Автор статьи
Павел Ястремский
Начальник IT-отдела. В сфере более 10 лет, занимается разработкой собственного ПО.
Задать вопрос
Повсеместное распространение оптоволокна стало следствием развития стандарта Ethernet, который появился на свет в далеком 1973 году. Тогда скорость передачи данных в компьютерных сетях достигала максимальной отметки в 2,94 Мбит/с. Сегодня эта цифра кажется попросту смешной и не соответствует требованиям современного Интернет-пользователя. Результатом развития стандарта 802.3 стало появление 1000BASE-X, построенного на принципиально другой технологии передачи информации.
Определение
Кабель из оптоволокна входит в состав пассивных компонентов ВОЛС (Волоконно-оптическая линия связи). Он состоит из светонесущих элементов, защищенных внешней оболочкой. Длина сегмента может достигать 100 км без потери или ослабления сигнала. При помощи муфты сегменты объединяются между собой. Световой поток используется для передачи сигнала по каналу. Он генерируется лазером, а трансформируется электрическим регенератором и фотоприемником.
Структура оптического кабеля
Вне зависимости от того, используется кварцевый или полимерный материал, структура кабеля одинакова. Ее образуют:
- Сердечник. Отвечает за распространение светового луча вдоль длины кабеля. Диаметр напрямую влияет на доступную площадь «попадания» светового луча, а значит – возможность подачи излучения для качественной доставки сигнала. Коэффициент преломления в сердечнике равен 1,48.
- Внутренняя оболочка. Отвечает за отражение светового луча и «корректировку» его траектории. Иными словами, не дает лучу покинуть пределы сердечника. Чем выше отражающая мощность оболочки, чем быстрее распространяется луч, передается сигнал и меньше его потери.
- Внешняя обшивка. Это буфер от внешних воздействий. Защищает внутренние компоненты кабеля от факторов среды, включая химические и механические воздействия. Предельно допустимая толщина обшивки не превышает 250 микрон.
Достоинства и недостатки
Оптическое волокно обладает рядом неоспоримых преимуществ перед витой парой:
- высокая пропускная способность оптоволокна по сравнению с медью. Компания Google построила трассу США-Япония с максимальной скоростью передачи в 600 Тбит/сек;
- меньшие потери мощности и возможность передачи данных на большие расстояния;
- устойчивость к электромагнитным наводкам;
- длина сегмента сети с использованием одномодового волокна может достигать 100 километров;
- оптика легче, тоньше и занимает меньше площади;
- передаваемую информацию очень трудно перехватить, поскольку кабель не производит электромагнитной энергии;
- устойчивость к окислению;
- отсутствие в конструкции драгоценных металлов, вследствие чего низкая стоимость.
Среди недостатков стоит отметить:
- сложность монтажа требует наличия специального оборудования;
- вследствие неправильной прокладки при сгибе провода оптоволокно может сломаться или под углом сигнал потеряет интенсивность;
- для проверки передачи данных по оптоволоконному кабелю необходимы специальные устройства.
Так что же лучше – оптика или медь?
Нынче любой крупный и даже средний интернет-провайдер использует в ряде сегментов своих сетей оптоволокно. И наоборот: как бы провайдер не заманивал подключением к «самой быстрой системе нового поколения», отдельные участки его сетей – традиционный медный кабель. Просто правила им диктуют условия среды (где-то они больше подходят для меди, а где-то – для оптики) и экономическая целесообразность, а маркетинг – есть маркетинг.
К какому виду магистрали подключили ваш дом провайдеры «Медный всадник» и «Оптическая иллюзия», точно не скажет никто, поэтому будем считать, что их предложения различаются только способом подключения абонентов внутри квартир.
В таблице ниже сопоставлены свойства волоконной оптики и витой пары:
Оптоволокно | Медная витая пара | |
Теоретически достижимая скорость связи | OS1 – 40 Гбит/с OS2– 100 Гбит/с OM3 и ОМ4 – 100 Гбит/с | До 10 Гбит/с для кабелей категории 6 и 7. |
Максимальная длина неразрывной линии | OS1 – 100 км OS2 – 40 км ОМ3 – 300 м ОМ4 – 125 м. | 100 м |
Физические свойства кабеля | Тонкий, хрупкий | Толстый, гибкий |
Подверженность внешним воздействиям | Чрезмерные изгибы, давление, некоторые виды излучений | Электромагнитные помехи, атмосферное электричество, агрессивные химические среды, огонь, несанкционированное подключение для считывания данных |
Совместимость с клиентским оборудованием | Требует покупки специальных адаптеров | Совместима с любыми устройствами, оснащенными гнездами RJ-45 |
Обслуживание | Требует спецоборудования и профессиональной подготовки | Требует минимальных навыков и знаний |
Стоимость | Высокая | Низкая |
Подведем итоги:
- Оптоволоконная линия до 10-и раз быстрее и гораздо «дальнобойнее», чем витая пара, она не подвержена влиянию наводок электрического оборудования и силовых линий, долговечна и прочна, не горит, не теряет свойств от влаги, кислот и щелочей. Не допускает шпионских врезок и прослушивания путем индукционного подключения.
- Волоконно-оптическую сеть легче замаскировать в интерьере, для нее не нужно монтировать широкие неэстетичные кабель-каналы.
- Волоконная оптика – это хоть и гибкое, но стекло, а любое стекло может трескаться и крошиться. Поэтому монтаж и модернизация такой сети требует большой аккуратности. Если поврежденную витую пару можно разрезать и соединить простой скруткой, то для восстановления разорванной оптики нужен специальный сварочный аппарат и умение с ним обращаться. А иногда даже небольшое повреждение волоконно-оптической линии требует полной ее замены.
- Главное преимущество витой пары – дешевизна и простота в обиходе. За подключение к Интернету посредством медного кабеля с вас, скорее всего, не возьмут никаких дополнительных денег, а за оптику придется заплатить, ведь она дорогая. Витую пару с универсальным коннектором можно сразу воткнуть в компьютер – и на нем появится Интернет. Для оптики снова придется раскошелиться на специальную розетку, модем (ONT-терминал или роутер), сетевые адаптеры. А это тоже недешево.
Чисто оптоволоконные сети внутри домов и квартир пока большая редкость, чаще всего их делают гибридными – частично оптическими, частично меднопроводными, частично беспроводными. Оптику обычно подводят только к модему, а конечные устройства – компьютеры, смартфоны, смарт ТВ и т. д. получают Интернет всё по той же витой паре или Wi-Fi, ведь они не оборудованием модулями декодирования светового сигнала. Значит, какие бы сверхскорости ни обещал вам провайдер, медленные сегменты сети сведут ее на нет.
Итак, ваш выбор «Медный всадник», если:
- Вы не хотите переплачивать за то, чего, скорее всего, не получите. Если ваши устройства – потребители Интернет-трафика работают на устаревших протоколах Ethernet или Wi-Fi, то оптика не сделает их быстрее.
- Вы часто переносите компьютер с места на место, у вас есть собака, которая любит жевать провода или маленькие дети, хватающие всё подряд. И в случае повреждения кабеля вам проще починить его своими руками, чем платить мастеру.
Вам лучше стать клиентом «Оптической иллюзии», если:
- Вы за всё новое против всего старого. Волоконная оптика – это технология будущего, а значит, достойна инвестиций. И пусть она дружит не с каждым девайсом – скоро, надо ожидать, производители последних возьмутся за ум и оборудуют свои продукты поддержкой оптоволокна. Ведь потребители этого хотят и готовы вкладываться.
- Финансы для вас – не проблема. У вас современная техника, которая поддерживает последние протоколы проводной и беспроводной связи, и вы готовы заставить ее «взять максимальную высоту».
- Вам нужна скорость, и этим все сказано.
- Безопасность сети в плане возможной утечки данных – ваше всё.
Принцип работы
В основе устройства кабеля из оптоволокна лежат стеклянные световоды. Это своеобразные трассы для транспортировки лучей света от источника до приемника. По привычному нам медному проводнику, который по сей день повсеместно используется в локальных сетях, движутся электроны. Информация кодируется единицами и нулями: если электрический импульс есть, значит он трансформируется сетевой картой в значение «1», и наоборот, если его нет — в «0».
С оптикой ситуация выглядит примерно таким же образом. В ней со скоростью света движутся его пучки — моды. Их присутствие определяет передаваемый бит информации, только со значительно большей скоростью (более 10Гбит/с).
Для отправки светового сигнала применяется лазер, луч которого направлен в сердцевину кабеля. При помощи системы зеркал он экранируется, что позволяет ему проходить изгибы и неровности канала. Концом пути светового потока является конечное оборудование, такое как медиаконвертер или роутер с поддержкой PON.
Его задача заключается в превращении оптического сигнала в электрический и наоборот. От него прокладывается стандартная витая пара и подключается к сетевому оборудованию, например, домашнему роутеру.
Области применения
Первое, что приходит на ум при упоминании волоконно-оптического кабеля, — Интернет. Все известные провайдеры заменили свои медные коммуникации на высокоскоростную оптику. Это позволило увеличить пропускную способность канала, необходимую для передачи интернет-трафика, организации IP-телефонии, телевидения и выделенных сервисов.
В целом, при помощи ВОК построена вся Мировая Паутина. Ее сети тянутся от берегов США по всему земному шару в виде подводных коммуникаций. Хрупкий кабель защищен толстостенной изоляцией, а укладывается он при помощи специальных кораблей под грунтом на самом дне океана.
Данная технология обретает все большую популярность и в построении локальных сетей. Особенно это касается загородных домов, где нет доступа к сети крупных провайдеров. Существует практика возведения вышек с пушками Wi-Fi, от которых тянется оптика до частных владений, позволяя таким образом подключиться к Интернету вдали от города.
Помимо этого, оптоволокно применяется в следующих сферах:
- промышленные системы управления;
- авиационные системы;
- военные системы командования, управления и связи;
- датчики – оптика может использоваться для доставки света от удаленного источника к датчику для получения информации о давлении, температуре или другой информации;
- подача энергии – оптические волокна могут обеспечивать исключительно высокий уровень мощности для таких задач, как лазерная резка, сварка, маркировка и сверление;
- освещение – пучок волокон, собранных вместе с источником света на одном конце, может освещать труднодоступные области – например, внутри человеческого тела, в сочетании с эндоскопом. Также их можно использовать как выставочную вывеску или декоративную подсветку.
Конструкция и материалы
Определившись с тем, что такое оптоволокно, перейдем к описанию его устройства. Чтобы лучше понять структуру оптического волокна, рассмотрим процесс его производства:
- нагретый кварцевый песок протягивают через сканер, проверяющий диаметр получающейся нити;
- затем в камеру охлаждения;
- и наконец в ванну с полимером, который налипает и формирует внешний защитный слой;
- в конце вертикального конвейера находится бобина, на которую со скоростью 3 км/с наматывается остывшее волокно;
- его транспортируют на завод, где осуществляется покраска каждой нити, чтобы их затем можно было различить в зависимости от канала передачи данных;
- на специальном станке из них формируются пучки, которые затем запаиваются в кожух из полиэтилена;
- пучки пережемаются с армирующим стеклопластиковым стержнем, а затем упаковываются во внешнюю изоляцию. Так формируется строение конструкции оптоволоконного кабеля.
В зависимости от сценария использования кабеля, его конструктивные особенности могут меняться, но общий принцип остается один. Для понимания расположения элементов оптоволокна кабеля, фото в разрезе окажется наиболее удобным способом продемонстрировать их на самом распространенном примере:
- сердечник из оптического волокна — самая хрупкая часть кабеля;
- гидрофобный заполнитель обеспечивает защиту посредством амортизации;
- эту конструкцию опоясывает центральная трубка;
- промежуточная полиэтиленовая оболочка обеспечивает дополнительную защиту сердцевины;
- как правило, в кабеле присутствует броня (существует множество разновидностей);
- все перечисленные элементы закрывает наружная оболочка.
2. Определение особенностей конструкции
После выбора условий прокладки необходимо определить основные особенности конструкции в зависимости от предъявляемых заказчиком требований. Они отличаются в зависимости от группы кабелей.
Кабели для задувки в трубы
Чаще всего для задувки используются так называемые ЗПТ — защитные полиэтиленовые трубы. ЗПТ представляет собой современную альтернативу привычной асбестоцементной трубе кабельной канализации. Прокладывается ЗПТ прямо в грунт, где такие трубы практически выполняют функции междугородной кабельной канализации. Более того, ЗПТ способны защитить ВОК и при пересечении водных преград. По сути ЗПТ даёт надежную защиту оптиковолоконного кабеля от механического повреждения (в частности от грызунов). Поэтому применяемый для организации оптоволоконной линии с помощью ЗПТ кабель не имеет бронирования, что позволяет удешевить строительство.
Такой тип кабеля имеет самую простую конструкцию (рис. 1): отсутствуют дополнительные защитные элементы, кроме оболочки, накладываемой непосредственно на скрученный сердечник из оптических модулей с волокнами.
Основной выбор внутри группы состоит в определении необходимых размеров кабеля: для задувки в обычные пластиковые трубы или для задувки в микротрубки для канализации. Микрокабели имеют меньший вес, диаметр, они более гибкие, но при этом и рассчитаны на меньшую максимально допустимую растягивающую нагрузку, чем «классические» кабели для задувки.
При этом важно, чтобы отношение площади сечения кабеля к площади сечения трубы было не более, чем 2/3, иначе могут возникнуть трудности при задувке.
Рис. 1. Кабель для прокладки в трубы марки ДПО (Инкаб)
Такой кабель можно прокладывать в трубках не только применяя задувку, что подразумевает использование дорогостоящей задувочной машинки, но и затягиванием кабеля механизированным способом, с помощью лебедки. Если же в распоряжении такая машинка имеется, то можно ещё больше сэкономить на затратах, применив ещё более дешёвый кабель — Микро ДПО.
Рис. 2. Кабель для прокладки в трубы марки Микро ДПО (Инкаб)
Кабели для монтажа в кабельной канализации
Кабельная канализация представляет собой систему подземных сооружений, состоящую из трубопроводов и смотровых устройств (колодцев и коробок). В кабельной канализации осуществляется монтаж и замена кабелей, производство измерений, ремонтных и профилактических работ без вскрытия уличных покровов и раскопок грунта. В таких условиях кабель защищен от механических повреждений и электрохимической коррозии.
Вместе с очевидными достоинствами этот способ прокладки ВОК обладает недостатками: возможное повреждение грызунами, затопление и замерзание затопленных участков, возможные повреждения внешней оболочки ВОК при протяжке кабеля по лоткам. Наличие одного из перечисленных ниже факторов или дополнительных требований обуславливает выбор конкретной конструкции кабеля.
Опасность повреждения грызунами
Это главная «опасность» для кабеля этой группы. Если такой угрозы нет или она минимальна, то оптимальным выбором станет небронированный кабель (см. кабели для задувки в трубы).
Надежная защита от грызунов обеспечивается применением в конструкции гофрированной стальной ленты (рис. 3) или стальных проволок (см. кабели для укладки в грунт). Количество запросов на второй вариант (со стальными проволоками) крайне низкое.
Рис. 3. Лёгкий кабель для прокладки в кабельную канализацию марки ТОЛ (Инкаб)
Диэлектрические конструкции
В редких ситуациях требуется кабель, который бы защищал от грызунов и обладал при этом диэлектричекими свойствами. В таком случае возможно применение специальных репеллентов в оболочке кабеля, отпугивающих грызунов, либо применение стеклонитей, наложенных поверх сердечника и промежуточной оболочки кабеля. Второй вариант, согласно исследованиям, более эффективный, т. к. стеклонити являются физическим барьером для грызунов.
Тип расположения оптического модуля
Если говорить о самом распространенном способе защиты — гофрированной ленте, то здесь наиболее популярным решением является применение одномодульных конструкций (если число волокон не превышает 24) или применение легких конструкций со скрученным сердечником без промежуточной оболочки для многоволоконных магистралей.
Наличие промежуточной оболочки
Конструкции с промежуточной оболочкой являются более габаритными и дорогими, существенно не улучшая эксплуатационные характеристики, однако также находят применение у ряда потребителей, выбирающих надёжные классические решения.
Такую конструкцию имеет стандартный кабель для канализации — ДПЛ (рис. 4). В данной конструкции вокруг центрального силового элемента скручиваются модули с оптическим волокном, всё межмодульное пространство заполняется гидрофобным гелем, и сверху накладывается промежуточная оболочка из полиэтилена. Поверх промежуточной оболочки накладываются водоблокирующие нити, далее накладывается армирующая гофрированная стальная лента с полимерным покрытием, на которую наложена окончательная оболочка из полимерного материала.
Рис. 4. Стандартный кабель для прокладки в кабельную канализацию марки ДПЛ (Инкаб)
Кабели для укладки в грунт
Самый распространённый способ строительства магистральных ВОЛС между населёнными пунктами там, где отсутствует кабельная канализация и нет возможности подвеса линии — укладка волоконно-оптического кабеля в грунт. Этот способ более дорогостоящий и длительный, по сравнению со строительством линии по опорам ЛЭП, но бывает единственным возможным. Такая линия связи превосходит подвесную по надёжности и срокам эксплуатации.
Читайте нашу статью о технологии прокладки оптического кабеля в грунт.
К сожалению, общепринятых нормативных документов, определяющих требуемые характеристики к оптическим кабелям в грунт, исходя из конкретных условий прокладки, не существует. На выбор конструкции влияют две основные технические характеристики: стойкость к раздавливающим нагрузкам и максимально допустимая растягивающая нагрузка. Исходя из этих данных определяют необходимость усиления конструкции, материал брони, тип оптического модуля.
Металлическая или диэлектрическая броня
Металлическая броня подразумевает применение стальных оцинкованных проволок, скрученных вокруг оптического сердечника. Данное решение классическое и наиболее популярное.
Диэлектрическая броня подразумевает применение стеклопластиковых прутков. Такое решение более дорогое, но в некоторых случаях является единственно возможным. Применяется, когда требуется нечувствительность к электромагнитным полям: для прокладки на территории электрических подстанций, в охранной зоне ЛЭП, при пересечении ЛЭП, рядом с силовыми кабелями и т. п.
Усиление конструкции за счет дополнительного слоя брони
Классическое решение для прокладки в простых грунтах предполагает использование одного слоя брони (рис. 5). В большинстве случаев этого достаточно для обеспечения надёжной защиты от механических воздействий на кабель. В диэлектрическом исполнении кабель получает слой брони из стеклопластиковых прутков (рис. 6).
Рис. 5. Стандартный кабель для прокладки в грунт марки ДПС (Инкаб)
Рис. 6. Стандартный кабель для прокладки в грунт марки ДПД (Инкаб)
Однако в случае прокладки кабеля в сложных грунтах (скальных, мерзлотных и т. п.) проектной организацией может приниматься решение об обеспечении более надёжной защиты и использования двойного повива силовых элементов (стальных проволок или стеклопластиковых прутков).
Повивы скручиваются в разные стороны. Это обеспечивает лучшие характеристики по стойкости к растяжению и раздавливанию в сравнении с конструкциями на основе одного повива.
Тип оптического модуля
Центральный оптический модуль является более экономичным решением, но имеет ограничение по числу волокон: не более 24.
Скрученный сердечник не имеет ограничения по числу волокон — является классической конструкций, как правило, применяемой на основных магистралях.
Дополнительная защита от влаги
Зачастую при прокладке в заболоченных местностях, а также по дну рек, дополнительно в конструкции кабеля применяется алюмополимерная лента. Ее применение способно предотвращать прохождение к волокну влаги и до некоторой степени водорода. Стоит отметить, что после принятых мер по защите структуры кварцевого стекла, водород для современных волокон неопасен. Пример кабеля такой конструкции на рис. 7.
Необходимость применения дополнительной защиты сердечника кабеля от воды обусловлена возможностью «набухания» полиэтиленовой оболочке при постоянном нахождении в воде. По результатам исследований подобных процессов, можно судить, что за весь срок эксплуатации такого кабеля (25 лет) количество воды, попавшее через поры оболочек внутрь кабеля, может стать недопустимым.
Рис. 7. Специальный кабель для прокладки в водонасыщенный грунт марки ДАС (Инкаб)
Подвесные оптические кабели
Подвесные оптические кабели применяются для организации линии связи между опорами линий электропередач широкого класса напряжений (0,4–220 кВ), опорами освещения и специальными опорами для связи, между зданиями и сооружениями.
Читайте подробнее про особенности прокладки ВОЛС методом подвеса.
Способ подвеса оправдан по причине сравнительно высокой скорости строительства линии и отсутствия необходимости применения большого количества специальной техники. Но у него есть и недостатки: подвесной кабель в течение всего срока службы постоянно подвергается воздействиям внешних атмосферных факторов (дождь, солнце, ветер, гололёд). Иногда нагрузки становятся критическими — максимально допустимыми. Это подтверждается примерами из практики: например, обрыв кабеля по причине аномальных природных явлений. Но чаще всего обрыв кабеля связан не с непогодой, а по причине того, что на стадии проектирования конструкция кабеля и арматура подобраны неверно. Более подробно про ошибки, допущенные при проектировании подвесной ВОЛС, читайте в статье «Особенности подбора оптического кабеля ОКСН».
Подвесные кабели делятся на два больших типа:
- С вынесенным силовым элементом типа «8».
- Круглые самонесущие.
Подвесные кабели с вынесенным силовым элементом
Кабели типа «8» бывают с металлическим силовым элементом (стальной трос) и с диэлектрическим (стеклопластиковый пруток). С центральным оптическим модулем и со скрученными модулями (рис. 8).
При этом данный тип кабелей обладает рядом некоторых недостатков:
- Использование стального троса запрещено при подвесе на линиях электропередач. Возможно наведение потенциала электрического поля на металл и опасность поражения электрическим током при работах с кабелем. Имеются случаи попадания молнии и полного выгорания всей строительной длины кабеля, а также выхода приёмо-передающей аппаратуры из строя;
- Зачастую с данным типом кабелей используют самые дешёвые клиновые зажимы, несоответствующие по характеристикам используемому кабелю, с малой площадью контакта зубьев с тросом. Это приводит к сползанию оболочки с силового элемента клиньями зажима и выходу кабеля из строя даже при незначительном механическом растяжении. Имеются случаи, когда для диэлектрического силового элемента использовались несоответствующие клиновые зажимы с металлическими зубьями, ломающими стеклопруток. В целом корректный подбор арматуры для любых подвесных кабелей имеет принципиальное значение для обеспечения долговременной и надежной эксплуатации.
- Ввиду разности температурных коэффициентов расширения вынесенного силового элемента и оптического сердечника, а также неспособности диэлектрического прутка сохранять сопротивление сжатию при изгибе, в бухтах запаса при отрицательных температурах может происходить неконтролируемый прирост затухания, если они не намотаны на жесткую оправку с должным натяжением;
- Сечение кабеля типа «8» приводит к повышенной «парусности», увеличению нагрузок от ветрового давления и льда, а также частому ненормативному осевому закручиванию при сбрасывании петель кабеля через щеку барабана;
- В центральном оптическом модуле возможно «хождение» оптических волокон из муфты или в муфту, если перед ней не обеспечить бухту запаса небольшого диаметра.
Таким образом происходит постепенный переход в сторону отказа от использования кабеля типа «8», особенно среди крупных операторов связи. Небольшие операторы, из-за несколько большей экономической привлекательности строительства, по-прежнему продолжают использовать кабели данного типа. Однако необходимо иметь ввиду, что потенциально это может приводить к определенным осложнениям при эксплуатации, а также возможным затруднениям, если сеть связи планируется в будущем продать более крупным игрокам на рынке.
Рис. 8. Кабель подвесной типа «8» с металлическим выносным элементом и центральным оптическим модулем марки ТПОм (Инкаб)
Круглые самонесущие кабели
Круглые самонесущие кабели не обладают вышеперечисленными недостатками. Они симметричные, диэлектрические, а использование спиральных зажимов обеспечивает большую площадь контакта с кабелем, повышая надёжность.
Самонесущие кабели первично разделяются по типу применяемых силовых элементов: арамидные нити (рис. 9) и стеклонити. Сравнение вариантов исполнения по нескольким факторам:
- Диаметр и вес: кабель на арамидных нитях несколько меньше в диаметре и легче в сравнении со стеклонитями.
- Запас прочности на разрыв: cтеклонити обладают меньшим запасом на разрыв. У арамидных нитей двукратный запас прочности на разрыв по отношению к максимально допустимым нагрузкам.
- Механические свойства при растяжении: арамидные нити обладают лучшими механическими свойствами при растяжении через систему «зажим-оболочка-нити». Максимальные нагрузки для кабелей со стеклонитями: не более 15 кН, у арамидных нитей до 40 кН и выше.
- Подверженность влиянию температур: кабели с арамидными нитями за счет более низкого коэффициента температурного расширения меньше подвержены влиянию температур (растяжению и сжатию).
- Аттестация ПАО «Россети»: арамидные нити разрешены для подвеса на ЛЭП 35 кВ и выше в ПАО «Россети», стеклонити запрещены.
- Стоимость: если исходить из стоимости, то кабели с арамидными нитями дороже, чем со стеклонитями.
Таким образом, выбирать круглый самонесущий кабель с арамидными нитями следует:
- при строительстве магистральных линий связи между городами или крупных магистральных линий внутри города,
- при подвесе на ЛЭП,
- если требуется многоволоконная конструкция.
Основные показания к применению кабелей со стеклонитями:
- сети внутри городских районов,
- распределительные линии до отдельных домов,
- подвес между домами, опорами освещения, линии электропередач 0,4–10 кВ,
- маловолоконные кабели.
Круглые самонесущие кабели можно классифицировать по наличию или отсутствию промежуточной оболочки: «стандартные» и «лёгкие», соответственно.
Использование стандартных кабелей с арамидными нитями возможно со стойкостью к растягивающим нагрузкам вплоть до 40 кН и выше, в то время как использование лёгких кабелей, как правило, ограничено 10 кН из-за несколько меньшей стойкости к раздавливающим усилиям от зажимов и возможностью проскальзывания нитей относительно сердечника, если нагрузки достаточно велики.
Исходя из экономической целесообразности, наиболее популярными марками самонесущих кабелей являются:
- с промежуточной оболочкой («стандартные») и с арамидными нитями: для крупных магистральных линий, на ЛЭП 35 кВ и выше с большим числом волокон,
- без промежуточной оболочки («легкие») и со стеклонитями: для небольших сетей, на ЛЭП 0,4–10 кВ и небольшим числом волокон.
Рис. 9. Кабель подвесной самонесущий стандартный с арамидными нитями и промежуточной оболочкой марки ДПТ (Инкаб)
Еще одна разновидность круглых подвесных кабелей без промежуточной оболочки — «микро» самонесущие кабели (рис. 10). Появление таких кабелей было обусловлено потребностью их применения на старых и изношенных опорах линий 0,4–10 кВ, где принципиальное значение имеет как можно меньшая нагрузка на опоры от дополнительного элемента в виде оптического кабеля. Это обусловлено тем, что передача электрической энергии имеет безусловное приоритетное значение и важно, чтобы при возможном обледенении не «завалились» опоры, оборвав тем самым провода. Такие кабели доступны на рынке, имеют стойкость к растяжению не более 3 кН, что, ввиду их малых габаритных размеров и, следовательно, меньшей воспринимаемой нагрузки от льда и ветра, обычно достаточно для обеспечения подвеса на пролетах 50–70 метров в зависимости от конкретной климатической зоны.
Рис. 10. Кабель подвесной самонесущий микро со стеклонитями без промежуточной оболочкой марки микроДОТс (Инкаб)
Особые случаи монтажа
Подвес — закопать
Нередки случаи, когда нет возможности выполнить всю трассу подвесом и необходимо различные переходы (например, дороги) пройти под землей. В этом случае возникает вопрос: либо ставить муфты до и после перехода и делать вставку специализированным кабелем в грунт, либо проложить самонесущий кабель в земле. Однако самонесущие оптические кабели не предназначены для прокладки в земле или грунте, т. к. не имеют специальной брони для защиты от сдавливающих усилий грунта или возможного вмерзания в лёд. Самонесущий кабель можно проложить в трубу ПНД, которая будет лежать в земле. Это обеспечит необходимую защиту от воздействия грунтов. Вход в трубу необходимо загерметизировать, исключив проникновение воды внутрь трубы.
Кабель в грунт — подвесить
И обратная ситуация — когда кабель для прокладки в грунт в ряде ситуаций требуется подвесить на небольшом расстоянии. Такие кабели допускается подвешивать на небольшие пролеты, но при этом нужно учитывать их увеличенный вес по сравнению с самонесущими кабелями. Эти кабели рекомендуется монтировать с увеличенной стрелой провеса и с дополнительным запасом прочности 20–30%, так как это не основное их назначение.
Подписывайтесь на канал ВОЛС.Эксперт
Показываем, как правильно выполнять монтаж оптических муфт и кроссов, разбираем частые ошибки, даем полезные советы специалистам.
YouTube
Виды
Существует множество видов оптоволоконных кабелей в зависимости от характера их применения. Они представлены в двух «режимах»: многомодовом и одномодовом.
- Многомодовое волокно (MMF) имеет сердечники двух размеров: 50 мкм и 62,5 мкм. Широкое ядро позволяет передавать несколько потоков данных одновременно. В многомодовом волокне в качестве источника света используется светоизлучающий диод (LED) или лазер с вертикальной полостью, излучающий поверхность (VCSEL). Из-за высокой скорости рассеивания и затухания он обычно используется для передачи большого объема данных на относительно короткие расстояния .
- Одномодовое волокно (SMF) имеет гораздо меньший диаметр сердцевины – 8,3 мкм или 9 мкм и единственный световой путь, который может проходить на большие расстояния. Одномодовые волокна обычно используются для более длинных участков, таких как сети передачи данных университетского городка, передачи кабельного телевидения и телекоммуникационные сети.
То, как будет прокладываться кабель, определяет его конструкцию. Наиболее распространенными типами оптических кабелей по их применению являются:
- для внутреннего монтажа;
- для установки в кабельные каналы, с броней или без нее;
- для укладки в грунт;
- подвесной, с тросом или без него;
Тип волокна определяет параметры брони, наличие подвесного троса и других характеристик оптического кабеля. Условия среды могут быть агрессивными, будь то грунт или вода. Наиболее частые поломки линии вызваны механическими повреждениями. Например, во время ремонтных работ кабель может быть поврежден крупногабаритными машинами, или подводные сети оборваны субмаринами или кораблями. Под каждый сценарий применения подбирается соответствующий вид кабеля.
Выбор типа оболочки кабеля
Оболочка из полиэтилена
Оболочка магистральных оптических кабелей может быть исполнена из полиэтилена низкой, средней и высокой плотности (ПЭНП, ПЭСП, ПЭВП соответственно). Рассмотрим подробнее каждый из видов.
Полиэтилен низкой плотности имеет ряд существенных недостатков: низкая прочность и химическая стойкость, «стекание» оболочки при высокой температуре. Плюсы: хорошо разделывается при монтаже.
Полиэтилен высокой плотности очень прочен, обладает высокой механической и химической стойкостью, но неудобен в разделке, склонен к появлению трещин.
У полиэтилена средней плотности промежуточные характеристики: повышенная стойкость к неблагоприятным воздействиям окружающей среды, необходимая гибкость при монтаже при отрицательных температурах, стойкость к воздействию ультрафиолетового излучения.
При этом характеристики таких полиэтиленов должны соответствовать ряду дополнительных свойств, делающими их пригодными к использованию в оптических кабелях, например, обладать низкой усадкой при экструзии. К сожалению, на рынке отсутствует выбор отечественных полиэтиленов с требуемыми характеристиками. Поэтому широко используется продукция иностранных поставщиков, например, .
Оболочки, не распространяющие горение
Если кабель необходимо проложить в зданиях и сооружениях или на специальных объектах (электрические подстанции, предприятия, нефтяная и химическая промышленность и т. п.) требуется оболочка не распространяющая горение.
Иногда проектом предусмотрены расширенные требования к оболочке: не распространение горения при групповой прокладке, малодымной и безгалогенной. Это обеспечивает возможность применения кабелей в том числе и в зданиях с массовым пребыванием людей. Согласно ГОСТ, такая оболочка обозначается в маркировке кабеля «нг(А)-HF» и кабели обязательно должны иметь соответствующий сертификат пожарной безопасности.
Стоит отметить, что не рекомендуется использовать кабели с внешней оболочкой «нг(А)-HF» на всём протяжении трассы ВОЛС-ВЛ в качестве основного линейного кабеля, т. к. полиэтиленовая оболочка дешевле и обладает лучшими эксплуатационными характеристиками в сравнении с безгалогенной.
Оболочки из полимерного компаунда (огнестойкие)
В особых случаях возможно применение огнестойких кабелей, которые сохраняют свою работоспособность даже в условиях воздействия пламени и имеют обозначение в маркировке «нг(А)-FRHFLTx». Такие кабели применяются, например, в системах пожарного оповещения, а также на особо опасных или ответственных объектах, где требуется обеспечить связь даже в условиях чрезвычайных ситуаций (нефтеперерабатывающие заводы, стадионы и т. п.).
Трекингостойкие оболочки
При использовании самонесущих оптических кабелей на линиях 35 кВ и выше может возникнуть потребность в применении специальной трекингостойкой оболочки. Показанием к применению являются:
- если в точке закрепления оптического кабеля потенциал электрического поля выше 12 кВ (но не более 25 кВ). Для этого производятся специальные расчёты электрических полей;
- наличие рядом с ЛЭП загрязняющих факторов: морское побережье, металлургическое производство, угольные шахты и т. п.
Монтаж
Процесс подключения Интернета через оптоволокно сложнее, чем кажется на первый взгляд. Все преимущества скорости света заключены в хрупком сердечнике, требующего бережного отношения. По сравнению с медной витой парой, обслуживание таких коммуникаций требует повышенной квалификации работников, занятых монтажными работами и подключением абонентского оборудования. Особенно это касается профессиональных бригад, обслуживающих магистрали провайдера. Будь то срочный ремонт или плановое подключение участка — сетевой инженер всегда имеет при себе целый набор инструментов для обслуживания оптоволоконного кабеля для Интернета.
Чтобы соединить несколько сегментов кабеля, необходимо их сварить. Это возможно при помощи дорогостоящего электросварочного оборудования, в состав которого входит микроскоп.
Продвинутые модели оснащены ЧПУ, который регулирует угол и наклон сварки для достижения наилучшего результата. Проблема заключается в том, что даже небольшая погрешность может оказать негативное влияние на скорость передачи данных по оптоволокну.
Процесс монтажа:
- Сначала необходимо подготовить кабель. При помощи специального инструмента срезается внешняя и внутренняя изоляция, а также зачищается сердечник.
- Зачищенное волокно необходимо обработать спиртосодержащим веществом, а затем укоротить до нужной длины при помощи резака.
Важно отметить, что оно очень острое и при попадании под кожу его вряд ли удастся извлечь без помощи врача, поэтому монтаж стоит осуществлять крайне аккуратно.
Затем место сварки покрывается термоусадкой и нагревается до высокой температуры.
- Для подключения готового кабеля к конечному оборудованию его нужно обжать. Процесс обжима оптоволокна различается в зависимости от его типа. Если говорить о бытовом использовании, то в продаже можно найти готовые патч-корды.
В случае домашнего использования не обязательно приобретать дорогостоящее оборудование. Зачищающий инструмент и резак всё-таки понадобятся, но стоят они недорого (в пределах 1000 рублей), а без сварочного аппарата можно обойтись. Его заменит недорогая клипса, в которую вкладываются и закрепляются подготовленные концы кабеля. Этого вполне достаточно, чтобы световой поток проходил через канал.
Сравнение оптоволокна и витой пары
Возникает правомерный вопрос — почему же, несмотря на все преимущества оптоволоконного кабеля, Интернет в большинство российских квартир доставляется при помощи медной витой пары? Дело в том, что они не подлежат прямому сравнению, просто назначение — разное.
Несомненно, оптика обладает преимуществами скорости света и способна доставить объемные данные на огромные расстояния. В этом заключается ее главное предназначение — в построении целых магистралей. Когда же дело доходит до щитка провайдера внутри подъезда, то здесь витая пара оправдывает себя полностью. Благодаря простоте монтажа и достаточной скорости для передачи на короткие расстояния (например, внутри многоквартирного дома), она становится незаменимой.
Применение оптоволокна всегда оправдано в промышленных масштабах. При проектировании локальной сети небольшого предприятия или офиса учитывают затраты на кабель и оконечное оборудование. В этом случае, оптоволоконный кабель для интернета проигрывает меди из-за того, что его монтаж в разы сложнее и дороже.
Назначение
Кабель ВОЛС — это один из наиболее современных и хороших в мире способов быстро передавать данные на большие расстояния. При этом разработка совсем не уникальная — она появилась еще в конце XXстолетия и с этих пор эффективно развивается.
Люди активно общаются, совершенствуют быт и экономику, так что скорость передачи данных должна быть высокой. В настоящее время этот кабель использует множество интернет-провайдеров. У него нет побочных эффектов, таких, как ухудшение качества сигнала на большой дистанции и перегрев. На него не влияют блуждающие токи.