходимые меры для устранения неисправности, если это возможно без отключения трансформатора. При обнаружении внутреннего повреждения трансформатор должен быть отключен обслуживающим персоналом с предварительным извещением вышестоящего дежурного персонала. Ко второй группе мероприятий по диагностике состояния трансформаторов относится отбор проб масла для проверки его электрических свойств, химического или хромотографического анализа растворенных в масле газов. Сюда же относится измерение вибрации бака или других частей трансформатора, контроль частичных разрядов, отбор газа из сработавшего на сигнал газового реле и др. Значительная часть повреждений трансформаторов вообще никак не проявляется при внешнем осмотре, особенно, если это начинающиеся внутренние повреждения. Значительная их часть может быть определена проверкой состояния масла. Такие внутренние повреждения , как местные перегревы, частичные разряды, незначительное искрение в контактах и др. в большей или меньшей степени влияют на свойства трансформаторного масла. Кроме того, изменение свойств масла происходит при его увлажнении, загрязнении, попадании в него воздуха или другого газа при естественном старении как самого масла, так и твердой изоляции. Отбор проб масла должен производиться аккуратно, чтобы не допустить увлажнения, загрязнения масла и возникновения помех. В противном случае результаты испытания или анализа масла будут недостоверными. Для отбора пробы масла необходимо очистить от грязи и пыли сливную пробку или кран, слить в постороннюю емкость некоторое количество масла и набрать требуемую пробу. Емкость для пробы должна быть вместимостью не менее 0,5 л с притертой пробкой и предварительно дважды промытой маслом, предназначенным для испытаний. Необходимо учитывать, что резкий перепад температуры может вызвать конденсацию влаги внутри емкости, поэтому открывать последнюю следует после того, как она приняла температуру окружающей среды. В настоящее время широкое распространение получил хроматографический анализ газов, растворенных в масле трансформатора, причем, в последние годы особое внимание обращают на фурановые соединения. Разработаны специальные методики, позволяющие по наличию определенных наборов газов с их концентрациями выявлять различные повреждения трансформатора, включая повреждения бумажной изоляции, наличие электрической дуги, замыкание на корпус и др. Третья группа мероприятий по диагностике состояния трансформатора, выполняемых на отключенном трансформаторе, включает в себя испытания и определение состояния изоляции обмоток, магнитопроводов, высоковольтных вводов, переключающих устройств и вспомогательного оборудования. Сюда относятся все виды профилактических испытаний, ревизии и т.п. Четвертая группа мероприятий, проводимых на выведенном в ремонт трансформатор, подразумевает более полный анализ состояния отдельных частей с целью определения или уточнения объема ремонтных работ. Однако окончательное решение о необходимости вывода трансформатора в ремонт принимается на основании результатов диагностических мероприятий первых трех групп. Наиболее ненадежными элементами трансформаторов являются маслонаполненные вводы и устройства переключения коэффициента трансформации под нагрузкой (РПН). Специалистами признано, что силовые трансформаторы центров питания целесообразно оснащать системами контроля состояния под рабочим напряжением. Такие системы разработаны и предлагаются к использованию зарубежными и отечественными фирмами. При этом может контролироваться отработанный ресурс изоляции, контролироваться концентрация определенных газов, осуществляться управление работой системой охлаждения трансформатора, контролироваться уровень частичных разрядов во вводах и внутри бака трансформатора, уровень акустических разрядов, состояние РПН и др. Однако внедрение указанных систем затруднено их высокой стоимостью. Все большее распространение получают системы периодического и автоматизированного контроля состояния изоляции маслонаполненных вводов под рабочим напряжением (что рекомендовано Руководящими документами). Контролируется либо модуль комплексной проводимости изоляции ? , либо tg? изоляции вводов, либо уровень частичных разрядов.

Повреждения или отклонения от нормального режима работы , возникающие в силовых трансформаторах, могут быть вызваны недоработкой конструкции, скрытыми дефектами, нарушениями правил перевозки, технологии монтажа, эксплуатации или некачественным ремонтом. Своевременное выявление возникающего дефекта позволяет принять меры по предупреждению его развития и сохранению работоспособного состояния трансформатора. Наиболее характерными повреждениями трансформаторов являются следующие: повреждение обмоток и изоляции, активной стали, фарфоровой и внутренней изоляции вводов, контактов устройства для регулирования напряжения, вспомогательных узлов и устройств.

Условия эксплуатации

СТ требуется высокая степень надёжности с большими значениями напряжения, мощности. Это влияет на качество эксплуатации, профилактику. Делаются регламентные работы правильного, полного технического обслуживания, ремонта, испытаний, наладки. Трансформаторы и оборудование находятся в месте постоянного дежурства персонала. Графиками ежедневного осмотра, приборами контроля, измерения проверяется состояние работы электрической сети, трансформаторов.

Контролируют показания датчиков приборов, измеряют:

  • Температуру.
  • Давление.
  • Уровень масла.
  • Степень истощённости влагопоглотителей.
  • Состояние регенераторов масла.

Также читайте: Что такое трансформатор

Проверяется потёки масла в каре трансформатора, ОРУ, ЗРУ, механические повреждения в корпусе, фланцевых местах соединений (масла, охлаждающей жидкости), радиаторов, вентиляторов, участков труб. Контролируется число работающих вентиляторов, уровень масла в газоанализаторе при определённой нагрузке трансформатора. Для каждого режима даётся своё количество работающего оборудования, параметры охлаждающей среды, газа, воды, масла. В устройствах с постоянным дежурством персонала, осмотры делаются реже: 1 раз в 30 дней. Не реже 1 раза в ½ года делается осмотр ОРУ, ВРУ, ЗРУ, трансформаторных пунктов.

По графику обслуживания, при ТО доливается масло, смена непригодного трансформаторного масла новым составом. Определяется качество масла химическим лабораторным анализом. В ПУЭ, инструкции трансформаторов, оборудования даются критерии к требованиям масел, визуальному осмотру, цвету. При аварийных режимах, резкой смене температуры наружного воздуха делаются внеплановые осмотры.

Проверке подлежит защита. 1 раз в 365 дней, капитальный ремонт берут на лабораторный анализ масло. Периодичность ТО устройств регулирования напряжения силовых трансформаторов связана с проверкой контактов меди, латуни окисляемости. Делается им профилактика, зачистка, смазка, переборка, подтяжка динамометрическим ключом для уменьшения переходного сопротивления в контактном узле.

С целью смены плёнки окислов 2 раза в 365 дней отключают трансформаторы от электроэнергии, снимают их нагрузку на 0, переключатели ставят во всевозможные регулируемые положения по нескольку раз. Методы смены положений делают в переходный осенний зимний период до максимального набора нагрузки.

Защиты трансформатора

Ставятся стандартного типа защиты по ПУЭ:

  1. Токовая защита нулевой последовательности от внешних замыканий на землю п.3.2.63.
  2. Защиту от токов, вызванных внешними КЗ п.3.2.64.
  3. Оперативное ускорение защиты от токов, обусловленных внешними КЗ с выдержкой времени 0,5 сек п.3.2.65 (АТ подстанций, блок-генератор СТ).
  4. Газовая защита добавочного трансформатора п.3.2.71.
  5. Защита контактного устройства РПН с реле давления, отдельным газовым реле п.3.2.71.
  6. Дифференциальная токовая защита цепей стороны низшего напряжения (АТ) п.3.2.70 – 3.2.71.
  7. Дифференциальная защита перегруза фаз.
  8. От внутренних повреждений: уровень + давление масла, температура обмотки, стали сердечника, наличию газов.

Панель защит СТ:

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]