Кто изобрел электричество первым: значение для человечества, сколько лет назад научились использовать


Ответ на вопрос, кто изобрел электричество, требует анализа опытов и открытий, совершенных в отрасли. В поисках объяснения явления, которое представляет собой поток заряженных частиц, ученые объединили разные направления исследований. Роль основателя науки об электричестве история уделяет Бенджамину Франклину, который экспериментально подтвердил электрическую природу атмосферных разрядов. Есть и немало других фамилий ученых, в т.ч. начинающих, внесших большой вклад в развитие науки об электричестве.

История возникновения

Много лет назад люди наблюдали за природными явлениями, имеющими электрическую природу. В 600 г. до н.э. в Греции экспериментально установили, что потертая шерстью окаменелая смола притягивает предметы.

В 30-е гг. ХХ веке археологи нашли горшки, внутри которых находились медные листы. Эти своеобразные батареи для освещения были обнаружены в Багдаде, что дает основания предположить, что разработка принадлежит древним персам.

В 1600 году слово electricus использовалось Уильямом Гилбертом для описания статической энергии, возникающей при механическом взаимодействии веществ. Томас Браун в ряде исследовательских трудов использовал категорию «электричество» («янтарность»). С этого времени началась эра экспериментов с целью разгадки природы явления. Дата каждого из них вписана в историю.

В 17 в. был изобретен генератор, классифицированы изоляторы и проводники, разграничены частицы с зарядами «+» / «-». С XVIII в. и до сих пор человечество продуцирует, генерирует и потребляет электричество.

Период ранних открытий подготовил базис для развития науки, проведения исследований, разработки оборудования для транспортирования электричества.

Древнее время

Термин «электричество» происходит от древнегреческого слова «электрон», что в переводе означает «янтарь». Первое упоминание об этом явлении связано с античными временами. Древнегреческий математик и философ Фалес Милетский в VII веке до н. э. обнаружил, что если произвести трение янтаря о шерсть, то у камня появляется способность притягивать мелкие предметы.

Фактически это был опыт изучения возможности производства электроэнергии. В современном мире такой метод известен, как трибоэлектрический эффект, который дает возможность извлекать искры и притягивать предметы с легким весом. Несмотря на низкую эффективность такого метода, можно говорить о Фалесе, как о первооткрывателе электричества.

В древнее время было сделано еще несколько робких шагов на пути к открытию электричества:

  • древнегреческий философ Аристотель в IV веке до н. э. изучал разновидности угрей, способных атаковать противника разрядом тока;
  • древнеримский писатель Плиний в 70 году нашей эры исследовал электрические свойства смолы.

Все эти эксперименты вряд ли помогут нам разобраться в том, кто открыл электричество. Эти единичные опыты не получили развития. Следующие события в истории электричества состоялись много веков спустя.

Этапы создания электрической теории

Развитию электромагнетизма способствовали опыты Андре-Мари Ампера. В его честь была названа единица тока, включенная в СИ. Изучением процессов трения и свойств веществ занимался Шарль Огюстен де Кулон.

Отто фон Герике создал первый электрический прибор. Это была сфера из серы, закрепленная на металлическом стержне. Алессандро Вольта разработал генератор постоянного тока. Исследовательская деятельность Георга Симона Ома повлияла на развитие теоретической основы этого направления. Немецкий физик Густав Роберт Кирхгоф открыл 2 закона теории цепей. Генрих Рудольф Герц исследовал природу волн в среде.

Электрические заряд

Все атомы окружены облаком электронов, несущим отрицательный () электрический заряд. Электроны движутся вокруг ядра. Ядро имеет тот же суммарный заряд, что и все его электроны, но этот заряд положителен (+) . Обычно положительный и отрицательный заряды аннулируют друг друга, и атом является электрически нейтральным. Но в некоторых веществах некоторые внешние электроны имеют довольно слабые связи со своими атомами. А когда два объекта теряются друг с другом, такие электроны могут высвобождаться и мигрировать к другому объекту. В результате этого сдвига объект становится более богатым электронами, чем должен, и получает отрицательный () заряд. У второго объекта меньше электронов, поэтому он получает положительный (+) заряд. Образующиеся таким образом заряды иногда называют «фрикционным электричеством». Какой из объектов получает положительный или отрицательный заряд, зависит от относительной легкости, с которой электроны движутся в поверхностных слоях двух объектов.

Если протирать полиэтиленовую линию шерстяной тканью, она получит отрицательный заряд, а если протирать органическое стекло, то получится положительный заряд. В любом случае, ткань получает заряд, противоположный заряду вощеного материала.

Электрические заряды влияют друг на друга. Положительные и отрицательные заряды привлекаются друг к другу, а два отрицательных или два положительных заряда отталкиваются. Когда к объекту применяется один отрицательный заряд, отрицательные заряды объекта перемещаются на другой конец линии, а положительные заряды ближе к линии. Положительные и отрицательные заряды линии и объекта притягивают друг друга, и объект остается прикрепленным к линии. Этот процесс называется электростатической индукцией, и говорят, что объект попадает в электростатическое поле лески.

Майкл Фарадей доказал, что фрикционное электричество и электрический ток это одно и то же. Он также доказал, что в металлической ячейке (теперь называемой ячейкой Фарадея) не может существовать электрического поля.

От электрической теории к точной науке

Накопленная в результате исследований практическая база позволила синтезировать знания, научиться управлять энергией. Основой формирования точной науки стали открытия природы тока. Время изобретения искусственного электричества относится к периоду XVIII-XIX вв. Открытия делались в краткий период, что было связано с активным развитием мысли.

Большой вклад в точную науку внес Томас Эдисон. Никола Тесла принадлежит теоретическое подтверждение магнетизма, а разработки ученого позволили получить беспроводное электричество.

Закон взаимодействия зарядов

Эта фундаментальная разработка принадлежит Шарлю Огюстену де Кулону. Основатель закона взаимодействия неподвижных зарядов установил зависимость силы 2 точечных зарядов: возникающие силы подчиняются закону Ньютона.

Изобретение батареи

Электрический прибор Алессандро Вольта представляет собой батарею. Конструкция выполнена в форме этажерки, сложенной из цинковых и медных пластин. Между ними установлены смоченные серной кислотой куски войлока.

В верхней и нижней частях источника энергии создавался электрический потенциал, разряд которого ощущался тактильно. Под влиянием электролита происходило взаимодействие металлов на атомарном уровне. Внутри конструкции аккумулировалась электрическая энергия. Изобретение Вольта было положено в разработку батареек.

Появление понятия тока

Эта категория появилась в период лабораторных исследований электричества Уильямом Гилбертом (1600 г.). Понятие характеризовало упорядоченное движение частиц вещества или таковое в вакууме. Ток мог иметь постоянную природу и переменный характер. Силовой показатель определял количество электронов, протонов, ионов, протекающих через поперечное сечение.

Закон электрической цепи

Деятельность немецкого физика Густава Кирхгофа была связана с теоретическими изысканиями. Исследователь ввел термины «ветвь», «узел», «контур», а установленные законы стали базой для внедрения изобретений в радиоэлектронной и технической отраслях.

Наука, изучающая электричество

Электричество – природное явление. Оно частично изучается в биологии, химии и физике. Наиболее полно электрические заряды рассматриваются в рамках электродинамики – одного из разделов физики.

Теории и законы электричества

Законов, которым подчиняется электричество немного, но они полностью описывают явление:

  • Закон сохранения энергии – фундаментальный закон, которому подчиняются и электрические явления;
  • Закон Ома – основной закон электрического тока;
  • Закон электромагнитной индукции – о электромагнитном и магнитном полях;
  • Закон Ампера – о взаимодействии двух проводников с токами;
  • Закон Джоуля-Ленца – о тепловом эффекте электричества;
  • Закон Кулон – об электростатике;
  • Правила правой и левой руки – определяющие направления силовых линий магнитного поля и силы Ампера, действующей на проводник в магнитном поле;
  • Правило Ленца – определяющее направление индукционного тока;
  • Законы Фарадея – об электролизе.

Первые опыты с электричеством

Первые опыты с электричеством носили, в основном, развлекательный характер. Их суть была в лёгких предметах, которые притягивались и отталкивались под действием плохо изученной силы. Другой занимательный опыт – передача электричества через цепочку людей, взявшихся за руки. Физиологическое действие электричества активно изучал Жан Нолле, заставивший пройти электрический заряд через 180 человек.

Производство и практическое использование

С момента появления первых генераторов произошло много открытий, изобретения внедрены в сферу генерирования и передачи энергии.

В результате научных поисков с последней четверти XIX в. возникли предпосылки для развития электроэнергетики, которые включают в себя:

  • создание турбин;
  • разработку генераторов;
  • передачу электроэнергии.

В 1801 г. в Германии под руководством русского инженера М.О. Доливо-Добровольского была построена ГЭС промышленной мощностью 220 кВт. В XX в. началась эра широкого применения потенциала энергии воды, в XXI в. постепенно внедрялось и увеличивалось использование природных ресурсов.

Для производства электрической энергии используются полезные ископаемые. Атомную энергию, отлично удовлетворяющую потребности в электричестве, считают лучшим вариантом на фоне альтернативных ресурсов.

Производство (генерация) электроэнергии осуществляется на объектах индустриального назначения. Используя в качестве топлива водород, человечество получает высокий КПД сгорания, заботится об экологической чистоте.

Генерирование и передача

Создание мобильных и электростанций большой мощности повлияло на поиск практических решений передачи электричества на расстояние.

Это удалось сделать посредством сетей, в состав которых вошли:

  • линии;
  • повышающие и понижающие преобразователи;
  • распределительные устройства.

Первые опыты по транспортированию принадлежат Стивену Грею, который в 1720-е гг. передавал заряд по шелковому проводу.

В 1873 г. Фонтен продемонстрировал применение генератора и двигателя постоянного тока, связанные между собой проводом длиной 2000 м. Прорывом в передаче тока на большие расстояния стал проведенный в 1891 г. опыт М.О. Доливо-Добровольского, в ходе которого использовалась 3-фазная линия.

Для дальности передачи действует главный параметр пропускной способности, при расчете которой учитывается волновое влияние связывающих факторов сопротивления и создаваемого напряжения.

Применение

Электричество, будучи незаменимым, используется для таких целей:

  • создания системы освещения;
  • передачи информации;
  • функционирования транспорта (трамваев, троллейбусов, поездов);
  • работы бытовых и офисных приборов;
  • производства и обработки материалов.

Сфера применения электричества настолько широка, что часто пользователи не замечают существования источников энергии.

Откуда берется электрический ток

Электричество, поступающее по проводам в дома, вырабатывается электрическим генератором на различных электростанциях. На них генератор соединён с постоянно вращающейся турбиной.

В конструкции генератора есть ротор – катушка, которая располагается между полюсами магнита. При вращении турбиной этого ротора в магнитном поле по законам физики появляется или наводится электрический ток. Таким образом назначение генератора – преобразовывать кинетическую силу вращения в электричество.

Заставить турбину крутиться можно многими способами, используя разнообразные источники энергии. Они разделяются на три вида:

  • Возобновляемые – энергия, получаемая из неисчерпаемых ресурсов: потоков воды, солнечного света, ветра, геотермальных источников и биотоплива;
  • Невозобновляемые – энергия, получаемая из ресурсов, которые возникают очень медленно, несоизмеримо с темпами расходования: уголь, нефть, торф, природный газ;
  • Ядерные – энергия, получаемая из процесса ядерного деления клеток.

Чаще всего электроэнергия возникает благодаря работе:

  • Гидроэлектростанций (ГЭС) – строятся на реках и используют силу водного потока;
  • Тепловых электростанций (ТЭС) – работают на тепловой энергии от сжигания топлива;
  • Атомные электростанции (АЭС) – работают на тепловой энергии, получаемой от процесса ядерной реакции.

Преобразованная энергия по проводам поступает в трансформаторные подстанции и распределительные устройства и уже потом доходит до конечного потребителя.

Сейчас активно развиваются так называемые альтернативные виды энергии. К ним относят ветрогенераторы, солнечные батареи, использование геотермальных источников и любые другие способы получить электроэнергию через необычные явления. Альтернативная энергетика сильно уступает по производительности и окупаемости традиционным источникам, но в определённых ситуациях помогают сэкономить и снизить нагрузку на основные электросети.

Появление электричества в России

В середине XVII в. русскими учеными Георгом Рихманом и Михаилом Ломоносовым в санкт-петербургской лаборатории был получен искусственный разряд. В 1874 г. российский инженер А.Н. Лодыгин разработал и получил патент на лампу освещения, где опция нити накаливания предназначалась угольному стержню.

Через 16 лет эта часть конструкции была заменена вольфрамом. П.Н. Яблочков представил устройство с применением электрической дуги. Его действие было основано на возникновении искры между 2 электродами из каолина.

Он сконструировал электродуговую лампу, ресурс работы которой составлял 4 часа. Ее использовали для освещения Зимнего дворца. Свечи Яблочкова применялись на паровозах в качестве дуговых прожекторов.

Общедоступное применение

Все эти открытия не стали бы легендарными без практического использования. Первым из возможных способов применения явился электрический свет, который стал доступен после изобретения в 70-х годах 19 века лампы накаливания. Ее создателем стал российский электротехник Александр Николаевич Лодыгин.

Первая лампа являлась замкнутым стеклянным сосудом, в котором находился угольный стержень. В 1872 году была подана заявка на изобретение, а в 1874 году Лодыгину выдали патент на изобретение лампы накаливания. Если пытаться ответить на вопрос, в каком году появилось электричество, то этот год можно считать одним из правильных ответов, поскольку появление лампочки стало очевидным признаком доступности.

Хронология открытий и изобретений

В 1752 г. Бенджамин Франклин подтвердил идентичность природы молний и искр.

Алессандро Вольта экспериментальным путем доказал, что ряд химических реакций сопровождаются электрическим потоком. В 1800 г. он сконструировал батарею для генерации тока, выполнил его передачу на расстояние.

Позже Майкл Фарадей придумал генератор. Эта разработка помогла Томасу Эдисону и Джозефу Свону в 1878 г. изобрести лампу.

Исследованиями тока занимались Эмилий Ленц, Карл Гаусс. В 1830 г. было открыто электростатическое поле. Лампа с нитью из платины была изобретена Уорреном де ла Рю. В начале 1900-х гг. Никола Тесла развил коммерческое направление этой отрасли. Совместно с Томасом Эдисоном он разработал многофазную систему для распределения потока. Благодаря его изобретениям человечество пользуется бытовыми приборами.

Кто изобрел электричество и когда

Ученый из Англии Стивен Грей в 1729 г., провел эксперименты, которые позволили обнаружить перенос электрических зарядов на расстояние в 250 метров. Он также обнаружил, что электричество не проходит сквозь землю.

Впоследствии это позволило разделить всю материю на изоляторы и проводники. Шарль Дюфи в 1733 году открыл, что в природе существует два вида зарядов, или, как он их назвал, «электричество смолы и электричество стекла». Затем он исследовал электрические взаимодействия, доказав, что объекты с разными полюсами притягиваются, а объекты с одинаковым полюсом отталкиваются друг от друга. Во время этих экспериментов французский изобретатель придумал электрометр, который позволил ему измерить величину зарядов. В 1745 г. в Лейдене, Нидерланды учёные Шарль Дюфе и Эвальд фон Клейст обнаружили возможность накопления заряда в конденсаторе. Эвальд заряжал стальной гвоздь от электрической машины и начал вынимать его из банки, которую держал другой рукой. Когда он коснулся ногтя, то получил ощутимый энергетический удар. В результате была обнаружена возможность накопления энергии. Чуть позже профессор Петер фон Мушенбрук повторил свой опыт. Он налил воду в стеклянную емкость и окунул в нее медные провода. Когда ученый попытался дотронуться до заряженного медного провода, он получил сильный удар током.

Так начала развиваться физика как наука.

Интересные факты

Древнеегипетские врачи, занимавшиеся поиском новых средств, знали о способности нильского сома накапливать электричество.

Изобретениям в этой отрасли предшествовали наблюдения за природой:

  1. Платон и Аристотель упоминали о скатах, их влиянии на людей.
  2. Плиний Старший обратил внимание на свойства воды и металла как проводников.
  3. В 1819 г. Ганс Христиан Эрстед изучил влияние электрического тока на компас.
  4. Во времена Никола Тесла постоянный ток было сложно трансформировать в высокое и низкое напряжение, поэтому ученый выступил за переменный ток. Томас Эдисон, который запатентовал разработки и не желал терять отчисления от них, развернул кампанию по дискредитации. Когда Н. Тесла осветил город электричеством, полученным от станции на Ниагарском водопаде, с использованием переменного тока для передачи на расстояние, компания General Electric финансово поддержала ученого.
  5. В результате мощного удара молний образуется такой минерал, как фульгурит. В толще грунта формируются полые ветвистые трубки с гладкой или покрытой пузырьками поверхностью.
  6. У поверхности Земли существует постоянное электрическое поле со средней напряженностью 130 В/м.
  7. Линейные молнии, ударяющие в землю и формирующие облака, являются разновидностью искрового разряда. Он возникает в массе заряженных и изолированных частиц. Разряды сопровождаются электромагнитным излучением в широком частотном спектре.

Интересные факты в истории электричества связаны с природными явлениями, разработками ученых, достижениями науки и технологий.

Современный виток исследований

Грандиозный рывок в развитии электротехники совершил легендарный учёный, физик и изобретатель Никола Тесла на рубеже XIX, XX веков. Многие изобретения Теслы ещё ждут нового витка исследований в области электротехники для того, чтобы они были внедрены в жизнь.

Сейчас ведутся исследовательские работы по получению новых сверхпроводимых материалов, созданию совершенных компонентов электрических цепей с высоким КПД.

Дополнительная информация. Открытие графена и получение из него новых токопроводящих материалов предрекают грандиозные перемены в сфере использования электричества.

Наука не стоит на месте. С каждым годом человечество становится свидетелем появления более совершенных источников электроэнергии, вместе с этим и создания приборов, машин и различных агрегатов, потребляющих экологически чистую энергию в виде электрического тока.

Аккумуляторы

Существует большое количество различных электрических батарей, но в вашем устройстве всегда есть два фактора. Они обязательно состоят из двух различных химических элементов (например, цинка, меди, углерода и меди, цинка и ртути) и жидкости, разделяющей их (в случае элемента Вольта это соляной раствор). Жидкость называется электролит. Иногда электролит имеет форму пасты для предотвращения утечки.

Наличие различных химических элементов необходимо по той же причине, что и использование различных материалов для производства статического электричества за счет трения. В одном материале электроны движутся с большей свободой и поэтому имеют тенденцию двигаться в другом материале. В электрическом элементе две пластины и жидкость между ними являются электрическими проводниками. Электроны, «высвобожденные» во время химической реакции, могут двигаться без перерыва, там будет только пространство. Таким образом, электрическая цепь становится пространством. Поток электронов может быть остановлен при разрыве цепи. В квартире эту роль берет на себя выключатель.

В батареях, калькуляторах, портативных приемниках и слуховых аппаратах влажная паста действует как электролит. Батареи вырабатывают электричество до тех пор, пока идет химическая реакция.

В дешевых батареях один химический элемент представляет собой резервуар для цинка, а другой угольный электрод. Со временем цинковый резервуар плавится, поэтому внешняя оболочка таких батарей герметично закрывается, чтобы предотвратить утечку содержимого и порчу других вещей. Щелочные батареи с длительным сроком службы содержат те же химические элементы, но другой электролит. В небольших круглых батарейках, используемых в часах, химические пластины состоят из цинка и ртути или окиси цинка и серебра.

Некоторые батареи можно заряжать током в обратном направлении. Эти батареи обычно заряжены никелем и кадмием. Элементы следует заряжать только при правильном напряжении в зарядном устройстве. Никогда не стоит пытаться перезарядить обычную батарею. Аккумуляторы автомобилей и электромобилей содержат жидкость, поэтому они должны находиться только в вертикальном положении. Обычно они работают на свинце и свинцовой пыли и могут перезаряжаться много раз. Электролиты чаще разбавлены серной кислотой, поэтому они обычно герметизируются.

Электромобили бесшумны и не загрязняют воздух (хотя воздух загрязнен электростанциями, поставляющими зарядные устройства). В настоящее время предпринимаются попытки производить аккумуляторные автомобильные батареи, которые легче, чем существующие батареи. Вполне вероятно, что в один прекрасный день появятся перезаряжаемые батареи с пластиковыми элементами.

Напряжение и ток

Следующее описание поможет вам лучше понять, что такое ток и напряжение.

Таким образом, есть два резервуара, соединенных трубой, и вода заливается в один резервуар. Вода заливается до тех пор, пока уровень воды в обоих резервуарах не станет одинаковым. Когда вы поднимаете один резервуар над другим, вода течет из одного резервуара в другой до тех пор, пока уровни снова не станут одинаковыми.

Чем больше разница между уровнями воды в двух резервуарах, тем быстрее течет вода. Скорость перелива воды равна скорости тока. На этой скорости свободные электроны движутся в металлическом проводе. Разница в уровне воды сопоставима с электрическим напряжением. Чем выше напряжение, тем сильнее протекает ток.

Аккумуляторы в фонарях и портативных рациях имеют напряжение от 1,5 до 9 вольт. Точное значение зависит от состава и количества элементов в батарее. В бытовой электросети напряжение составляет от 100 до 240 вольт в зависимости от местоположения.

Гром и молния

Грозы обычно происходят летом в жаркую погоду; когда горячий воздух, стекающий с поверхности земли, насыщен влагой, они поднимаются. Когда капли воды и кристаллы льда вращаются в воздушных потоках грозовых облаков, они заряжаются электричеством. Крошечные, положительно заряженные кристаллы льда движутся вверх, а отрицательно заряженные градиенты собираются на дне облака.

Подобно тому, как мелкие объекты притягиваются электростатической индукцией от заряженной лески, заряженное облако притягивается к земле. Отрицательный заряд на нижней стороне облака притягивается положительным зарядом на землю, а между ними образуется сильная искра (молния). Грозовой разряд нагревает воздух и вызывает его расширение, сопровождаемое громовым звуком. Звук движется по воздуху гораздо медленнее, чем свет, поэтому сначала мы видим молнию, а затем слышим гром.

Когда возникает трение, металлы не только легко электризуются, но и очень хорошо проводят электричество. Поэтому, когда металлический предмет находится в руках человека, заряд проходит через человеческое тело. Электричество, вырабатываемое трением, чаще встречается в материалах, которые являются плохими проводниками, таких как стекло, резина, пластик, смола, эти материалы называются изоляторами. Поскольку через них не передается электричество, их называют статическим электричеством. Фарадей также называл это «обычным» электричеством, но в настоящее время мы везде используем электрический (движущийся) ток. Так что теперь это скорее «обычная» вещь.

Если у вас резиновая или пластиковая подошва и вы ходили по ковру, вы почувствуете легкий удар электрическим током при прикосновении к металлической дверной ручке. Это означает, что ваше тело успело зарядиться электричеством, когда вы натираете подошвы ног об ковер,

Иногда человека поражает электрический ток, когда он выходит из машины и закрывает дверь. Скорее всего, он носит одежду из шерсти или хлопка, которую ударило током синтетическое сиденье автомобиля. Если он также имеет резиновую или синтетическую подошву, обладающую изоляционным эффектом, то заряд может выйти только в том случае, если он коснется металлической ручки. Чтобы избежать этого, вы можете попробовать прикоснуться к чемунибудь металлическому внутри автомобиля перед отъездом. Тогда заряд будет снижен, и неприятных эффектов не будет,

Электричество 2600 лет назад

Примерно в 600 году до нашей эры греческий математик Фалес Милетский обнаружил, что трение меха о Янтарь вызывает притяжение между ними. Более поздние наблюдения доказали, что это притяжение было вызвано дисбалансом электрических зарядов, который называется статическим электричеством.

Археологи также обнаружили доказательства того, что древние люди могли экспериментировать с электричеством. В 1936 году они нашли глиняный горшок с железным прутом и медной пластиной. Он похож на электрохимический (гальванический) элемент.

Неясно, для чего использовался этот инструмент, но он пролил некоторый свет на тот факт, что древние люди, возможно, изучали ранние формы батарей задолго до того, как мы это знаем.

Настоящий электрический заряд

Несмотря на то, что описанные выше поражения электрическим током неприятны, они, тем не менее, безопасны для человека. Однако в некоторых случаях электрический заряд, вызванный трением, может привести к аварийным ситуациям. Были случаи, когда гигантские супертанкеры взрывались, когда их топливные баки смывались мощными водометами. Электрические заряды возникают в результате трения капель воды в струе водяной пушки. Этот эффект похож на эффект воздушного потока, состоящего из капель воды, поднимающихся в грозовом облаке. В таких условиях, несмотря на влажную окружающую среду, могут выделяться искры, угрожающие воспламенением паров бензина, оставшихся в баке.

Самолет также может быть электрически заряжен, когда он сталкивается с грозовым облаком или когда шасси натирается о землю во время посадки. В прошлом искры электрических зарядов, накапливавшиеся на поверхности самолета, представляли опасность взрыва. Но сейчас принимаются необходимые меры предосторожности. Например, шины шасси изготовлены из электропроводящего материала. Коронные (разрядные) электроды прикрепляются к концам крыльев самолета, и все электричество собирается на концах крыльев и «распыляется».

Меры безопасности необходимы и при заправке топливом, так как трение, возникающее в потоке бензина, несомненно, может привести к большому заряду. Поэтому бензиновые насосы сделаны из железа.

Электричество, вырабатываемое трением или статическим электричеством, используется человеком различными способами. Частицы сажи, золы и подобных твердых частиц выбрасываются в воздух вместе с дымом от многочисленных растений и затем возвращаются в виде отложений. Благодаря электростатическим фильтрам, установленным в трубах, около 98% твердых частиц могут быть собраны и удалены до того, как они попадут в воздух. Этот процесс называется электростатическим обеспыливанием. В США она предотвращает выброс 20 миллионов тонн сажи в воздух ежегодно. Специальная система распыления используется при покраске автомобилей и самолетов. Однако каждый раз испаряется до 25% краски. Этого можно избежать, сообщив об электрическом потенциале распыляемым частицам. Частицы электролитической краски начинают притягиваться к поверхности автомобиля или самолета и лучше держатся. Экономия от эффективного использования системы опрыскивания превышает затраты на загрузку оборудования.

Эта же технология используется и для порошковой окраски. Электрифицированное покрытие, кажется, прилипает к металлу, а при нагревании поверхности порошковое покрытие образует тонкий, неразрывный слой.

Электрический заряд и порошок также используются в копировальных аппаратах. Текст или рисунок отображается на объективе и должен быть скопирован. Этот чернобелый чертеж переносится на бумагу как чертеж заряженных и нейтральных областей. Когда черный порошок наносится на бумагу, его притягивают только заряженные участки. Затем порошок прикрепляется к бумаге под действием горячего воздуха. Эта техника копирования называется ксерографией. Он также используется в факсимильных аппаратах.

Влияние электричества на живые организмы

Электричество играет в жизненных процессах важную роль. Лабораторными исследованиями подтверждено его положительное влияние на растения, проращивание семян, фотосинтез. Заряженный поток частиц может защищать сады от биологических вредителей, облучение плодов предотвращает процесс гниения.

Действие электрического тока на человека

В статистике производственных травм электротравматизм имеет низкий показатель. Опасность его состоит в том, что пораженный током не может самостоятельно оказать себе помощь. Электрический ток оказывает термическое, биологическое, электролитическое воздействие. Сопротивление организма человека зависит от параметров цепи, физиологического состояния, условий окружающей среды.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]