Система условных обозначений отечественных интегральных микросхем


Типы электронных схем

В радиоэлектронике различают несколько видов схем: принципиальные, монтажные, блок-схемы, карты напряжений и сопротивлений.
Принципиальные схемы

Такая электросхема дает полное представление обо всех функциональных узлах цепи, типах связей между ними, принципе работы электрооборудования. Принципиальные схемы обычно используются в распределительных сетях. Их разделяют на два типа:

  • Однолинейный. На таком чертеже изображают только силовые цепи.
  • Полный. Если электроустановка несложная, то все ее элементы могут быть отображены на одном листе. Для описания аппаратуры, имеющей в составе насколько цепей (силовых, измерительных, управления) изготавливают чертежи для каждого узла и располагают их на разных листах.

Блок-схемы

Блоком в радиоэлектронике называют независимую часть электронного устройства. Блок – понятие общее, в его состав может входить как небольшое, так и значительное количество деталей. Блок-схема (или структурная схема) дает только общее понятие об устройстве электронного прибора. На ней не отображаются: точный состав блоков, количество диапазонов их функционирования, схемы, по которым они собраны. На блок-схеме блоки обозначаются квадратами или кружками, а связи между ними – одной или двумя линиями.

Направления прохождения сигнала обозначаются стрелками. Названия блоков в полном или сокращенном виде могут наноситься непосредственно на схему. Второй вариант – нумерация блоков и расшифровка этих номеров в таблице, размещенной на полях чертежа. На графических изображениях блоков могут отображаться основные детали или наноситься графики их работы.

Монтажные

Монтажные схемы удобны для самостоятельного составления электроцепи. На них указывают места расположения каждого элемента цепи, способы связи, прокладку соединительных проводов. Обозначение радиоэлементов на таких схемах обычно приближается к их натуральному виду.

Карта напряжений и сопротивлений

Картой (диаграммой) напряжений называют чертеж, на котором рядом с отдельными деталями и их выводами указывают величины напряжений, характерных для нормальной работы прибора. Напряжения ставят в разрывах стрелок, показывающих, в каких местах необходимо производить измерения. На карте сопротивлений указывают значения сопротивления, характерные для исправного прибора и цепей.

Обозначение радиодеталей на электросхемах

Обозначение на схемах радиоэлементов выглядит в виде графических фигур. Так, например, резистор изображают вытянутым прямоугольником с рядом расположенной буквой «R» и порядковым номером. «R15» означает, что резистор по схеме является 15-м по счёту. Тут же прописывают величину рассеваемой мощности сопротивления.
Изменение температуры паяльника с помощью диммера
Особое внимание нужно уделить обозначению на микросхемах. К примеру, можно рассмотреть микросхему КР155ЛАЗ. Первая буква «К» означает широкую область применения. Если будет стоять «Э», то это экспортное исполнение. Вторая литера «Р» определяет материал и тип корпуса. В данном случае это пластмасса. Единица – это тип детали, в примере это полупроводниковая микросхема. 55 – порядковый номер серии. Последующие буквы выражают логику И-НЕ.

С чего начать чтение схем

Начинать надо с чтения принципиальных схем. Для более эффективного обучения нужно изучение теории совмещать с пpaктикой. Необходимо понимать все обозначения на плате. Для этого существует масса информации в интернете. Будет неплохо иметь под рукой справочный материал в книжном формате. Параллельно с усвоением теории нужно научиться паять простые схемы.

Как соединяются радиоэлементы в схеме

Для соединения радиокомпонентов используют платы. Чтобы сделать контактные дорожки, применяют специальный раствор для травления медной фольги на диэлектрическом слое печатной платы. Лишняя фольга удаляется, остаются только нужные дорожки. К их краям припаивают выводы деталей.

Дополнительная информация. Литиевые аккумуляторы, нагреваясь от паяльника, могут вздуться и разрушиться. Чтобы этого не происходило, применяют точечную сварку.

Буквенное обозначение радиоэлементов в схеме

Чтобы расшифровать буквенные обозначения деталей в схеме, нужно воспользоваться специальными таблицами, утверждённые ГОСТом. Первая буква означает устройство, вторая и третья литера уточняют конкретный вид радиокомпонента. Например, F означает разрядник или пpeдoxpaнитель. Полностью буквы FV дают знать, что это пpeдoxpaнитель.

Графическое обозначение радиоэлементов в схеме

Графика схем включает в себя условное двухмерное обозначение радиоэлементов, принятых во всём мире. Например, резистор – прямоугольник, транзистор – круг, в котором линиями показано направление тока, дроссель – растянутая пружинка и т.д.

Начинающий радиолюбитель должен иметь под рукой таблицу изображений радиодеталей. Ниже приведены примеры таблиц графических обозначений радиодеталей.

Таблица графических обозначений радиоэлементов на схеме Таблица 2 Таблица 3 Таблица 4

Для начинающих радиолюбителей важно запастись справочной литературой, где можно найти информацию о предназначении определённого радиокомпонента и его хаpaктеристиках. Как изготовить самостоятельно печатные платы и как правильно паять схемы, можно научиться по видео урокам в сети.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии — это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача — соединять радиоэлементы.

Точка, где соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:

Если пристально вглядеться в схему, то можно заметить пересечение двух проводников

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Чтение электрической схемы

Сама схема, на которой нарисованы условные графические обозначения (УГО), называется принципиальной. Она не только показывает, каким образом соединяются те или иные элементы схемы, но и объясняет, как работает все устройство, показывая принцип его действия. Чтобы добиться такого результата, важно правильно показать отдельные группы элементов и соединение между ними.

Помимо принципиальной, существуют и монтажные. Они предназначены для точного отображения каждого элемента относительно друг друга. Арсенал радиоэлементов огромен. Постоянно добавляются новые. Тем не менее УГО на всех схемах почти одинаково, а вот буквенный код существенно отличается. Существует 2 вида стандарта:

  • государственный, в этот стандарт может входить несколько государств;
  • международный, пользуются почти во всем мире.

Но какой бы стандарт ни применялся, он должен четко показать обозначение радиодеталей на схеме и их название. В зависимости от функционала радиодетали УГО могут быть простыми или сложными. Например, можно выделить несколько условных групп:

  • источники питания;
  • индикаторы, датчики;
  • переключатели;
  • полупроводниковые элементы.

Этот перечень неполный и служит лишь для наглядности. Чтобы легче было разобраться в условных обозначениях радиодеталей на схеме, необходимо знать принцип действия этих элементов.

ОБОЗНАЧЕНИЯ РАДИОДЕТАЛЕЙ

При изготовлении радиоэлектронных устройств, у начинающих радиолюбителей могут возникнуть трудности с расшифровкой обозначений на схеме различных элементов. Для этого был составлен небольшой сборник самых часто встречающихся условных обозначений радиодеталей. Следует учесть, что здесь приводится исключительно зарубежный вариант обозначения и на отечественных схемах возможны отличия. Но так как большинство схем и деталей импортного происхождения — это вполне оправдано. Резистор на схеме обозначается латинской буквой «R», цифра — условный порядковый номер по схеме. В прямоугольнике резистора может быть обозначена номинальная мощность резистора — мощность, которую он может долговременно рассеивать без разрушения. При прохождении тока на резисторе рассеивается определенная мощность, которая приводит к нагреву последнего. Большинство зарубежных и современных отечественных резисторов маркируется цветными полосами. Ниже приведена таблица цветовых кодов.

Далее приводится структура и цоколёвка с обозначением назначения выводов популярных импортных цифровых микросхем серии CD40xx и операционных усилителей LM.

Первая буква — код материала:

А — германий; В — кремний; С — арсенид галлия; R — сульфид кадмия.

Вторая буква — назначение:

А — маломощный диод; В — варикап; С — маломощный низкочастотный транзистор; D — мощный низкочастотный транзистор; Е — туннельный диод; F — маломощный высокочастотный транзистор; G — несколько приборов в одном корпусе; Н — магнитодиод; L — мощный высокочастотный транзистор; М — датчик Холла; Р — фотодиод, фототранзистор; Q — светодиод; R — маломощный регулирующий или переключающий прибор; S — маломощный переключательный транзистор; Т — мощный регулирующий или переключающий прибор; U — мощный переключательный транзистор; Х — умножительный диод; Y — мощный выпрямительный диод; Z — стабилитрон.

Форум по радиодеталям

Форум по обсуждению материала ОБОЗНАЧЕНИЯ РАДИОДЕТАЛЕЙ
РАДИОУПРАВЛЯЕМЫЙ ТРАКТОР ИЗ ОБЫЧНОГО
Переделываем игрушку обычный трактор в радиоуправляемый — фотографии процесса и получившийся результат.

MINILED И MICROLED ДИСПЛЕИ
Что такое OLED, MiniLED и MicroLED телевизоры — краткий обзор и сравнение технологий.
СХЕМЫ ЭЛЕКТРОМАГНИТНЫХ ПИСТОЛЕТОВ
Приводится несколько рабочих схем электромагнитных Gauss Gun. Первая часть сборника.ЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА
Обзор китайского устройства для электролиза воды — фото, видео, описание работы.

Отечественная маркировка микросхем

Типичная маркировка отечественных микросхем выглядит следующим образом: КР580ВГ80А.

Первая буква обозначает специфику микросхемы:

К – ориентация на массовый рынок; Э – экспортное исполнение.

Если первая буква отсутствует, микросхема является узкоспециализированной и сконфигурирована под особые задачи.

Вторая буква в маркировке микросхемы указывает на тип корпуса:

А – пластмассовый (компактный); Б – отсутствует (бескорпусная микросхема); Е – DIP (металл); М – металлокерамика; Н – металлокерамика (компактный); P – DIP (пластик).

Следующая за типом корпуса цифра характеризует принадлежность микросхемы к той или иной конструктивно-технической группе.

1, 4, 8 – гибридные чипы; 1, 5, 6, 7 – полупроводниковые чипы; 3 – плёночное исполнение.

Следующие две цифры обозначают номер серии.

Следующие за серией буквы указывают на функциональное назначение микросхемы.

A – формирователи; Б – модули задержки; БМ – пассивный электронный компонент; БР – активный электронный компонент; В – вычислительный модуль; Г – генератор импульсов; ЕП – источник питания; И – цифровые электронные компоненты; K – коммутационные модули; H – связки компонентов; П – различного рода преобразователи; P – запоминающие модули; У – усилители; Ф – фильтры; X – многофункциональные микросхемы.

За порядковым номером серии следует номер разработки (двухзначный или однозначный).

Последний символ в маркировке микросхем указывает на какие-либо особенности в её электрических характеристиках.

Виды радиодеталей — компания Электрорадиолом Приокский

Понятие «радиодетали» включает в себя всю группу электронных компонентов, которые используются в разнообразной бытовой технике. Перечислить все радиодетали не удастся, но можно выделить основные: резисторы, диоды, микросхемы, трансформаторы, реле, конденсаторы. Классифицируют радиодетали по способу действия в электроцепи:

  • активные — транзисторы, диоды и микросхемы. Транзистор – это полупроводниковый триод, который с помощью входного сигнала способен управлять напряжением в электрической цепи. Транзисторы пришли на смену электронным лампам. Они не только намного компактнее в своих размерах, но и потребляют меньше электричества.Диоды – полупроводники, которые проводят ток только в одном направлении. Они производятся из кремния, имеют два вывода и один электрический переход. Делятся диоды по типу назначения, размеру перехода, конструкции и частотному диапазону. Микросхемы — электронные компоненты, в полупроводниковые подложки которых интегрированы транзисторы, диоды, резисторы, конденсаторы и другие элементы. Микросхемы обрабатывают полученную в виде электрических сигналов информацию. Их классифицирую на аналоговые, цифровые и аналого-цифровые. Производят микросхемы в корпусе и без него.
  • пассивные — резисторы, трансформаторы конденсаторы и катушки индуктивности. Резисторы – это перераспределители электрического тока между компонентами микросхемы. Резисторы классифицируют по назначению, характеру изменения сопротивления, по вольт-амперной характеристике, способу защиты и монтажа, а также по технологии изготовления. Трансформаторы – электромагнитные устройства, которые преобразуют одну систему переменного тока в другую без смены частоты. Трансформатор состоит из одной или нескольких проволочных катушек, которые охвачены магнитным потоком. Бывают трансформаторы силовые, разделительные, импульсные, согласующие, а также трансформаторы напряжения и тока. Конденсаторы – устройства для накопления электрического тока и последующей его отдачи. Они представляют собой системы из нескольких электродов, которые разделены между собой диэлектриками. Классифицируют конденсаторы по типу диэлектриков, которые бывают газообразными, жидким, твёрдыми неорганическими и твёрдыми органическими. Катушки индуктивности – электронные компоненты из изолированного проводника, которые применяются для накопления энергии, подавления помех и ограничения переменного тока.

готова скупить как активные, так и пассивные радиодетали в новом или б/у состоянии. Мы работаем с юридическими и физическими лицами и гарантируем справедливые цены Митинского рынка

Зарубежная маркировка микросхем (по системе Pro Electron)

В Европе и на Западе существует несколько устоявшихся схем маркировки электронных компонентов, каждая из которых имеет незначительные отличия в своей области применения. Но базовые принципы остаются общими для всех, и все они перечислены в классификации, принятой международной ассоциацией Pro Electron.

По классификации Pro Electron маркировка микросхем состоит из трёх буквенных символов, за которыми следует числовое значение.

Первая буква указывает на способ преобразования сигнала в схеме:

T – аналоговое преобразование; S – цифровое преобразование; U – преобразование смешанного типа.

Вторая буква после типа преобразования сигнала не имеет какого-то фиксированного значения (оно выбирается компанией-изготовителем). Исключением является буква «H», всегда обозначающая гибридный принцип работы микросхемы.

В случае с цифровыми электронными компонентами первые две буквы обозначают особенности устройства:

FY – линейка ЭСЛ; GA – слаботочные TTL чипы; GF – стандартные TTL; GJ – производительные TTL; H – комплементарные микросхемы.

Третий символ в маркировке микросхемы указывает на диапазон её рабочих температур:

А) не номинирован; В) от 0 до +70 °С; С) от -55 до +125 °С; D) от -25 до +70 °С; Е) от -25 до +85 °С; F) от -40 до +85 °С; G) от -55 до + 85 °С.

После буквы, обозначающей температурный диапазон, следует четырёхзначное число — это серийный номер чипа.

Вслед за серийным номером в маркировке микросхемы указывается тип корпуса. Данное обозначение может быть двухбуквенным или однобуквенным.

Значение первой буквы при двухбуквенной маркировке:

С – корпус цилиндрической формы; D – DIP корпус (контакты расположены в два ряда по краям микросхемы); Е – DIP корпус с рассеивателем тепла; F – четырёхугольный плоский (двухстороннее размещение контактов); G – четырёхугольный плоский (четырёхстороннее размещение контактов); К – корпус TO-3; М – многорядный корпус; Q – симметричное расположение контактов по четырём краям; R – корпус с четырёхрядным расположением контактов и внешним теплорассеивателем; S – контакты размещены в один ряд; Т – корпус с трёхрядным размещением контактов.

Советуем к прочтению: Фонарь из блока питания кассового аппарата

Значение второй буквы при двухбуквенной маркировке:

G – стеклокерамика; М – металл; Р – пластик; Х – другие материалы.

Если после серийного номера в маркировке микросхемы следует одна буква, её нужно толковать следующим образом:

С – корпус цилиндрической формы; D – корпус из керамики; F – плоский корпус; Р – DIP корпус из пластика; Q – четырёхрядное размещение контактов; Т – миниатюрный корпус из пластика; U – бескорпусная интегральная микросхема.

Следующие после типа корпуса две цифры — это серийный номер электронного компонента. Последняя цифра в маркировке микросхемы — диапазон её рабочих температур. Её следует трактовать следующим образом:

0) не номинирован; 1) от 0 до +70 °С; 2) от -55 до +125 °С; 3) от -10 до +85 °С; 4) от +15 до +55 °С; 5) от -25 до +70 °С; 6) от -40 до + 85 °С.

Надеемся, данная информация поможет вам разобраться в многообразии маркировок, и вы без проблем сможете выбрать и купить микросхемы с нужными характеристиками.

Маркировка и основные параметры

Маркировка варисторов отличается, поскольку каждый производитель этих радиокомпонентов имеет право устанавливать ее самостоятельно. Это, прежде всего, связано с его техническими характеристиками. Например, различия по напряжениям и необходимым уровням тока для его работы.

Вам это будет интересно Как используется эффект Холла: принципы явления и способы применения

Среди отечественных наиболее распространенным является К275, а среди импортных — 7n471k, 14d471k, kl472m и ac472m. Наибольшей популярностью пользуется варистор, маркировка которого — CNR (бывают еще hel, vdr, jvr). Кроме того, к ней прикрепляется цифробуквенный индекс 14d471k, и расшифровывается этот вид обозначения следующим образом:

  1. CNR — металлооксидный тип.
  2. 14 — диаметр прибора, равный 14 мм.
  3. D — радиокомпонент в форме диска.
  4. 471 — максимальное значение напряжения, на которое он рассчитан.
  5. К — допустимое отклонения классификационного напряжения, равное 10%.

Существуют технические характеристики, необходимые для применения в схеме. Это связано с тем, что для защиты различных элементов цепи следует использовать различный тип полупроводникового сопротивления.

Их основные характеристики:

  1. Напряжение классификации — значение разности потенциалов, взятое с учетом того, что сила тока, равная 1 мА, протекает через варистор.
  2. Максимальная величина переменного напряжения — является среднеквадратичным значением, при котором он открывается и, следовательно, величина его сопротивления понижается.
  3. Значение постоянного максимального напряжения, при котором варистор открывается в цепи постоянного тока. Как правило, оно больше предыдущего параметра для тока переменной амплитуды.
  4. Допустимое напряжение (напряжение ограничения) является величиной, при превышении которой происходит выход элемента из строя. Указывается для определенной величины силы тока.
  5. Поглощаемая максимальная энергия измеряется в Дж (джоулях). Эта характеристика показывает величину энергии импульса, которую может рассеять варистор и при этом не выйти из строя.
  6. Время реагирования (единица измерения — наносекунды, нс) — величина, требуемая для перехода из одного состояния в другое, т. е. изменение величины сопротивления с высокой величины на низкую.
  7. Погрешность напряжения классификации — отклонение от номинального его значения в обе стороны, которое указывается в % (для импортных моделей: К = 10%, L = 15%, M = 20% и Р = 25%).

После описания принципа работы, особенностей маркировки и основных характеристик следует рассмотреть сферы применения варисторов.

Буквенные сокращения по радиоэлектронике

Буквенное сокращениеРасшифровка сокращения
AMамплитудная модуляция
АПЧавтоматическая подстройка частоты
АПЧГавтоматическая подстройка частоты гетеродина
АПЧФавтоматическая подстройка частоты и фазы
АРУавтоматическая регулировка усиления
АРЯавтоматическая регулировка яркости
АСакустическая система
АФУантенно-фидерное устройство
АЦПаналого-цифровой преобразователь
АЧХамплитудно-частотная характеристика
БГИМСбольшая гибридная интегральная микросхема
БДУбеспроводное дистанционное управление
БИСбольшая интегральная схема
БОСблок обработки сигналов
БПблок питания
БРблок развертки
БРКблок радиоканала
БСблок сведения
БТКблокинг-трансформатор кадровый
БТСблокинг-трансформатор строчный
БУблок управления
БЦблок цветности
БЦИблок цветности интегральный (с применением микросхем)
ВДвидеодетектор
ВИМвремя-импульсная модуляция
ВУвидеоусилитель; входное (выходное) устройство
ВЧвысокая частота
Ггетеродин
ГВголовка воспроизводящая
ГВЧгенератор высокой частоты
ГВЧгипервысокая частота
ГЗгенератор запуска; головка записывающая
ГИРгетеродинный индикатор резонанса
ГИСгибридная интегральная схема
ГКРгенератор кадровой развертки
ГКЧгенератор качающейся частоты
ГМВгенератор метровых волн
ГПДгенератор плавного диапазона
ГОгенератор огибающей
ГСгенератор сигналов
ГСРгенератор строчной развертки
гссгенератор стандартных сигналов
гггенератор тактовой частоты
ГУголовка универсальная
ГУНгенератор, управляемый напряжением
Ддетектор
двдлинные волны
дддробный детектор
днделитель напряжения
дмделитель мощности
дмвдециметровые волны
ДУдистанционное управление
ДШПФдинамический шумопонижающий фильтр
ЕАССединая автоматизированная сеть связи
ЕСКДединая система конструкторской документации
зггенератор звуковой частоты; задающий генератор
зсзамедляющая система; звуковой сигнал; звукосниматель
ЗЧзвуковая частота
Иинтегратор
икмимпульсно-кодовая модуляция
ИКУизмеритель квазипикового уровня
имсинтегральная микросхема
иниизмеритель линейных искажений
инчинфранизкая частота
ионисточник образцового напряжения
иписточник питания
ичхизмеритель частотных характеристик
ккоммутатор
КБВкоэффициент бегущей волны
КВкороткие волны
квчкрайне высокая частота
кзвканал записи-воспроизведения
КИМкодо-импульсная модуляции
кккатушки кадровые отклоняющей системы
кмкодирующая матрица
кнчкрайне низкая частота
кпдкоэффициент полезного действия
КСкатушки строчные отклоняющей системы
ксвкоэффициент стоячей волны
ксвнкоэффициент стоячей волны напряжения
КТконтрольная точка
КФкатушка фокусирующая
ЛБВлампа бегущей волны
лзлиния задержки
ловлампа обратной волны
лпдлавинно-пролетный диод
лпптлампово-полупроводниковый телевизор
ммодулятор
MAмагнитная антенна
MBметровые волны
мдпструктура металл-диэлектрик-полупроводник
МОПструктура металл-окисел-полупроводник
мсмикросхема
МУмикрофонный усилитель
нинелинейные искажения
нчнизкая частота
ОБобщая база (включение транзистора по схеме с общей базой)
овчочень высокая частота
оиобщий исток (включение транзистора *по схеме с общим истоком)
окобщий коллектор (включение транзистора по схеме с обшим коллектором)
ончочень низкая частота
оосотрицательная обратная связь
ОСотклоняющая система
ОУоперационный усилитель
ОЭобший эмиттер (включение транзистора по схеме с общим эмиттером)
ПАВповерхностные акустические волны
пдсприставка двухречевого сопровождения
ПДУпульт дистанционного управления
пкнпреобразователь код-напряжение
пнкпреобразователь напряжение-код
пнчпреобразователь напряжение частота
посположительная обратная связь
ППУпомехоподавляющее устройство
пчпромежуточная частота; преобразователь частоты
пткпереключатель телевизионных каналов
птсполный телевизионный сигнал
ПТУпромышленная телевизионная установка
ПУпредварительный усили^егіь
ПУВпредварительный усилитель воспроизведения
ПУЗпредварительный усилитель записи
ПФполосовой фильтр; пьезофильтр
пхпередаточная характеристика
пцтсполный цветовой телевизионный сигнал
РЛСрегулятор линейности строк; радиолокационная станция
РПрегистр памяти
РПЧГручная подстройка частоты гетеродина
РРСрегулятор размера строк
PCрегистр сдвиговый; регулятор сведения
РФрежекторный или заграждающий фильтр
РЭАрадиоэлектронная аппаратура
СБДУсистема беспроводного дистанционного управления
СБИСсверхбольшая интегральная схема
СВсредние волны
свпсенсорный выбор программ
СВЧсверхвысокая частота
сгсигнал-генератор
сдвсверхдлинные волны
СДУсветодинамическая установка; система дистанционного управления
СКселектор каналов
СКВселектор каналов всеволновый
ск-дселектор каналов дециметровых волн
СК-Мселектор каналов метровых волн
СМсмеситель
енчсверхнизкая частота
СПсигнал сетчатого поля
сссинхросигнал
ссистрочный синхронизирующий импульс
СУселектор-усилитель
счсредняя частота
ТВтропосферные радиоволны; телевидение
твстрансформатор выходной строчный
твзтрансформатор выходной канала звука
твктрансформатор выходной кадровый
ТИТтелевизионная испытательная таблица
ТКЕтемпературный коэффициент емкости
ткитемпературный коэффициент индуктивности
ткмптемпературный коэффициент начальной магнитной проницаемости
ткнстемпературный коэффициент напряжения стабилизации
ткстемпературный коэффициент сопротивления
тстрансформатор сетевой
тцтелевизионный центр
тцптаблица цветных полос
ТУтехнические условия
Уусилитель
УВусилитель воспроизведения
УВСусилитель видеосигнала
УВХустройство выборки-хранения
УВЧусилитель сигналов высокой частоты
УВЧультравысокая частота
УЗусилитель записи
УЗЧусилитель сигналов звуковой частоты
УКВультракороткие волны
УЛПТунифицированный ламповополупроводниковый телевизор
УЛЛЦТунифицированный лампово полупроводниковый цветной телевизор
УЛТунифицированный ламповый телевизор
УМЗЧусилитель мощности сигналов звуковой частоты
УНТунифицированный телевизор
УНЧусилитель сигналов низкой частоты
УНУуправляемый напряжением усилитель.
УПТусилитель постоянного тока; унифицированный полупроводниковый телевизор
УПЧусилитель сигналов промежуточной частоты
УПЧЗусилитель сигналов промежуточной частоты звук?
УПЧИусилитель сигналов промежуточной частоты изображения
УРЧусилитель сигналов радиочастоты
УСустройство сопряжения; устройство сравнения
УСВЧусилитель сигналов сверхвысокой частоты
УССусилитель строчных синхроимпульсов
УСУуниверсальное сенсорное устройство
УУустройство (узел) управления
УЭускоряющий (управляющий) электрод
УЭИТуниверсальная электронная испытательная таблица
ФАПЧфазовая автоматическая подстройка частоты
ФВЧфильтр верхних частот
ФДфазовый детектор; фотодиод
ФИМфазо-импульсная модуляция
ФМфазовая модуляция
ФНЧфильтр низких частот
ФПЧфильтр промежуточной частоты
ФПЧЗфильтр промежуточной частоты звука
ФПЧИфильтр промежуточной частоты изображения
ФСИфильтр сосредоточенной избирательности
ФССфильтр сосредоточенной селекции
ФТфототранзистор
ФЧХфазо-частотная характеристика
ЦАПцифро-аналоговый преобразователь
ЦВМцифровая вычислительная машина
ЦМУцветомузыкальная установка
ЦТцентральное телевидение
ЧДчастотный детектор
ЧИМчастотно-импульсная модуляция
чмчастотная модуляция
шимширотно-импульсная модуляция
шсшумовой сигнал
эвэлектрон-вольт (е • В)
ЭВМ.электронная вычислительная машина
эдсэлектродвижущая сила
экэлектронный коммутатор
ЭЛТэлектронно-лучевая трубка
ЭМИэлектронный музыкальный инструмент
эмосэлектромеханическая обратная связь
ЭМФэлектромеханический фильтр
ЭПУэлектропроигрывающее устройство
ЭЦВМэлектронная цифровая вычислительная машина

Прочие элементы

Все радиодетали соединяются между собой проводниками. На схеме они изображаются прямыми линиями и чертятся строго по горизонтали и вертикали. Если проводники при пересечении друг с другом имеют электрическую связь, то в этом месте ставится точка. В советских схемах и американских, чтобы показать, что проводники не соединяются, в месте пересечения ставится полуокружность.

Для обозначения переменных конденсаторов используют стрелку, она по диагонали перечеркивает конденсатор. В подстроечных вместо стрелки используется т-образный знак. Вариконд — конденсатор, меняющий емкость от приложенного напряжения, рисуется, как и переменный, но стрелку заменяет короткая прямая, возле которой стоит буква u. Емкость показывается цифрой и рядом ставится мкФ (микроФарада). Если емкость меньше — буквенный код опускается.

Еще один элемент, без которого не обходится ни одна электрическая схема — это резистор. Обозначается на схеме в виде прямоугольника. Чтобы показать, что резистор переменный, сверху рисуют стрелку. Она может быть соединена либо с одним из выводов, либо являться отдельным выводом. Для подстроечных используют знак в виде буквы т. Как правило, рядом с резистором указывается его сопротивление.

Для обозначения мощности постоянных резисторов могут использоваться знаки в виде черточек. Мощность в 0,05 Вт обозначается тремя косыми, 0,125 Вт — двумя косыми, 0,25 Вт — одной косой, 0,5 Вт — одна продольная. Большая мощность показывается римскими цифрами. Из-за многообразия невозможно провести описание всех обозначений электронных компонентов на схеме. Чтобы определить тот или иной радиоэлемент, пользуются справочниками.

Радиодетали Википедия

Электронные компоненты Обозначение электронных компонентов на схемах Электронные компоненты
Электронные компоненты

(радиодетали) — составляющие части электронных схем.

Просторечное название электронных компонентов[источник не указан 711 дней

] — «
радиодетали
» появилось от того, что в начале XX века первым повсеместно распространённым, и при этом технически сложным для неспециалиста электронным устройством, стало радио. Изначально термин «
радиодетали
» означал электронные компоненты, применяемые для производства радиоприёмников; затем обиходное название распространилось и на остальные радиоэлектронные компоненты и устройства, уже не имеющие прямой связи с радио.

Классификация[ | ]

По виду ВАХ[ | ]

По виду вольт-амперной характеристики (ВАХ) (или по способу действия в электрической цепи) выделяют две группы электронных компонентов (ЭК):

  • пассивные
    или
    линейные
    ЭК — ЭК, ВАХ которых имеет линейный характер;
  • активные
    или
    нелинейные
    ЭК — ЭК, ВАХ которых имеет нелинейный характер.

Пассивными являются следующие ЭК:

Особенности чтения схем

В принципиальных схемах проводники (или дорожки) обозначаются линиями.

Так обозначаются проводники, которые пересекаются, но они не имеют общего соединения и электрически друг с другом не связаны.

А вот так они выглядят, если между ними есть соединение. Черная точка — это узел в схеме. Узел — это соединение нескольких проводников или деталей вместе. Они электрически друг с другом связаны.

Общая точка

Часто у начинающих радиолюбителей возникает вопрос — что это за символ на схеме?

Это общая точка (GND, земля). Раньше ее называли общим проводом. Так обозначается единый провод питания. Обычно это минус питания. Раньше на схемах могли сделать общим проводом и плюс питания. В данном случае схема без общей точки выглядела бы вот так:

Еще общей точкой ее называют потому, что относительно нее можно измерять любые остальные точки на схемах. Например, ставите щуп мультиметра на общую точку, а вторым щупом можете проверить любую часть цепи на схеме.

Почему она может называться землей (GND)? Раньше в качестве общего провода могло использоваться шасси корпуса прибора. Из-за этого возникла путаница между заземлением и землей. Оно интерпретируется в контексте схемы. Та схема, что была разобрана выше — общая точка (земля) это просто минус питания. Другое дело это двуполярные источники тока и заземление.

Двуполярное питание и общая точка

В двуполярном питании общая точка — это средний контакт между плюсом и минусом.

Заземление

Примером заземления может послужить фильтр в компьютерных блоках питания.

С конденсаторного фильтра помехи идут на корпус блока питания. Это и есть заземление. А с блока питания они должны уходить в розетку, если у вас есть заземление, иначе сам корпус блока питания может быть под напряжением. Токи там не большие, они не опасны для жизни. Это делается с целью уменьшения импульсных помех в блоке питания и безопасности.

Иногда в блоках питания вместо корпуса помехи с конденсатора идут на общую точку. Это все зависит от конструкции и схемотехники. В этом случае помех будет больше, чем с заземлением.

А вообще, на схемах есть разные заземления. Например, в цифровой технике разделяют аналоговую землю и цифровую. чтобы не нарушать режимы работы схемы. Импульсные помехи могут повлиять на аналоговую часть схемы.

Применение приборов

Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания. Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя. Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.

В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.

Вам это будет интересно Как сделать простой регулятор напряжения своими руками

Схема 1 — Подключение варистора для сети 220В.

Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.

Однако технология их изготовления не стоит на месте, поскольку создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания. Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов. Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.

Как научиться читать принципиальные схемы

На самом деле есть только несколько способов. Это теория и практика. Если вы выучите обозначение радиодеталей, это еще не значит, что вы выучили схемотехнику. Это все равно, что выучить азбуку, но без грамматики и практики вы не выучите язык.

Теория — это схемотехника, книги, описание принципа работы схемы. Практика — это сборка устройств, ремонт и пайка.

Например простая схема усилителя на одном транзисторе.

Вход X1 плюс (левый или правый канал), X2 минус. Звуковой сигнал поступает на электролитический конденсатор C1. Он защищает транзистор VT1 от замыкания, поскольку транзистор VT1 постоянно открыт при помощи делителя напряжения на R1 и R2. Делитель напряжения устанавливает рабочую точку на базе транзистора VT1, и транзистор не искажает входной сигнал. Резистор R3 и конденсатор C2, которые подключены к эмиттеру транзистора VT1, выполняют функцию термостабилизации рабочей точки при повышении температуры транзистора. Электролитический конденсатор C3 накапливает и фильтрует питающее напряжение. Динамическая головка BF1 служит выходом звукового сигнала.

Можно ли это понять, только выучив обозначения радиодеталей без схемотехники и теории? Навряд-ли.

Еще сложнее дело обстоит с цифровой техникой.

Что это за микроконтроллер, какие он функции выполняет, какая прошивка и какие фьюзы в нем установлены? А вторая микросхема, какой это усилитель? Без даташитов и описания к схеме не получится понять ее работу.

Изучайте схемотехнику, теорию и практику. Просто выучив название деталей не получится разобраться в схемотехнике. Обозначение радиодеталей выучиться само по себе по мере практики и накопления знаний. Еще все зависит от выбранной отрасли. У связистов одна схемотехника, у ремонтников мобильной техники другая. А те, кто занимается звуком, не очень поймут электриков. Как и наоборот. Чтобы понять другую отрасль, ее схемотехнику и принципы работы нужно в нее погрузиться.

Принципиальные схемы это своего рода язык, у которого есть разные диалекты.

Поэтому, не следует строить иллюзии. Изучайте схемотехнику и собирайте схемы.

Советуем к прочтению: Логический анализатор

Принципиальные схемы помогают собирать устройства, и при изучении теории, понимать работу устройства. Без знаний и опыта, схема это просто схема.

Обозначения радиодеталей на принципиальных схемах

УГО — это условно графическое изображения радиодетали на схеме. Некоторые УГО различаются друг от друга.

Например, в США обозначение резисторов отличается от СНГ и Европы.

Из-за этого меняется восприятие схемы.

Однако внешне и по обозначениям они похожи. Или например, транзисторы. Где-то они чертятся с кругами, а где-то без. Могут различаться размеры и угол стрелок. В таблице представлены УГО отечественных радиодеталей.

УГОНазвание

Биполярный n-p-n транзистор Биполярный p-n-p транзистор Однопереходный транзистор с n базой Однопереходный транзистор с p базой Обмотка реле Заземление Диод Диодный мост Диод Шотки Двуханодный стабилитрон Двунаправленный стабилитрон Обращенный диод Стабилитрон Туннельный диод Варикап Катушка индуктивности Катушка индуктивности с подстраиваемым сердечником Катушка индуктивности с сердечником Классический трансформатор Обмотка Регулируемый сердечник Электролитический конденсатор Неполярный конденсатор Опорный конденсатор Переменный конденсатор Подстроечный конденсатор Двухпозиционный переключатель Герконовый переключатель Размыкающий переключатель Замыкающий переключатель Полевой транзистор с каналом n типа Полевой транзистор с каналом p типа Быстродействующий плавкий предохранитель Инерционно-плавкий предохранитель Плавкий предохранитель Пробивной предохранитель Термическая катушка Тугоплавкий предохранитель Выключатель-предохранитель Разрядник Разрядник двухэлектродный Разрядник электрохимический Разрядник ионный Разрядник роговой Разрядник шаровой Разрядник симметричный Разрядник трехэлектродный Разрядник трубчатый Разрядник угольный Разрядник вакуумный Разрядник вентильный Гнездо телефонное Разъем Разъем Переменный резистор Подстроечный резистор Резистор Резистор 0,125 Вт Резистор 0,25 Вт Резистор 0,5 Вт Резистор 1 Вт Резистор 2 Вт Резистор 5 Вт Динистор проводящий в обратном направлении Динистор запираемый в обратном направлении Диодный симметричный тиристор Тетродный тиристор Тиристор с управлением по катоду Тиристор с управлением по аноду Тиристор с управлением по катоду Тиристор триодный симметричный Запираемый тиристор с управлением по аноду Запираемый тиристор с управлением по катоду Диодная оптопара Фотодиод Фототиристор Фототранзистор Резистивная оптопара Светодиод Тиристорная оптопара Это далеко не все детали. И зубрить их особого смысла нет. Такие таблицы пригодятся в виде справочника. Можно опознать что за деталь представлена на схеме во время ее изучения или сборки устройства.

Радиодетали — это… Что такое Радиодетали?

Радиодетали Обозначение радиодеталей на схемах
Радиодетали

— просторечное название
электронных компонентов
, применяемых для изготовления устройств (приборов) цифровой и аналоговой электроники.

На появление названия повлиял тот исторический факт, что в начале XX века первым повсеместно распространнёным, и при этом технически сложным для неспециалиста электронным устройством, стало радио. Изначально термин

радиодетали означал электронные компоненты, применяемые для производства радиоприёмников; затем обиходное, с некоторой долей иронии, название распространилось и на остальные радиоэлектронные компоненты и устройства, уже не имеющие прямой связи с радио.

Классификация

Электронные компоненты делятся, по способу действия в электрической цепи, на активные

и
пассивные
.

Пассивные

Базовыми элементами, имеющиеся практически во всех электронных схемах радиоэлектронной аппаратуры (РЭА

), являются:

С использованием электромагнитной индукции

На базе электромагнитов:

Кроме того, для создания цепи используются всевозможные соединители и разъединители цепи — ключи; для защиты от перенапряжения и короткого замыкания — предохранители; для восприятия человеком сигнала — лампочки и динамики (

динамическая головка громкоговорителя), для формирования сигнала — микрофон и видеокамера; для приёма аналогового сигнала, передающегося по эфиру, приёмнику нужна Антенна, а для работы вне сети электрического тока — аккумуляторы.

Активные

Вакуумные приборы

С развитием электроники появились вакуумные электронные приборы:

Полупроводниковые приборы

В дальнейшем получили распространение полупроводниковые приборы:

и более сложные комплексы на их основе — интегральные микросхемы

По способу монтажа

Технологически, по способу монтажа, радиодетали можно разделить на:

См. также

Ссылки

Номиналы радиодеталей

Вообще, в этом плане есть разногласия. Согласно ГОСТУ на текущий момент, номиналы деталей на принципиальных схемах не указывается. Это сделано ради того, чтобы не нагромождать схему информацией.

К принципиальной схеме прилагается список деталей, монтажная и структурные схемы, а также печатная плата.

Есть еще один общепринятый стандарт. На схемах указываются номиналы некоторых деталей и их рабочие напряжения.

Например, на этой схеме есть два резистора.

По умолчанию сопротивление без приставки пишется только числом. У R2 сопротивление равно 220 Ом. А у R3 после числа есть буква. Сопротивление этого резистора читается как 2,2 кОм (2 200 Ом).

Рассмотрим на схеме два конденсатора.

В данном случае C5 это неполярный конденсатор с емкостью 0,01 мкФ. Микрофарады могут обозначаться как мкФ, так и uF. А конденсатор С6 полярный и электролитический. На это указывает знак плюс возле УГО. Емкость С6 равна 470 мкФ. Номинальное рабочее напряжение указывается в вольтах. Здесь для С6 это 16 В.

Нанофарады обозначаются как nF.

Если на схеме нет приставки микрофарад (мкФ, uF), или нанофарад (нФ, nF) то емкость этого конденсатора измеряется в пикофарадах (пФ, pF). Такое условие не общепринятое, поэтому тщательно изучите схему, которую вы собираетесь читать или собирать. В фарадах (F) емкостей мало, поэтому используются мкФ, нФ и пФ.

Основные виды SMD компонентов

Давайте рассмотрим основные SMD элементы, используемые в наших современных устройствах. Резисторы, конденсаторы, катушки индуктивности с малым номиналом, предохранители, диоды и другие компоненты выглядят как обычные маленькие прямоугольники, а точнее, параллелепипеды))

На платах без схемы невозможно узнать, то ли это резистор, то ли конденсатор то ли вообще катушка. Китайцы метят как хотят. На крупных SMD элементах все-таки ставят код или цифры, чтобы определить их принадлежность и номинал. На фото ниже в красном прямоугольнике помечены эти элементы. Без схемы невозможно сказать, к какому типу радиоэлементов они относятся, а также их номинал.

Типоразмеры SMD компонентов могут быть разные. Вот здесь есть описание типоразмеров для резисторов и конденсаторов. Вот, например, прямоугольный SMD конденсатор желтого цвета. Еще их называют танталовыми или просто танталами:

А вот так выглядят SMD транзисторы:

Есть еще и такие виды SMD транзисторов:

Катушки индуктивности, которые обладают большим номиналом, в SMD исполнении выглядят вот так:

Ну и конечно, как же без микросхем в наш век микроэлектроники! Существует очень много SMD типов корпусов микросхем, но я их делю в основном на две группы:

1) Микросхемы, у которых выводы параллельны печатной плате и находятся с двух сторон или по периметру.

2) Микросхемы, у которых выводы находятся под самой микросхемой. Это особый класс микросхем, называется BGA (от английского Ball grid array – массив из шариков). Выводы таких микросхем представляют из себя простые припойные шарики одинаковой величины.

На фото ниже BGA микросхема и обратная ее сторона, состоящая из шариковых выводов.

Микросхемы BGA удобны производителям тем, что они очень сильно экономят место на печатной плате, потому что таких шариков под какой-нибудь микросхемой BGA могут быть тысячи. Это значительно облегчает жизнь производителям, но нисколько не облегчает жизнь ремонтникам.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]