Скалярное поле
К примеру, мы можем измерять температуру зимой в различных точках комнаты.
При этом, чем ближе к батарее центрального отопления и чем выше к потолку, тем выше будет температура. А в точках у пола и в отдалении от нагретой батареи температура будет ниже на несколько градусов.
Рассмотрим трехмерное пространство (рис. 1) и какую-нибудь точку, расположенную в этом пространстве. Обозначим точку большой латинской буквой, например P.
Рис. 1. Каждой точке в трехмерном пространстве в соответствие поставлены три числа на осях
Этой точке поставлены в соответствие три числа x, y, z, лежащие на осях Ox, Oy, Oz. Такие числа называют координатами точки. Обычно математики записывают координаты точки рядом с ее названием: \(\large P\left( x ; y ; z \right)\).
Мы можем дополнительно поставить в соответствие этой точке четвертое число – температуру t в градусах Цельсия (рис. 2).
Рис. 2. Пример распределения температуры в комнате, во время сезона отопления
Составим таблицу, в которой будут содержаться координаты точек пространства и температура в этих точках. Так мы упорядочим информацию о распределении температуры в комнате.
По такой таблице можно построить графики, на которых изобразим, как именно температура будет зависеть от какой-либо координаты пространства.
Эта таблица и графики содержат информацию о поле температур.
Так как распределенная по комнате температура является скалярной величиной, то поле температуры называют скалярным. А таблица задает скалярную функцию, описывающую распределение температуры в комнате.
Такая функция связывает координаты точки и значение физической величины – температуры в этой точке.
Это обычная функция, наподобие тех, с которыми вам приходилось решать примеры на школьной математике. Только эта функция зависит не от одной переменной x, а от трех переменных величин — координат x, y, z точек, расположенных в трехмерном пространстве.
\[\large \varphi = f \left( x ; y ; z \right)\]
А четвертая величина – температура, будет являться значением этой функции. Наподобие числа «y» для функции одной переменной «x».
Поле магнитной ориентации
Что такое постоянный магнит? Он состоит из набора атомов, каждый из которых служит крохотным магнитиком с крохотным магнитным полем, и все они выровнены так, что совместно создают большое магнитное поле. Магнит изображён на рис. 3, и в нём каждый атом направлен вверх. В этом случае поле ориентации Θ(x,t) говорит нам насколько далеко в момент времени t атом в точке x отклонился от вертикали. Θ, короче говоря, будет углом между магнитиком каждого атома и вертикалью. Анимация на рис. 3 показывает волну в магните, в котором направления атомных магнитов колеблются влево и вправо. Над магнитом зелёным показан график Θ(x,t); и снова он выглядит точно так же, как и в предыдущих случаях.
Векторное поле
Предположим, что в углу комнаты лежит большой магнит. А мы ходим по комнате со шнурком, к одному концу которого привязан железный гвоздь. Второй конец шнурка держим в горизонтально вытянутой руке.
Расхаживая по комнате, мы заметим, что в некоторой области комнаты шнурок с гвоздем отклоняется от вертикального положения в сторону магнита.
Чем ближе мы подходим к магниту, тем сильнее он притягивает гвоздь. Тем больше усилий нужно приложить, чтобы удержать шнурок в руке.
Такие поля, наподобие поля, созданного магнитом, называют силовыми полями.
Поля силовые – это векторные поля, так как распределенная по комнате и измеренная в различных точках комнаты сила – это векторная величина.
Теперь каждой точке комнаты мы можем поставить в соответствие не только координаты точки, но и вектор F силы, действующей на гвоздь в этой точке.
Составим таблицу и запишем в нее координаты каждой выбранной точки комнаты и координаты вектора силы, с которой магнит действует на гвоздь в этой точке.
У вектора силы в каждой отдельной точке будут свои характеристики — длина и направление. Поэтому, таблица, содержащая информацию о силе в каждой точке комнаты, будет содержать 6 строк. Три строки – это координаты точки, и три строки – координаты вектора.
Такая таблица задает функцию, которую математики называют сокращенно «вектор-функцией».
Вектор-функцию, описывающую векторное поле, можно обозначить так:
\(\large \overrightarrow{A \left( P \right)} \) – вектор-функция. Подробнее можно записать ее таким способом:
\[\large \boxed{ \overrightarrow{A \left( P \right)} = A_{x}\left( x ; y ; z \right) \cdot \vec{i} + A_{y}\left( x ; y ; z \right) \cdot \vec{j} + A_{z}\left( x ; y ; z \right) \cdot \vec{k} }\]
\( A_{x}\left( x ; y ; z \right) ; A_{y}\left( x ; y ; z \right) ; A_{z}\left( x ; y ; z \right) \) – это компоненты (части) вектор функции.
\( \vec{i} ; \vec{j} ; \vec{k} \) – орты.
Обычно в школе такие функции не изучают. Но вы теперь знаете, что кроме обычных — скалярных функций, существуют вектор-функции.
Из записи видно, что векторная функция отличается от скалярной тем, что имеет три компоненты (части). Каждая компонента (часть) зависит от трех координат точки P пространства.
Строки
Строковые значения могут содержать любые символы. Основное ограничение накладывается на длину.
Строки могут быть фиксированной или переменной длины. Во втором случае обычно устанавливается максимально возможный размер. Наиболее распространенное ограничение по длине для строк в БД — 255 символов.
Названия строковых типов полей в разных СУБД могут отличаться. Наиболее популярные:
- CHAR — фиксированная длина до 255 символов. Если размер строки меньше установленного, она будет дополнена пробелами.
- VARCHAR, TINYTEXT — переменная длина до 255 символов, для хранения размера тратится дополнительный байт.
- TEXT, MEMO — переменная длина до 65.535 символов.
- MEDIUMTEXT — максимум 16.777.215 знаков.
- LONGTEXT — максимально 4.294.967.295 символов в строке.
Строковый тип поля базы данных позволяет хранить в нем пароли, короткие описания, анкетные данные, адреса, номера телефонов, статьи. С этой информацией не проводятся никакие математические операции. Строки могут сравниваться в лексикографическом порядке.
Очень большие фрагменты текста могут также храниться в полях типа BLOB, которые рассмотрены ниже.
Возможные ограничения целостности: длина строки, обязательность, значение по умолчанию.
Какое поле называют стационарным
Многие процессы, происходящие вокруг нас, изменяются во времени. Например, температура в полдень жаркого летнего дня будет выше, чем температура перед закатом этого же дня. Иными словами, скалярная величина – температура воздуха на улице, а значит и, ее поле, изменяются со временем.
В противоположность этому, поле температуры в закрытом помещении зимой изменяться не будет. Конечно, если батареи центрального отопления будут иметь одинаковую температуру в течение продолжительного времени.
Величины и процессы, изменяющиеся во времени, называют нестационарными. А стабильные, не изменяющиеся с течением времени величины – стационарными.
Если поле не изменяется с течением времени, его называют стационарным. А если изменяется – тогда нестационарным.
Понятие квантовых полей
Помимо проблемы физической реальности элементарных частиц, необходимо изучить, как они взаимодействуют.
Например, две частицы массы взаимодействуют через притягивающую силу — гравитационную силу, так как считается, что везде есть гравитационное поле, которое несет информацию о массе, и заставляет две частицы двигаться навстречу друг другу, что мы называем «гравитационной притягивающей силой».
В этом контексте гравитационное поле — это поле. Но что такое поле?
Все ли поля можно почувствовать
Мы можем чувствовать поле температур, благодаря тому, что на коже у нас содержатся особые рецепторы, способные воспринимать температуру окружающей среды.
Однако, не все поля люди могут ощущать. Например, мы невосприимчивы к магнитным и электрическим полям, потому, что у нас нет органа, способного улавливать их изменения.
Как же тогда мы узнали о электрических и магнитных полях? Мы нашли тех, кто может чувствовать эти поля.
Некоторые рыбы способны улавливать изменение электрического поля. Например, электрический скат (рис. 3) улавливает электрические сигналы и благодаря этому прекрасно ориентируется. У него есть для этого специальные органы, в отличие от человека. Отдельные скаты способны генерировать электрические разряды напряжением до 200 вольт.
Рис. 3. Электрический скат умеет чувствовать электрическое поле
Электрический угорь (рис. 4) может достигать 2,5 метров в длину. Он способен не только улавливать электрические поля, но и генерировать мощные электрические разряды напряжением до 860 Вольт и силой тока до 1 Ампера. Использует их, преимущественно охотясь на добычу, или спасаясь от других хищников.
Рис. 4. Электрический угорь чувствует электрическое поле и может вырабатывать электрические импульсы
Способность улавливать изменение электрического поля называют электрорецепцией. Ее обнаружили у некоторых рыб, амфибий и млекопитающих – утконоса и ехидны. Она используется для охоты, общения и улавливания магнитного поля земли.
Перелетные птицы, например, журавли (рис. 5), содержат орган, способный улавливать изменение магнитного поля Земли. Благодаря этому они ориентируются в пространстве во время перелетов в теплые края.
Рис. 5. Перелетные птицы ориентируются по магнитному полю Земли
Как мы можем обнаружить поле без помощи животных?
Для обнаружения электрического поля мы будем использовать электрический заряд. Потому, что поле действует электрической силой на заряды, помещенные в него.
А, чтобы обнаружить магнитное поле, мы можем воспользоваться небольшим магнитом, или железным предметом. Потому, что магнитное поле будет воздействовать на них.
Воздействие электрического поля на жизнь и здоровье человека
Электрическое поле волны низкой частоты, которые образуют заряд на теле человека и остаются на довольно неглубоком расстоянии от его поверхности. Протекающие в человеческом теле токи могут изменить направление своего движения под воздействием полей с переменным электротоком. Именно по этой причине некоторые люди чувствуют «шевеление» волос, когда находятся на территории воздушных линий электропередач переменного тока.
Электрическое поле может нанести человеку непоправимый вред. Как правило, негативное воздействие электричества происходит, когда люди регулярно пользуются мобильными телефонами.
Ещё один пример возможного наблюдения электрического поля в повседневной жизни – его возникновение вблизи дисплеев телевизоров с кинескопом. Если поднести руку к экрану такого телеприёмника, волоски на ней словно «вздыбятся». Это явление происходит именно из-за воздействия электрического поля.
Еще рекомендую посмотреть лекцию профессора на тему «Электрическое поле»:
Как обозначают поля на рисунках
Рассмотрим часть карты мира. Обратим внимание на то, что области частей карты закрашены различными цветовыми оттенками (рис. 6).
Рис. 6. Различные уровни высот на карте раскрашены разными цветами
Так же, в одном из углов карты можно заметить разноцветную табличку, наподобие, нарисованной поверх карты на рисунке. На ней нарисована шкала высот и глубин и, рядом с каждым оттенком записаны цифры, обозначающие высоту или глубину в метрах.
Примечание: Высоты и глубины на местности обозначают с помощью областей, имеющих различные цвета, для наглядности. Чем ближе к красному цвету, тем выше, а чем ближе к фиолетовому, тем глубже.
По краям цветовых областей проведены тонкие границы, они ограничивают области, имеющие одинаковый уровень высот. Такие границы называют линиями уровня.
Высота или уровень – это скалярная величина. Поэтому, мы можем сказать, что с помощью цветных областей и линий на их границах задано поле, описывающее распределение высот на поверхности Земли.
Скалярное поле можно изобразить с помощью линий уровня.
Вспомним теперь пример с магнитом и гвоздиком. В каждой точке комнаты можно нарисовать вектор силы, с которой магнит притягивает железный гвоздь (рис. 7).
Рис. 7. Силы выстраиваются вдоль некоторых линий, их называют силовыми линиями поля
Чем ближе к магниту, тем больше сила притяжения, тем длиннее векторы. Можно обратить внимание, что векторы силы как бы располагаются вдоль некоторых линий. Они дополнительно проведены пунктиром на рисунке. Видно, так же, что эти линии искривлены.
Такие линии, вдоль которых выстаиваются векторы силы, называют силовыми линиями. Силовые поля – векторные.
Векторные поля изображают с помощью силовых линий. Вдоль таких линий выстраиваются векторы сил. Эти линии имеют и другие названия.
Электрический заряд
Понятие электрического заряда занимает центральное место в классической теории электромагнетизма. Электрическим зарядом в физике называется величина, которая характеризует способность объектов входить в электрические взаимодействия. Следует подчеркнуть, что тела с одноимёнными зарядами всегда отталкиваются, а тела с разноимёнными – притягиваются друг к другу.
Электрический заряд
Фундаментальная характеристика заряда заключается в его двойственной природе: заряды бывают и положительными, и отрицательными. Так, все заряженные тела условно делятся физиками на два подтипа, при этом все тела одного из подтипа отталкивают друг друга, но притягивают тела из второго подтипа. Например, если частица А отталкивает частицу В, но частица А притягивает частицу С, то частица В тоже будет притягивать частицу С.
Физики до сих пор не выяснили, почему тела обладают этим глобальным, универсальным и, при ближайшем рассмотрении, элементарным свойством. Тем не менее, термины «отрицательный заряд» и «положительный заряд» являются противоположными проявлениями одного и того же качества.
Заряженная частица всегда рождается в паре с частицей противоположного заряда. Например, пара положительно и отрицательно заряженных электронов (позитрон и негатрон) появляется на свет посредством распадения фотона. При этом процессе изменения заряда не происходит, другими словами, изменение заряда равно нулю до и после «превращения» фотона.
Чтобы понять, в чём заключается сущность данной скалярной величины и из чего состоит электрическое вещество, следует изучить два фундаментальных свойства электрического заряда: квантование и сохранение заряда.
Принцип квантования заряда
Даже начинающий физик знает: в природе электрические заряды состоят из дискретных зарядов, имеющих постоянную величину, которая характеризуется как заряд электрона и обозначается символом е. Например, положительный заряд позитрона и отрицательный заряд негатрона равны по своей величине. Квантование заряда – это и есть природное уравнивание величин зарядов двух разноимённо заряженных частиц. Важное понятие в терминологии квантования – дискретность заряда. Согласно новейшим физическим теориям, заряд квантуется, то есть обладает свойством дискретности: один заряд состоит из минимальных порций зарядов, которые далее разделить невозможно.
Принцип сохранения заряда
Этот принцип следует из природы «рождения» двух миркотел, имеющих разноимённые заряды. Это фундаментальный эмпирический закон, не имеющий противоречий ни в одном из сделанных до сегодняшнего дня исследований. Дословно принцип сохранения гласит: в закрытой системе электрический заряд, носящий и другое название – алгебраическая сумма двух разноимённых зарядов, –остаётся постоянным.
Связь между скалярными и векторными полями
Скалярному полю можно поставить в соответствие векторное поле. Вернемся к примеру обозначения высот на карте (рис. 6). Мы знаем, что на карте имеются области, на которых присутствуют резкие перепады высот. На таких участках есть несколько градаций цветовых оттенков, а области, имеющие различные цвета, в таких местах располагаются чаще.
Чтобы обозначить резкие перепады высот, придумали использовать специальный вектор – вектор градиента. Он описывает, как быстро изменяется скалярная величина – например, высота на карте местности.
Этот вектор обозначают так:
\[\large \boxed{ \overrightarrow{grad \left( h \right)} }\]
Примечание: Градиент, от слова градация – его можно перевести, как сорт, или изменчивость. Например, градации яркости имеют различные оттенки серого цвета. В школьной физике вектор градиента обычно не рассматривают.
Градиент направлен в сторону наибольшего возрастания физической величины. А длина вектора градиента равна скорости, с которой возрастает физ. величина в этом направлении.
На разных участках карты присутствуют различные перепады высот, где-то высота изменяется быстрее, а где-то — медленнее. Значит, в различных областях местности вектор градиента будет иметь разную длину.
А если в пространстве распределена векторная величина, то говорят, что задано поле такой физ. величины.
Так, мы получили два связанных поля – скалярное поле высоты и векторное поле градиента, описывающее скорость изменения высоты в различных областях местности.
Для примера, описывая электрическое поле мы будем использовать две величины – скалярную — потенциал электростатического поля и векторную – напряженность электрического поля. Эти величины связаны между собой с помощью вектора градиента.
Электроемкость, конденсатор и напряженность электрического поля
Величина С, равная заряду q, который требуется сообщить проводнику с целью повышения его потенциала, называется электроёмкостью.
Электроёмкость описывает инертность заряжаемого вещества, которое может проводить электрический ток, или, другими словами, его сопротивляемость повышению потенциала. Формула, которая характеризует принцип электроёмкости системы:
Размер и форма проводника формируют величину электроёмкости, как и свойства диэлектрика, который разделяет проводники. В физике имеет значение один тип систем, сосредоточивающий электрическое поле в определённой месте пространства. Он носит название «конденсатор», который, в свою очередь, состоит из проводников, именуемых обкладками.
Данный тип систем являет собой конфигурацию проводников, которую составляют две плоские проводящие пластины, расположенные параллельно друг другу на маленьком расстоянии и отграниченные слоем диэлектрика.
Однородные и неоднородные поля
Поле однородное, если в каждой точке пространства оно имеет одно и то же значение распределенной величины.
Например, температура во всех точках пространства имеет одно и то же значение. Или, электрическое поле действует на помещенный в него заряд во всех точках пространства с одной и той же силой.
Однородные силовые поля изображают прямыми линиями, расстояние между которыми не изменяется (рис. 8а).
Рис. 8. Линии однородного – а) и неоднородного – б) поля
Распределенные заряды могут создавать однородные поля. Электрическое поле, существующее между двумя заряженными параллельными плоскостями, однородное.
Если же в разных точках пространства поле действует на пробный заряд с различными силами, тогда поле называют неоднородным. Линии неоднородных полей кривые и расстояние между ними изменяется (рис. 8б).
Поле неоднородное, если в разных точках пространства оно имеет различные значения распределенной величины.
Например, поле магнита – это неоднородное поле, потому, что сила воздействия магнита возрастает по мере приближения к нему. Электрическое поле вокруг точечного заряда, так же неоднородное, потому, что сила воздействия на пробный заряд возрастает с уменьшением расстояния до заряда, создавшего поле.
По силовым линиям можно узнать величину поля. Чем гуще располагаются линии поля в какой-либо области, тем больше величина поля в этой области.
Потенциальная энергия электрического заряда и потенциальность полей
Заряды наполняют электрическое поле. Они двигаются по некоторым замкнутым траекториям. Величины работы их сил равняются нулю, и потому эти силы (или силовые поля) именуют потенциальными. Считается, что некоторые виды электрических полей, в частности, электростатическое поле, обладает свойством потенциальности изначально. Это доказанная теория, и она не требует новых исследований.
Потенциальная энергия
Благодаря свойству потенциальности физики могут судить о том, что потенциальная энергия присуща каждому электрическому заряду в конкретном поле. Наглядно проиллюстрировать этот принцип можно так: в пространстве имеется конкретная точка, в которую может быть перемещён конкретный заряд, величина потенциальной энергии которого будет равна нулю.
Силовые линии
Из закона потенциальности полей вытекает концепция его силовых линий. В действительности подобных объектов в вещественном виде не существует. Это графический инструмент, который позволяет изобразить электрическое поле для визуального схематического наблюдения и исследования. Через представление густоты и числа линий можно проиллюстрировать направление напряжённости поля, а также его величину.
Изображение силового поля
Примеры скалярных полей
Это поля распределения скалярных величин — плотности, давления, гравитационного и электростатического потенциалов, температуры, высот и т. п.
Поле плотности зарядов
Когда в трехмерном пространстве распределены заряды, мы можем говорить о плотности такого распределения. Плотность зарядов – величина скалярная. Ее распределение задает скалярное поле, описывается скалярной функцией.
Поле плотности тел
Если в пространстве распределена масса, то существует плотность распределения массы. Плотность тела – это скалярная функция, она задает скалярное поле.
Поле давления звуковой волны
Пусть в газе или жидкости распределяется звуковая волна. Звуковые волны являются поперечными волнами. По мере распространения волны в газе или жидкости возникают области сгущения и разряжения. Потому, что колеблется давление. Оно в различных точках пространства отличается. То есть, оно зависит от положения точки в пространстве. Когда скалярная величина – давление, распределена в пространстве, ее распределение описывается скалярной функцией. Эта функция задает скалярное поле.
Поле гравитационного потенциала — распределение потенциальной энергии
По закону всемирного тяготения, тела, имеющие массу, взаимно притягиваются. А если есть взаимодействие, то имеется потенциальная энергия такого взаимодействия. Распределение потенциальной энергии задается скалярной функцией, эта функция описывает скалярное поле и называется гравитационным потенциалом.
Поле распределения электрического потенциала
Заряды, находящиеся на некотором расстоянии, притягиваются, или отталкиваются. Значит, существует потенциальная энергия их взаимодействия. Распределение энергии описывается потенциалом системы заряженных частиц. Электрический потенциал является скалярной функцией, описывающей скалярное поле.
Виды физических полей тела человека. Их источники
ИК-излучение тела человека измеряют тепловизорами в диапазоне 3-10 мкм, где оно максимально.
Акустические поля
Диапазон собственного акустического излучения ограничен со стороны длинных волн механическими колебаниями поверхности тела человека (0,01 Гц), со стороны коротких волн ультразвуковым излучением, в частности, от тела человека регистрировали сигналы с частотой порядка 10 МГц.
В порядке возрастания частоты три диапазона акустического поля включают в себя:
1) низкочастотные колебания (частоты ниже 103 Гц);
2) кохлеарную акустическую эмиссию (КАЭ) — излучение из уха человека (v ~103 Гц);
3) ультразвуковое излучение (v ~ 1-10 МГц).
Источники акустических полей в различных диапазонах частот имеют разную природу. Низкочастотное излучение создается физиологическими процессами: дыхательными движениями, биением сердца, током крови в кровеносных сосудах и некоторыми другими процессами, сопровождающимися колебаниями поверхности человеческого тела в диапазоне приблизительно 0,01 — 103 Гц. Это излучение в виде колебаний поверхности можно зарегистрировать контактными, либо не контактными методами, однако его практически невозможно измерить дистанционно с помощью микрофонов. Это связано с тем, что идущие из глубины тела акустические волны практически полностью отражаются обратно от границы разуй раздела «воздух-тело человека» и не выходят наружу в воздух из тела человека. Коэффициент отражения звуковых волн близок к единице из-за того, что плотность тканей тела человека близка к плотности воды, которая на три порядка выше плотности воздуха.
У всех наземных позвоночных существует, однако, специальный орган, в котором осуществляется хорошее акустическое согласование между воздухом и жидкой средой, — это ухо. Среднее и внутреннее ухо обеспечивают передачу почти без потерь звуковых волн из воздуха к рецепторным клеткам внутреннего уха. Соответственно, в принципе, возможен и обратный процесс — передача из уха в окружающую среду — и он обнаружен экспериментально с помощью микрофона, вставленного в ушной канал.
Источником акустического изучения мегагерцевого диапазона является тепловое акустическое излучение — полный аналог соответствующего электромагнитного излучения. Оно возникает вследствие хаотического теплового движения атомов и молекул человеческого тела. Интенсивность этих акустических волн, как и электромагнитных, определяется абсолютной температурой тела. [4]
Природа биомагнитных полей
Магнитные поля живого организма могут быть вызваны тремя причинами. Прежде всего, это ионные токи, возникающие вследствие электрической активности клеточных мембран (главным образом мышечных и нервных клеток). Другой источник магнитных полей — мельчайшие ферромагнитные частицы, попавшие или специально введенные в организм. Эти два источника создают собственные магнитные поля. Кроме того, при наложении внешнего магнитного поля проявляются неоднородности магнитной восприимчивости различных органов, искажающие наложенное внешнее поле.
Магнитное поле в двух последних случаях не сопровождается появлением электрического, поэтому при исследовании поведения магнитных частиц в организме и магнитных свойств различных органов применимы лишь магнитометрические методы. Биотоки же, кроме магнитных полей, создают и распределение электрических потенциалов па поверхности тела. Регистрация этих потенциалов уже давно используется в исследованиях и клинической практике — это электрокардиография, электроэнцефалография и т.п. Казалось бы, что их магнитные аналоги, т.е. магнитокардиография и магнитоэнцефалография, регистрирующие сигналы от тех же электрических процессов в организме, будут давать практически аналогичную информацию об исследуемых органах. Однако, как следует из теории электромагнетизма, строение источника тока в электропроводящей среде (организме) и неоднородность самой это среды существенно по-разному отражаются па распределении магнитных и электрических нолей: (некоторые виды биоэлектрической активности проявляют себя преимущественно в электрическом поле, давая слабый магнитный сигнал, другие — наоборот. Поэтому есть много процессов, наблюдение которых магнитографически предпочтительнее.
Магиитография не требует прямого контакта с объектом, т.е. позволяет проводить измерения через повязку или другую преграду. Это не только практически удобно, по |и составляет принципиальное преимущество перед электрическими методами регистрации данных так как места крепления электродов на коже могут быть источниками медленно меняющихся контактных потенциалов. Подобных паразитных помех нет при магнитографических методах, и потому магнитографня позволяет, в частности, надёжно исследовать медленно протекающие процессы (на сегодняшний день с характерным временем в десятки минут).
Магнитные поля быстро ослабевают при удалении от источника активности, так как являются следствием сравнительно сильных токов в самом работающем органе, в то время как поверхностные потенциалы определяются более слабыми и «размазанными» токами в коже. Поэтому магиитография более удобна для точного определения (локализации) моста биоэлектрической активности.
И, наконец, индукция магнитного поля как вектор характеризуется не только абсолютной величиной, но и направлением, что также может давать дополнительную полезную информацию.
Не следует полагать, что электро- и магнитографические методы конкурируют между собой. Наоборот, именно их комбинация дает наиболее полную информацию об исследуемых процессах. Но для каждого из методов есть области, где применение какого-либо одного из них предпочтительнее. [1]
Магнитокардиография
Сердце — наиболее сильный источник электрических и магнитных полей в организме, поэтому магнитокардиография возникла еще до появления сквидов. Но лишь сквид-магпитометры позволили получать магнитокардиограммы (МКГ) столь же высокого качества, как и электрокардиограммы. (ЭКГ). По внешнему виду сигналы МКГ и ЭКГ очень похожи, нарушения же сердечной деятельности несколько по-разному сказываются на результатах электрических и магнитных измерений. В ряде лабораторий мира сейчас идет процесс накопления соответствующих данных, что позволит систематизировать особенности магнитного проявления различных сердечных заболеваний.
Как уже упоминалось, наиболее ярко достоинства магнитографии проявляются при наблюдепии медленно меняющихся и тем более постоянных сигналов. Так, именно магнитографически были обнаружены постоянные «токи повреждения», возникающие при закупорку коронарной артерии (в экспериментах на собаках).
Другой серьезный успех магнитокардиографии — наблюдение МКГ плода в теле матери. Четкая локализация магнитного поля в районе источника позволила отделить сигналы плода от более сильных сигналов материнского сердца, в то время как электрические сигналы в значительной мере смешаны — из-запространственной размазанности слабых поверхностных токов ЭКГ.
Магиитография позволяет решать и другую важную задачу кардиологии — определение кровотока в сердце. Если наложить небольшое внешнее магнитное поле, то периодический выброс крови сердцем вызовет переменный магнитный сигнал, позволяющий определить объем и скорость движущейся жидкости.
Совсем недавно возникло новое направление в магнитокардиографии, которое сродни рассматриваемым ниже нейромагпитным измерениям, — это МГК высокого разрешения. Суть ее заключается в более «пристальном» изучении тех интервалов сердечного цикла когда мышца спокойна: в это время можно измерить слабые магнитные сигналы, сопровождающие нервные импульсы, распространяющиеся в сердце. Была выявлена интересная особенность эти системы неизменны в течение приблизительно 20 циклов, затем слегка изменяют форму, снова сохраняя ее следующие 5-10 циклов, и т.д. Вероятно, здесь содержится определенная информация о нервных процессах в сердце. [1]
Нейромагнитные поля
При работе мозга, основы которой пока еще во многом загадочны, возникают как электрические, так и магнитные поля. Наиболее сильные сигналы порождаются спонтанной ритмической активностью мозга. С помощью электроэнцефалографии проведена классификация этих ритмов и установлено соответствие между ними и функциональным состоянием мозга (бодрствованием, разными фазами сна) или патологическими проявлениями (например, эпилептическим припадком).
Исследования показали, что электро- и магнитоэнцефалограммы (ЭЭГ и МЭГ) могут сильно отличаться. В кардиографии же сигналы ЭКГ и МКГ очень похожи. Поэтому применение сквид-магнитометров особенно перспективно при исследовании мозга.
Однако различие в ЭЭГ и МЭГ отнюдь не обязательно. Так, в альфа-ритме, т.е. колебаниях с частотой 8-12 Гц, характерном для бодрствующего человека с закрытыми глазами и
спокойном состоянии, магнитные и электрические поля появляются синхронно, т.е. субъект с большим электрическим сигналом альфа-ритма вырабатывает и больший магнитный сигнал. Правда, подобная четкая связь отсутствовала у пациентов с нарушениями ритмической активности.
При сравнении электро- и магнитоэнцефалограмм следует учитывать, что в отличие от других органов мозг практически целиком окружен костной тканью черепа, а ее электропроводность много меньше, чем кожи и самого вещества мозга. Кроме того, естественные отверстия черепа усложняют пути электрического тока, в результате чего картина потенциалов на поверхности головы человека представляет собой сложное наложение пространственных распределений сигналов от довольно удаленных источников внутри мозга. Магнитный же датчик реагирует главным образом па более сильные токи в самой области биоэлектрической активности, что также очень важно, определенным образом ориентированные относительно приемной катушки сквид-магнитометра. Это делает магнитографические методы предпочтительными, поскольку наибольший исследовательский и диагностический интерес представляет изучение сигналов от конкретного источника внутри мозга — без помех, создаваемых другими видами активности. Так, исследования мозга у лиц, страдающих эпилептическими припадками, показали, что магнитографически удается точно обнаружить очаг патологической активности, в то время как на ЭЭГ у отдельных пациентов не регистрировался спектр, характерный для эпилепсии.
Но наиболее ярко преимущества магнитной регистрации проявляются при исследованиях откликов мозга на различные воздействия через органы чувств.
В ряде лабораторий мира проводятся исследования магнитных сигналов, сопровождающих отклики мозга на осязательное, звуковое и зрительное раздражение. Уже первые результаты показали, что эти так называемые вызванные магнитные поля (ВМП) мозга обладают сравнительно простой структурой и по ним можно установить расположение источника биоэлектрической активности в коре головного мозга. Некоторые источники ВМП могут быть достаточно хорошо представлены в виде токового диполя. В ответ на зрительное раздражение возникает токовый диполь в затылочной части головы, на слуховое — в височной части. В ответ на раздражение мизинца правой руки возникает диполь, перпендикулярпый центральной борозде левого полушария. Этот диполь расположен в проекционной зоне чувствительных рецепторов различных частей тела, и именно в том месте, где, как показали нейрохирургические исследования, находится «представительство» мизинца. С помощью магнитографии становится возможным без хирургического вмешательства весьма точно выявить то место в коре мозга, куда приходит и где обрабатывается информация от органов чувств. Столь точно устанавливать положение источника биоэлектрической активности мозга ЭЭГ не позволяет.
Сравнительная простота ряда ВМП дает возможность проводить с ними надежные нейрофизиологические эксперименты. Например, исследовались магнитные поля мозга, вызванные реакцией па решетку из темных и светлых полос, периодически появляющуюся на экране осциллографа. Такой вид стимулирования в исследованиях зрительного восприятия весьма распространен, и его применение связано с современными теоретическими представлениями о восприятии образов. Оказалось, что амплитуда магнитного сигнала в этом случае больше, чем, например, при использовании простой вспышки. Периодически (от восьми до двадцати раз в секунду) предъявляя такую решетку, можно по фазовому отставанию магнитного отклика установить время прохождения сигнала но нервным путям от глаза до определенной области коры головного мозга.
Как установлено, прохождение сигнала — не пассивный процесс.
При этом осуществляется последовательная обработка информации в различных отделах мозга, и по времени этого «активного» запаздывания (т) можно в той или иной мере судить о характере этой обработки.
У большинства испытуемых время запаздывания для обоих полушарий мозга одинаковое, но у некоторых людей разница во времени реакции правого и левого полушарий достигала 0,1 с! Этот факт, по-видимому, может иметь клиническую ценность, например для ранней диагностики склероза.
Точное измерение положения области нервной активности, сопровождающей раздражение того или иного органа чувств, позволяет строить карты активности коры головного мозга: «соматотопическую» для осязания, «тонотопическую» для слуха, «ретинотопическую» для зрения.
Такие карты могут служить основой для понимания процессов переработки поступающей в головной мозг информации и постановки более сложных нейрофизиологических экспериментов на базе полученных результатов. Причем исследования можно проводить па вполне здоровых людях без какого-либо оперативного вмешательства и существенных неудобств для испытуемого.
Магнитография позволяет исследовать процессы не только в коре больших полушарий, но и в глубоких структурах мозга и не только отклики на возбуждение органов чувств, но и более сложные процессы.
Вполне реально создание набора, скажем, из ста чувствительных элементов, одновременно регистрирующих магнитные поля в разных точках вокруг головы человека. Обработка этих данных на ЭВМ даст картину распределения источников поля по всему объему мозга. Такая система во многом схожа с уже существующими системами компьютерной рентгеновской томографии и ЯМР-интроскопии, из которых первая дает полную картину распределения плотности вещества в мозге на реновации данных о поглощении рентгеновских лучей, а вторая — картину распределения определенных химических веществ, полуденную методом ядерного магнитного резонанса. Магнитные методы обещают в перспективе построение трехмерной картины электрической активности мозга.
Магнитные исследования мозга реально ведутся всего лишь несколько лет, но уже первые результаты показали большую перспективность метода. Биомагнетизм оказался не только важной частью биологической науки, но и обеспечил базу для развития других применений, сверхчувствительной магнитометрии.
Наряду с транзистором и лазером детище квантовой механики сквид лишний раз демонстрирует, насколько практичной стала эта удивительная наука, казавшаяся в прошлом столь абстрактной. [1]
Инфракрасное излучение
Наиболее яркую информацию о распределении температур и поверхности тела человека и ее изменениях во времени дает метод динамического инфракрасного тепловидения. В техническом отношении это полный аналог телевидения, только датчик измеряет не оптическое излучение, отраженное от объекта, которое видит человеческий глаз, как в телевидении, а его собственное, не видимое глазом, инфракрасное излучение. Тепловизор состоит из сканера, измеряющего тепловое излучение в диапазоне длин волн от 3 до 10 мкм, устройства для сбора данных и ЭВМ для обработки изображения. Тепловое излучение от разных участков тела последовательно, с помощью колеблющихся зеркал, проецируют на один приемник инфракрасного излучения, охлаждаемый жидким азотом. Тепловизоры передают в 1 секунду 16 кадров. Чувствительность тепловизора при измерении одного кадра — порядка 0,1 К, однако ее можно резко увеличить, используя ЭВМ для обработки изображений.
Акустические поля человека
Поверхность человеческого тела непрерывно колеблется. Эти колебания несут информацию о многих процессах внутри организма: дыхательных движениях, биениях сердца и температуре внутренних органов.
Низкочастотные механические колебания
с частотой ниже нескольких килогерц дают информацию о работе легких, сердца, нервной системы. Регистрировать движения поверхности тела человека можно дистанционными или контактными датчиками в зависимости от решаемой задачи. Например, в фонокардиографии для измерения акустических шумов, создаваемых сердцем, используют микрофоны, устанавливаемые на поверхности тела. Электрические сигналы с датчиков усиливают и подают на регистрирующее устройство либо ЭВМ и по их форме и величине делают заключения о движениях тех или иных участков тела.
Кохлеарная акустическая эмиссия.
Из уха животных и человека могут излучаться звуки — это явление называют кохлеарной акустической эмиссией, поскольку их источник локализован в улитке (cochlea) органа слуха. Эти звуки можно зарегистрировать микрофоном, расположенным в ушном канале. Обнаружен ряд видов кохлеарной акустической эмиссии, среди которых выделяется так называемая спонтанная эмиссия и акустическое эхо.
Спонтанная эмиссия — это самопроизвольное непрерывное излучение звука из ушей человека. Уровень звукового давления достигает 20 дБ, т.е. в 10 раз выше порогового значения 2 • 10 5 Па, которое способно воспринимать ухо человека на частоте 1 кГц. Частоты эмиссии у разных лиц отличаются и лежат в диапазоне 0,5-5 кГц, излучение обладает высокой монохроматичностью. Эмиссия наблюдается в среднем у 25% мужчин и у 50% женщин. Спонтанная эмиссия не имеет никакого отношения к «звону в ушах» — субъективному ощущению чисто нервного происхождения.
Кохлеарная акустическая эмиссия связана с деятельностью так называемых наружных волосковых клеток, расположенных в кортиевом органе улитки. В ответ на приходящую звуковую волну они изменяют свои размеры и вызывают во внутреннем ухе механические колебания, которые способны, распространяясь в обратном направлении, выходить наружу через среднее ухо. Биофизический механизм быстрых изменений геометрии клеток пока неясен, его быстродействие в сто раз выше, чем у мышц.
Из всех видов кохлеарной акустической эмиссии применение в медицине пока что нашло явление акустического эха — излучения звуков из уха спустя некоторое время после подачи в ухо короткого звукового сигнала. Оно используется для диагностики слуха новорожденных в первые несколько дней жизни, когда невозможно использовать обычные методы аудиометрии. Отсутствие эха является тревожным симптомом не только глухоты, но и зачастую сопряженных с ней поражений других отделов центральной нервной системы. Ранняя диагностика позволяет уже с первых дней жизни принять активные меры и в значительной степени ослабить неблагоприятные последствия этого недуга.
Акустическое излучение ультразвукового диапазона.
Тело человека является источником теплового акустического излучения с различными частотами. Обычно акустические волны подходят из глубины тела, отражаются от его поверхности и уходят обратно, однако пьезодатчик, контактирующий с телом, может их зарегистрировать. Особенность акустических волн, распространяющихся в теле человека, в том, что, чем выше частота, тем они сильнее затухают. Поэтому из глубины человеческого тела с расстояний 1 — 10 см могут дойти только тепловые ультразвуковые волны мегагерцевого диапазона с частотами не выше 0,5 — 10 МГц. Интенсивность этих волн пропорциональна абсолютной температуре тела. Для измерения интенсивности теплового акустического излучения используют прибор — акустотермометр. С помощью этого прибора можно, например, измерить температуру тела человека, погруженного в воду.
Существенной областью применения акустотермографии станет измерение глубинной температуры в онкологии, при процедурах, связанных с нагревом опухолей в глубине тела с помощью разных методов: ультравысокими и сверхвысокими частотами, ультразвуком, лазерным излучением. Акустотермография — потенциально единственный неинвазивный метод, способный обеспечить высокое пространственное разрешение за приемлемое время измерения порядка одной минуты. [4]
Заключение
Физические поля человека в настоящее время один из разделов медицинской и биологической физики. Наиболее важное его приложение — это исследование состояния различных органов человека с помощью пассивной регистрации электромагнитного или акустического излучения непосредственно этого органа либо каких-либо других участков тела, связанных с исследуемым органом нервными или гуморальными связями.
Контактные измерения электрического поля в настоящее время находят наибольшее применение в медицине: в кардиографии и электроэнцефалографии. При помощи, которых можно выявить патологии сердца и головного мозга.
И магнитокардиограммы (МКГ) столь же высокого качества, как и электрокардиограммы. Магнитография позволяет исследовать процессы не только в коре больших полушарий, но и в глубоких структурах мозга и не только отклики на возбуждение органов чувств, но и более сложные процессы. При помощи изменения магнитных полей можно судить о физиологическом состояниях мышц, внутренних органов, кожи, глаза.
СВЧ-радиометрия в настоящее время может производить диагностика злокачественных опухолей различных органов: молочной железы, мозга, легких, метастазов, а также функционального состояния коры головного мозга.
ИК-тепловидение это способ оценить кожный кровоток в различных участках тела. Регистрируя размер областей со сниженной температурой, можно определить степень выраженности заболевания, а также эффективность терапевтических мероприятий. При помощи ИК-тепловидения контролируют развитие болезни Рейно.
Оптическое свечение не связано с наличием загрязнений на коже и зависит от функционального состояния пациента, снижаясь в покое и повышаясь с ростом его активности.
Акустические колебания несут информацию о многих процессах внутри организма: дыхательных движениях, биениях сердца и температуре внутренних органов.
Низкочастотные механические колебания
применяютсядля измерения акустических шумов, создаваемых сердцем.
Явление акустического эха используется для диагностики слуха новорожденных в первые несколько дней жизни, когда невозможно использовать обычные методы аудиометрии.
С помощью прибора акустотермометра можно, например, измерить температуру тела человека, погруженного в воду. Существенной областью применения акустотермографии станет измерение глубинной температуры в онкологии, при процедурах, связанных с нагревом опухолей в глубине тела с помощью разных методов: ультравысокими и сверхвысокими частотами, ультразвуком, лазерным излучением.
Таким образом, подводя итог можно сказать, что изучение изменения физических полей человека является очень важным для диагностики многих заболеваний.
Список литературы
1. Годик Э.Э., Гуляев Ю.В. Физические поля человека и животных // В мире науки. — 1990. — №5. — С.75-83.
2. Гуляев Ю.В., Годик Э.Э., Петров А.В., Тараторин А.М. О возможностях дистантной функциональной диагностики биологических объектов по их собственному инфракрасному излучению // Докл. АН СССР. — 1984. — Т.277, — №6. — С.1486-1491
3. Мирошников М.М. Теоретические основы оптико-электронных приборов, 1983г.
4. Антонов В.Ф., Черныш А.М., Вознесенский С.А., Козлова Е.К., 2000г.
Введение
Вокруг любого тела существуют различные физические поля, определяемые процессами, происходящими внутри его. Не составляет в этом смысле исключения и человек. Физические поля, которые генерирует организм в процессе функционирования, называют собственными физическими полями организма человека. [4]
Многочисленные физические методы исследования организма человека, использующие регистрацию собственных физических полей человека, позволяют получить информацию о процессах в организме, которую нельзя получить иными способами.
Ученых интересуют не сами физические поля биологических объектов, а возможность переноса по этим каналам информации, связанной с работой внутренних органов. Изучение физических полей биообъектов методологически очень близко к пассивному дистанционному зондированию Земли, атмосферы и т.д. В применении таких методов накоплен большой опыт. Нет необходимости объяснять, сколь важную информацию о структуре и функционировании объекта они дают. Из-за нестационарности биообъектов необходимо регистрировать сигналы по многим каналам одновременно, включая электрофизиологический контроль. Для получения пространственной структуры поля в каждом канале необходимо использовать матричные или сканирующие антенны. Аппаратура должна быть достаточно быстродействующей, чтобы успевать регистрировать сигналы в динамике, т.е. быстрее, чем изменяется состояние объекта. Практически во всех каналах необходимо тщательное экранирование от помех.
Задача состоит не в разработке принципиально новой аппаратуры, а в применении современной техники дистанционного зондирования в целях исследования биологических объектов и, главное, в создании методики таких исследований. [1]
Так как биологический объект является сложной приемной системой то встает проблема изучения физических полей. Решение этой проблемы возможно только на основе тесной кооперации физиологов, биофизиков, психологов, медиков, а также специалистов отраслевых организаций, разрабатывающих измерительную аппаратуру.
Проблема систематического исследования физических полей биообъектов была поставлена в Институте радиотехники и электроники РАН Ю.В. Гуляевым и Э.Э. Годиком.
Виды физических полей тела человека. Их источники
Вокруг человека существуют электромагнитные и акустические поля (гравитационное поле и элементарные частицы остаются за пределами нашего рассмотрения).
Можно выделить основные 4 диапазона электромагнитного излучения и 3 диапазона акустического излучения, в которых ныне ведутся исследования. [4]
Электромагнитные поля
Диапазон собственного электромагнитного излучения ограничен со стороны коротких волн оптическим излучением, более коротковолновое излучение — включая рентгеновское и γ-кванты — не зарегистрировано. Со стороны длинных волн диапазон можно ограничить радиоволнами длиной около 60 см. В порядке возрастания частоты четыре диапазона электромагнитного поля, представленные на рис.12.1, включают в себя:
1) низкочастотное электрическое (Е) и магнитное (В) поле (частоты ниже 103 Гц);
2) радиоволны сверхвысоких частот (СВЧ) (частоты 109 — 1010 Гц и длина волны вне тела 3-60 см);
3) инфракрасное (ИК) излучение (частота 1014 Гц, длина волны 3-10 мкм);
4) оптическое излучение (частота 1015 Гц, длина волны порядка 0,5 мкм).
Такой выбор диапазонов обусловлен не техническими возможностями современной электроники, а особенностями биологических объектов и оценками информативности различных диапазонов для медицины. Характерные параметры различных электромагнитных полей, создаваемых телом человека, приведены в табл.12.1
Источники электромагнитных полей разные в различных диапазонах частот. Низкочастотные поля создаются главным образом при протекании физиологических процессов, сопровождающихся электрической активностью органов: кишечником (~1 мин), сердцем (характерное время процессов порядка 1 с), мозгом (-0,1 с), нервными волокнами (-10 мс). Спектр частот, соответствующих этим процессам, ограничен сверху значениями, не превосходящими ~1кГц.
В СВЧ и ИК-диапазонах источником физических полей является тепловое электромагнитное излучение.
Чтобы оценить интенсивность электромагнитного излучения на разных длинах волн, тело человека, как излучатель, можно с достаточной точностью моделировать абсолютно черным телом, которое, как известно, поглощает все падающее на него излучение и поэтому обладает максимальной излучающей способностью.
Излучательная способность
тела — количество энергии, испускаемой единицей поверхности тела в единицу времени в единичном интервале длин волн по всем направлениям — зависит от длины волны
X
и абсолютной температуры тела Т.
ИК-излучение тела человека измеряют тепловизорами в диапазоне 3-10 мкм, где оно максимально.
Акустические поля
Диапазон собственного акустического излучения ограничен со стороны длинных волн механическими колебаниями поверхности тела человека (0,01 Гц), со стороны коротких волн ультразвуковым излучением, в частности, от тела человека регистрировали сигналы с частотой порядка 10 МГц.
В порядке возрастания частоты три диапазона акустического поля включают в себя:
1) низкочастотные колебания (частоты ниже 103 Гц);
2) кохлеарную акустическую эмиссию (КАЭ) — излучение из уха человека (v ~103 Гц);
3) ультразвуковое излучение (v ~ 1-10 МГц).
Источники акустических полей в различных диапазонах частот имеют разную природу. Низкочастотное излучение создается физиологическими процессами: дыхательными движениями, биением сердца, током крови в кровеносных сосудах и некоторыми другими процессами, сопровождающимися колебаниями поверхности человеческого тела в диапазоне приблизительно 0,01 — 103 Гц. Это излучение в виде колебаний поверхности можно зарегистрировать контактными, либо не контактными методами, однако его практически невозможно измерить дистанционно с помощью микрофонов. Это связано с тем, что идущие из глубины тела акустические волны практически полностью отражаются обратно от границы разуй раздела «воздух-тело человека» и не выходят наружу в воздух из тела человека. Коэффициент отражения звуковых волн близок к единице из-за того, что плотность тканей тела человека близка к плотности воды, которая на три порядка выше плотности воздуха.
У всех наземных позвоночных существует, однако, специальный орган, в котором осуществляется хорошее акустическое согласование между воздухом и жидкой средой, — это ухо. Среднее и внутреннее ухо обеспечивают передачу почти без потерь звуковых волн из воздуха к рецепторным клеткам внутреннего уха. Соответственно, в принципе, возможен и обратный процесс — передача из уха в окружающую среду — и он обнаружен экспериментально с помощью микрофона, вставленного в ушной канал.
Источником акустического изучения мегагерцевого диапазона является тепловое акустическое излучение — полный аналог соответствующего электромагнитного излучения. Оно возника
1Следующая ⇒
Рекомендуемые страницы:
Примеры векторных полей
Это поля распределения векторных величин – сил, скоростей и т. д.
Гравитационное поле сил
Сила всемирного тяготения – это вектор, значит поле, описывающее гравитационное притяжение тел, будет векторным.
Поле скоростей потока жидкости
Когда жидкость течет, одни ее части в потоке двигаются быстрее других. Это значит, что скорости частиц жидкости различаются. Распределение скоростей частиц потока можно описать полем. Скорость – это вектор, значит, поле скоростей потока жидкости – это векторное поле.
Поле Кулоновских сил
Нам известно, что покоящиеся заряды притягиваются, или отталкиваются благодаря Кулоновским силам. Силы такого взаимодействия распределяются в пространстве и задают поле. Это электростатическое поле, оно является векторным полем напряженности.
Поле магнитных сил
Движущиеся заряды взаимодействуют благодаря магнитным полям. Индукция магнитного поля описывает, как сила взаимодействия изменяется в пространстве. Поэтому, индукция магнитного поля является вектор-функцией, задающей векторное магнитное поле.
Примечание: По сути, индукция магнитного поля – это сила, действующая на движущийся заряд со стороны других движущихся зарядов.
Напряжённость электрического поля
Напряжённость электрического поля – второй по значимости термин в теории об электричестве после электрического заряда. Если естествоиспытатель знает всё хотя бы об этих двух понятиях, он сможет проводить простейшие опыты с электричеством и подкреплять их знаниями из элементарного курса физики.
Напряжённость – это сила, воздействующая на отдельный статичный заряд. Исходя из общепринятых норм можно сказать, что напряжённость электрического поля обозначается символом Е. Стоит отметить, что напряжённость является векторной величиной, а электрический заряд – скалярной.
Статья — напряженность магнитного поля.
Напряжённость электрического поля
Выводы
- Все измеряемые нами величины можно разделить на скалярные, не имеющие направления и, векторные – направление имеющие.
- Говорят, что задано поле физической величины, когда эта величина распределена в пространстве.
- В пространстве могут распределяться не только скалярные величины, но и векторные величины.
- Если в пространстве распределена скалярная величина, то поле называют скалярным, а если — векторная величина, то поле — векторное.
- Поле стационарное, если оно не изменяется со временем. А если изменяется – тогда поле нестационарное.
- Люди могут ощущать не все поля. Но обнаружить поле можно с помощью тел, или приборов, чувствительных к этим полям. Например, электрическое поле можно обнаружить по его действию на заряды.
- Поля на рисунках удобно изображать с помощью специальных линий. Скалярные поля удобно обозначать с помощью линий уровня.
- Векторные поля изображают с помощью линий, вдоль которых направлены распределенные в пространстве векторы. Такие линии носят название силовых линий, линий напряженности поля, линий индукции поля.
- Векторные и скалярные поля можно связать. Для этого можно использовать специальный вектор – вектор градиента.
- Однородное поле в каждой точке пространства оно имеет одно и то же значение распределенной величины. Однородные силовые поля изображают прямыми линиями, расстояние между которыми сохраняется.
- Неоднородное поле в разных точках пространства оно имеет различные значения распределенной величины. Неоднородные поля изображают кривыми линиями, расстояние между ними изменяется.
- Чем гуще располагаются линии поля в какой-либо области, тем больше его значение в этой области.
Обычные поля, описывающие обычные вещи
Поле Z(x,t) может представлять множество разных физических величин. К примеру: • Высоту верёвки, протянутой через комнату. • Высоту воды в реке. • Плотность кристалла или газа. • Положение атомов в магните. • Скорость ветра. • Температуру, плотность или давление воздуха.
В любом из этих случаев существует поле Z(x,t): поле высоты, поле плотности, поле ориентации, поле ветра, поле температуры. Его значение в виде функции пространства и времени сообщает нам высоту, плотность, ориентацию, скорость ветра или температуру какой-то среды – верёвки, реки, кристалла, газа, магнита, воздуха – во всех местах в любой момент времени. Его уравнение движения показывает, как себя в принципе может вести Z(x,t). Также оно показывает, как предсказывать поведение Z(x,t) в будущем, если нам точно известно его поведение в настоящем и прошлом.
В каждом примере есть поле и среда, и мы не должны путать поле со средой. Поле просто описывает и характеризует одно из множества свойств соответствующей среды. У совершенно разных сред могут быть очень похоже ведущие себя поля с очень похожими волнами – мы это ещё увидим.
Ещё раз разъясню момент, часто вызывающий непонимание. В общем поле может не иметь ничего общего с физическим расстоянием в пространстве. Да, в статьях 3 и 4 я использовал пример волы на верёвке для иллюстрации того, какой может быть Z(x,t), поскольку это красиво и интуитивно понятно. Также я часто строил графики Z(x,t) для волн. Это может создать у вас ложное впечатление, что Z(x,t) всегда связана с волнами, заставляющими физический объект (типа верёвки) двигаться на расстояние Z в направлении, перпендикулярном оси х. Но это не так, что и продемонстрируют нам три из четырёх наших примеров.