Соединение обмоток генератора «звездой » и «треугольником»

Пусть, мы имеем генератор переменного тока с тремя отдельными обмотками, расположенными под углом $120^0$ относительно друг друга. В этих обмотках создается трехфазный ток. Напряжения на обмотках равно:

В том случае, если данный генератор использовать без связи друг с другом, то генератор трехфазного тока становится просто совокупностью отдельных генераторов однофазного тока. В том случае, если обмотки соединяются определенным способом, то у трехфазного тока возникают специальные свойства, которые используют в технике. Используют два вида соединений обмоток генератора: «звездой» и «треугольником».

Звезда и треугольник принцип подключения. Особенности и работа

Для увеличения мощности передачи без увеличения напряжения сети, снижения пульсаций напряжения в блоках питания, для уменьшения числа проводов при подключении нагрузки к питанию, применяют различные схемы соединения обмоток источников питания и потребителей (звезда и треугольник).

Схемы

Обмотки генераторов и приемников при работе с 3-фазными сетями могут соединяться с помощью двух схем: звезды и треугольника. Такие схемы имеют между собой несколько отличий, различаются также нагрузкой по току. Поэтому, перед подключением электрических машин необходимо выяснить разницу в этих двух схемах — звезда и треугольник.

Схема звезды

Соединение различных обмоток по схеме звезды предполагает их подключение в одной точке, которая называется нулевой (нейтральной), и имеет обозначение на схемах «О», либо х, у, z. Нулевая точка может иметь соединение с нулевой точкой источника питания, но не во всех случаях такое соединение имеется. Если такое соединение есть, то такая система считается 4-проводной, а если нет такого соединения, то 3-проводной.

Схема треугольника

При такой схеме концы обмоток не объединяются в одну точку, а соединяются с другой обмоткой. То есть, получается схема, похожая по виду на треугольник, и соединение обмоток в ней идет последовательно друг с другом. Нужно отметить отличие от схемы звезды в том, что в схеме треугольника система бывает только 3-проводной, так как общая точка отсутствует.

В схеме треугольника при отключенной нагрузке и симметричной ЭДС равно 0.

Фазные и линейные величины

В 3-фазных сетях питания имеется два вида тока и напряжения – это фазные и линейные. Фазное напряжение – это его величина между концом и началом фазы приемника. Фазный ток протекает в одной фазе приемника.

При применении схемы звезды фазными напряжениями являются Ua, Ub, Uc, а фазными токами являются I a, I b, I c. При применении схемы треугольника для обмоток нагрузки или генератора фазные напряжения — Uaв, Ubс, Ucа, фазные токи – I ac, I bс, I cа.

Линейные значения напряжения измеряются между началами фаз или между линейных проводников. Линейный ток протекает в проводниках между источником питания и нагрузкой.

В случае схемы звезды линейные токи равны фазным, а линейные напряжения равны U ab, Ubc, U ca. В схеме треугольника получается все наоборот – фазные и линейные напряжения равны, а линейные токи равны I a, I b, I c.

Большое значение уделяется направлению ЭДС напряжений и токов при анализе и расчете 3-фазных цепей, так как его направление влияет на соотношение между векторами на диаграмме.

Особенности схем

Между этими схемами есть существенная разница. Давайте разберемся, для чего в различных электроустановках используют разные схемы, и в чем их особенности.

Во время пуска электрического мотора ток запуска имеет повышенную величину, которая больше его номинального значения в несколько раз. Если это механизм с низкой мощностью, то защита может и не сработать. При включении мощного электромотора защита обязательно сработает, отключит питание, что обусловит на некоторое время падение напряжения и перегорание предохранителей, или отключение электрических автоматов. Электродвигатель будет работать с малой скоростью, которая меньше номинальной.

Видно, что имеется немало проблем, возникающих из-за большого пускового тока. Необходимо каким-либо образом снижать его величину.

Для этого можно применить некоторые методы:
  • Подключить на запуск электродвигателя реостат, дроссель, либо трансформатор.
  • Изменить вид соединения обмоток ротора электродвигателя.

В промышленности в основном применяют второй способ, так как он наиболее простой и дает высокую эффективность. Здесь работает принцип переключения обмоток электромотора на такие схемы, как звезда и треугольник. То есть, при запуске мотора его обмотки имеют соединение «звезда», после набора эксплуатационных оборотов, схема соединения изменяется на «треугольник». Этот процесс переключения в промышленных условиях научились автоматизировать.

В электромоторах целесообразно применение сразу двух схем — звезда и треугольник. К нулевой точке необходимо подключить нейтраль источника питания, так как во время использования таких схем возникает повышенная вероятность перекоса фазных амплитуд. Нейтраль источника компенсирует эту асимметрию, которая возникает вследствие разных индуктивных сопротивлений обмоток статора.

Достоинства схем
Соединение по схеме звезды имеются важные преимущества:
  • Плавный пуск электрического мотора.
  • Позволяет функционировать электродвигателю с заявленной номинальной мощностью, соответствующей паспорту.
  • Электродвигатель будет иметь нормальный рабочий режим при различных ситуациях: при высоких кратковременных перегрузках, при длительных незначительных перегрузках.
  • При эксплуатации корпус электродвигателя не перегреется.

Основным достоинством схемы треугольника является получение от электродвигателя наибольшей возможной мощности работы. Целесообразно поддерживать режимы эксплуатации по паспорту двигателя. При исследовании электромоторов со схемой треугольника выяснилось, что его мощность повышается в 3 раза, по сравнению со схемой звезды.

При рассмотрении генераторов, схемы – звезда и треугольник по параметрам аналогичны при функционировании электродвигателей. Выходное напряжение генератора будет больше в схеме треугольника, чем в схеме звезды. Однако, при повышении напряжения снижается сила тока, так как по закону Ома эти параметры обратно пропорциональны друг другу.

Поэтому можно сделать вывод, что при разных соединениях концов обмоток генератора можно получить два разных номинала напряжения. В современных мощных электромоторах при запуске схемы – звезда и треугольник переключаются автоматически, так как это позволяет снизить нагрузку по току, возникающей при пуске мотора.

Звезда, треугольник — определения

В зависимости от способа соединения обмоток генератора и нагрузки различают соединения звездой и треугольником. Каждая фазная обмотка генератора имеет два вывода, которые условно называют началом и концом. За начало обмотки принимается тот вывод, к которому направлена положительная ЭДС.

соединение звездой

При соединении звездой концы всех фаз генератора соединяют в один узел. Его называют нейтральным узлом или нейтральной точкой. Нейтральные точки генератора и нагрузки часто соединяют нейтральным (нулевым) проводом. Остальные провода, соединяющие обмотки генератора с приемником, называют линейными.

соединение треугольником

При соединении треугольником начало одной фазной обмотки соединяют с концом следующей так, чтобы три обмотки образовали замкнутый треугольник.

На практике используют различные комбинации соединения фаз генератора и нагрузки: звезда-звезда, звезда-треугольник, треугольник-треугольник. Есть и комбинации с зигзагом, но в данном обзоре мы из затрагивать не будем.

Напряжения и токи в фазах генератора и нагрузки называют фазными и обозначают Uф, Ia. Напряжения между линейными проводами и токи в них называют линейными и обозначают Uл, Iл. Из рассмотренных выше схем следует, что при соединении звездой Iл = Iф, а при соединении треугольником Uл = Uф.

Если обмотки источника питания 220 Вольт соединены треугольником, соответственно фазные и линейные напряжения равны 220 Вольт. Соотношения же между линейными и фазными напряжениями при соединении звездой уже иные. Найти их можно при помощи векторной диаграммы или методом анализа синусоид трех фаз, как показано в следующем ролике:

Расчет линейного напряжения по векторам сводиться к анализу равнобедренного треугольника с углами при основании 30°. Также можно рассчитать разность векторов через комплексные числа. Подробно на данных способах останавливаться не будем. Отметим лишь следствие — при соединении звездой линейное напряжение Uл = √3 × Uф (380 = √3 × 220).

Соединение приемников энергии треугольником

При соединении приемников энергии треугольником (рис. 6-11) каждая фаза приемника присоединяется к линейным проводам, т. е. включается на линейное напряжение, которое одновременно будет и фазным напряжением приемника:

Таким образом, изменение сопротивления фаз не влияет на фазные напряжения.

Направления линейных токов от генератора к приемнику примем за положительные (рис. 6-11). Направления фазных токов от А’

к
В’,
от
В’
к
С
‘ и от
С’
к
А’
также примем за положительные.

Согласно первому правилу Кирхгофа для мгновенных значений токов для узла А’

можно написать:

Аналогично для узла В’:

Рис. 6-11

. Соединение приемников треугольником

Следовательно, мгновенное значение любого линейного тока равно алгебраической разности мгновенных значений токов тех фаз, которые соединены с данным проводом.

Рис. 6-12.

Векторная диаграмма при соединении приемников треугольником.

Вектор любого линейного тока находится как разность векторов соответствующих фазных токов:

На рис. 6-12 дана векторная диаграмма для трехфазной цепи при соединении приемников энергии треугольником. На этой диаграмме все векторы проведены из одного начала. На рис. 6-13 дана вторая диаграмма для той же цепи, на которой векторы напряжений образуют треугольник, а вектор каждого фазного тока проведен из одного начала с вектором соответствующего фазного напряжения.

Рис. 6-13.

Векторная диаграмма при соединении приемников треугольником.

Если при симметричной системе линейных напряжений нагрузка фаз равномерная, т. е.

то действующие значения фазных токов равны между собой и они сдвинуты по фазам на одинаковые углы от соответствующих напряжений (рис. 6-14) и, следовательно, на углы 120° один относительно другого. Следовательно, фазные токи представляют симметричную систему. Симметричную систему будут представлять и линейные токи (рис. 6-14).

Восстановив перпендикуляр из середины вектора линейного тока, например IА,

получим прямоугольный треугольник
OHM,
из которого следует, что

Таким образом, при соединении приемников треугольником при равномерной нагрузке фаз линейные токи больше фазных в √3 раз.

Кроме того, из той же векторной диаграммы следует, что линейные токи отстают от соответствующих фазных токов на углы 30°.

Рис. 6-14.

Векторная диаграмма для цепи, соединенной треугольником при равномерной нагрузке фаз.

При соединении приемников треугольником при равно мерной нагрузке фаз расчет трехфазной цепи сводится к расчету одной фазы.

во фазного напряжения определяются из выражений

Активная мощность одной фазы

Реактивная мощность трех фаз

Полная мощность трехфазной цепи

При неравномерной нагрузке фаз мощность трехфазной цепи о пределяется как сумма мощностей отдельных фаз.

Если приемники энергии соединены звездой и за положительное направление линейных токов вобрано направление от генератора к потребителю, то согласно первому правилу Кирхгофа для нейтральной точки можно написать:

Если приемники энергии соединены треугольником, то сумма линейных токов

Следовательно, при любом способе соединения приемников алгебраическая сумма мгновенных значений линейных токов трехфазной трехпроводной цепи равна нулю.

Поэтому, например, намагничивающая сила трех жил трехфазного кабеля равна нулю и, следовательно, не происходит намагничивания стальной брони кабеля, применяемой для защиты от механических повреждений.

Варианты подключения обмоток трехфазных генераторов

При работе 3-х фазного генератора в каждой его обмотке создается ЭДС в форме синусоидального колебания. Все вектора разнесены по углу вращения на 120° и могут быть описаны формулами:

eА=Еmsinωt, EА=Ефej0°; eВ=Еmsin(ωt-120°), EВ=Ефe-j120°; eС=Еmsin(ωt-240°)=Еmsin(ωt+120°), EС=Ефej120°.

Для подключения обмоток генератора в связанную систему применяется одна из двух схем:

— “звезда” (Y); — “треугольник” (Δ).

“Звезда”

. Для схемы “звезды” все выходы обмоток фаз статора подключают к единой общей точке
N
, именуемую нейтральной либо нулевой точкой. Входа (начала) обмоток каждой фазы
А, В и С
подключают к линейным выводам генератора.

”Соединение

“Треугольник”

. Для этой схемы соединения формируют выходные фазы:

“А”

подключением выхода обмотки
А
ко входу обмотки
C
;-
“В”
подключением выхода обмотки
В
ко входу обмотки
А
;-
“С”
подключением выхода обмотки
С
ко входу обмотки
В
.

Точки подключения А, В и С

используются как линейные выводы у генератора.

”Соединение

Векторные диаграммы

. У работающего генератора, обмотки которого соединены по схеме “звезда” диаграмма векторов напряжений имеет форму равностороннего треугольника с центром в начале координат и расположенного симметрично относительно оси ординат.

Его стороны представлены векторами линейных напряжений с направлением вращения противоположным ходу часовой стрелки. Вектора фазных напряжений соединяют центр треугольника с вершинами по направлению от начала координат.

Под термином фазного напряжения понимают разность потенциалов между общим выводом N и линейным А, В

или
С
и маркируют:
UA, UB, UC
. Напряжения в фазах генератора равны ЭДС обмоток:
ЕА=UА, ЕВ=UВ, ЕС=UС
.

Линейное напряжение генератора измеряется между двумя любыми его выводами и обозначается по наименованию выбранных фаз: UAВ, UBС, UCА

. Величина вектора линейного напряжения определяется геометрической разностью векторов соответствующих фаз:

UAВ=UA-UВ; UBС=UВ-UС; UCА =UС-UA.

У генератора с обмотками соединенными по схеме “треугольник” диаграмма векторов напряжений тоже имеет форму равностороннего треугольника, но он относительно центра координат провернут на 30° по направлению движения часовой стрелки.

Соотношения линейных и фазных напряжений для генератора, собранного по схеме “треугольника”, остаются теми же, что и для генератора, работающего по схеме “звезда”.

Расчеты параметров трехфазных сетей проводятся математическими способами (например, комплексный метод) и способами геометрических сложений.

Для этого выбирают один из векторов в качестве начального, ориентируют его в комплексной плоскости с учетом направления и величины. Остальные вектора достраивают по углам сдвига их фаз относительно выбранного начального вектора с учетом их величин.

Обычные расчеты для схемы соединения “звезда” проще начинать с определения напряжения вектора фазы А

, который в данной системе выходит из начала координат комплексной плоскости в направлении на север. Выражения фазных напряжений в комплексной форме для такого расчета описываются формулами:

UА=Uфej0°; UВ=Uфe-j120°; UС=Uфej120°

.

Формулы для линейных векторов имеют следующий вид:

UАВ=Uлej30°; UВС=Uлe-j90°; UСА=Uлej150°.

Для схем “треугольник” за начальный отсчет принимают вектор линейного напряжения UАВ

. Формулы вычисления фазных векторов напряжений принимают выражения:

UА=Uфe-j30°; UВ=Uфe-j150°; UС=Uфej90°.

Вектора линейных напряжений описываются формулами:

UАВ=Uлej0°; UВС=Uлe-j120°; UСА=Uлej120°.

Проведя геометрические вычисления не сложно определить линейную величину вектора по значению фазной:

Uл=2Uфcos30°=2Uф√3/2=Uф√3.

Важно!

Схема соединения обмоток “треугольник” для генератора практически не пригодна для реального использования, поэтому ее запрещено применять.

В фазах схемы “треугольник” образуется общий контур, у которого возникает суммарная ЭДС Σe=eAB+eBC+eCA

. Значения полных сопротивлений в обмотках маленькие и даже небольшая величина суммарной ЭДС
Σe>0
вызывает в магистралях “треугольника” уравнительные токи, которые сопоставимы с номинальным значением тока в генераторе. Это создает большие потери энергии и значительно уменьшает КПД генератора.

У энергетиков существует определение номинального напряжения для 3-х фазной системы. Им называют линейные напряжения, которые выражаются в киловольтах (кВ, kV). Их представляют значениями 0,4; 1,1; 3,5; 6,3; 10,5; 22; 35; 63; 110; 220; 330; 500; 750.

Для потребителей электроэнергии номинальную величину 3-х фазного напряжения допускается указывать соотношениями линейных и фазных напряжений UЛ/UФ

. Для электросети 0,4 кВ оно будет иметь вид: 380/220 вольт.

ВКЛЮЧЕНИЕ ПРИЕМНИКОВ ЭНЕРГИИ В СЕТЬ ТРЕХФАЗНОГО ТОКА

Электрические лампы изготовляются на номинальные напряжения 127 и 220 в, а трехфазные электродвигатели на номинальные фазные напряжения 127, 220 и 380 в

и выше.

Способ включения приемника в сеть трехфазного тока зависит от линейного напряжения сети и от номинального напряжения приемника.

Лампы с номинальным напряжением 127 в

включаются треугольником при линейном напряжении сети 127
в
и звездой с нейтральным проводом при линейном напряжений сета 220
в.
Лампы с номинальным напряжением 220
в
включаются треугольником в сеть с линейным напряжением 220
в
и звездой с нейтральным проводом в сеть с линейным напряжением 380
в.
Трехфазный электродвигатель включается треугольником в сеть, линейное напряжение которой равно номинальному фазному напряжению электродвигателя. Если линейное напряжение сети превышает в √3 раз номинальное фазное напряжение электродвигателя, то он включается звездой.

Статья на тему Соединение приемников энергии треугольником

Соединение обмоток трансформатора в звезду

При соединении в звезду действуют следующие соотношения –

  • линейные токи равны фазным,
  • линейные напряжения больше фазных в √3 раз

Возможно множество вариантов соединения обмоток трансформатора в звезду, некоторые из них приведены на рисунке ниже. И, как говорится, не все из них одинаково полезны, а точнее, для разных случаев необходима разная схема соединений.

Следует отметить, что в звезду можно соединить как один трехфазный трансформатор, так и три однофазных. На рисунке обозначаются:

  • А, В, С – начала обмоток высшего напряжения
  • Х, Y, Z – окончания обмоток высшего напряжения
  • a, b, c – начала обмоток низкого напряжения
  • x, y, z – окончания обмоток низкого напряжения

Соединение обмоток трансформатора в треугольник

Соединение в треугольник так называется из-за внешнего сходства с треугольником (видно на рисунке).

При соединении в треугольник действуют следующие соотношения –

  • линейные токи больше фазных в √3 раз
  • линейные напряжения равны фазным

Три вторичные обмотки, при соединении в треугольник соединены последовательно, образуя тем самым замкнутую цепь. В этой цепи отсутствует ток, так-как ЭДС фаз сдвинуты на 120 градусов и их сумма в каждый момент времени равна нулю. Так же ток равен нулю при соблюдении тотчасно следующих условий – ЭДС имеют синусоидальную форму, обмотки имеют одинаковые числа витков.

Звезда и треугольник в вопросе о третьих гармониках трансформаторов

В трансформаторах схему треугольник используют кроме прочего для получения токов третьих гармоник, которые необходимы для создания синусоидальной ЭДС вторичных обмоток. Другими словами, для исключения третьей гармонической составляющей в магнитном потоке.

Чтобы ввести третьи гармоники при соединении в звезду – соединяют нейтраль звезды с нейтралью генератора, по этому пути и начинают пробегать третьи гармоники.

Генератор напряжения треугольной формы

Наиболее простой способ получения треугольных импульсов является схема содержащая триггер Шмитта и интегратор, причём выход триггера соединён с входом интегратора, а выход интегратора с входом триггера Шмитта. Несмотря на свою простоту, схема позволяет получить хорошие треугольные импульсы.

Данный генератор треугольного напряжения состоит из триггера Шмитта на ОУ DA1 и резисторах R1, R2 и R3, а также интегратора на ОУ DA2 и резисторах R4, R5 и конденсатора С1. Треугольные импульсы снимают с вывода «UВЫХ 2», кроме того с вывода «UВЫХ 1» можно снимать прямоугольные импульсы. Резисторы R3 и R5 служат для компенсации напряжения смещения ОУ и в случае, когда нет необходимости в сильной симметрии импульсов их можно заменить перемычками.

Для понимания принципа работы генератора треугольных импульсов рассмотрим график напряжений на его выводах UВЫХ 1 и UВЫХ 2.

График выходных напряжений ГТИ

Допустим после подачи напряжения питания в схему на выходе триггера Шмитта (DA1) установилось напряжение положительного насыщения ОУ UНАС+, тогда конденсатор С1 начинает заряжаться, а на выходе интегратора (DA2) напряжение начинает соответственно линейно падать. Так как выход интегратора и вход триггера объединены, то при достижении линейно-падающего напряжения уровня нижнего напряжения переключения триггера UНП, то произойдёт переброс напряжения на его выходе до напряжения отрицательного насыщения ОУ UНАС-, а коденсатор С1 начнёт разряжаться. По мере разряда конденсатора напряжение на выходе интегратора начнёт линейно расти до уровня напряжения верхнего переключения триггера Шмитта UВП, после достижения, которого выход триггера переключится до уровня напряжение положительного насыщения ОУ UНАС+ и цикл зарядки – разрядки конденсатора С1, а следовательно и треугольного напряжения повторится.

Из выше сказанного можно сделать вывод, что амплитуда выходного треугольного напряжения, которое можно снимать с выхода ОУ DA2 (UВЫХ 2) будет равна величине гистерезиса триггера Шмитта

Таким образом регулируя величину гистерезиса триггера можно увеличивать или уменьшать амплитуду выходных импульсов треугольного напряжения.

Длительность треугольно импульса состоит из двух периодов: периода нарастания длительностью tН и периода спада напряжения длительностью tС. Длительность этих периодов определяется следующими выражениями

Как известно пороговые уровни триггера Шмитта при опорном напряжении равном нулю (UОП = 0 В) определяются следующими выражениями

Тогда после несложных преобразований и замен получим выражение для длительности и частоты треугольного напряжения

Изменение частоты следования треугольных импульсов осуществляется с помощью резистора R4 (точная регулировка) и конденсатора C1 (грубо), хотя длительность импульсов также зависит от величины сопротивления резистора R4.

Стоит заметить, что максимальная частота следования импульсов ограничена параметрами ОУ, в частности скоростью нарастания выходного напряжения ОУ DA2 (интегратор) и максимальным выходным током ОУ DA1 (триггер Шмитта).

Соединение обмоток трансформатора в зигзаг

Соединение в зигзаг используется в случае, если на вторичных нагрузках неравномерная нагрузка. После соединения в зигзаг нагрузка распределяется более равномерно по фазам и магнитный поток трансформатора сохраняет равновесие, несмотря на неравномерную нагрузку.

Рассмотрим соединение в зигзаг-звезду трехфазного силового трансформатора. Схематично изображение приведено на рисунке.

Первичные обмотки соединяются в звезду. Далее разделяем каждую вторичную обмотку напополам. И далее соединяем, как показано на рисунке.

При соединении в зигзаг-звезду потребуется большее число витков, чем при простой звезде. Также при таком соединении возможно получение трех классов напряжения, например 380-220-127В.

Сохраните в закладки или поделитесь с друзьями

Источник: pomegerim.ru

§ 79. Соединение треугольником

Кроме соединения звездой, генераторы, трансформаторы, двигатели и другие потребители трехфазного тока могут включаться треугольником.

На рис. 179 представлена несвязанная трехфазная система. Объединяя попарно провода несвязанной шестипроводной системы и соединяя фазы так, как указано на чертеже, переходим к трехфазной трехпроводной системе, соединенной треугольником.

Рис. 179. Несвязанная трехфазная система

Как видно из рис. 180, соединение треугольником выполняется таким образом, чтобы конец фазы А был соединен с началом фазы В, конец фазы В соединен с началом фазы С и конец фазы С соединен с началом фазы A. К местам соединения фаз присоединяют линейные провода.

Рис. 180. Связанная трехфазная система, соединенная треугольником

Если обмотки генератора соединены треугольником, то, как видно на рис. 180, линейное напряжение создает каждая фазная обмотка. У потребителя, соединенного треугольником, линейное напряжение подключается к зажимам фазного сопротивления. Следовательно, при соединении треугольником фазное напряжение равно линейному:

Определим зависимость между фазными и линейными токами при соединении треугольником, если нагрузка фаз будет одинакова по величине и характеру. Составляем уравнения токов по первому закону Кирхгофа для трех узловых точек A 1 , В 1 и С 1 потребителя:

Отсюда видно, что линейные токи равны геометрической разности фазных токов. При симметричной нагрузке фазные токи одинаковы по величине и сдвинуты один относительно другого на 120°. Производя вычитание векторов фазных токов согласно полученным уравнениям, получаем линейные токи (рис. 181). Зависимость между фазными и линейными токами при соединении в треугольник показана на рис. 182:

Рис. 181. Фазные и линейные токи при соединении треугольником

Рис. 182. Зависимость между фазными и линейными токами при соединении треугольником

Следовательно, при симметричной нагрузке, соединенной треугольником, линейный ток в √3 раз больше фазного тока.

На рис. 183 дана векторная диаграмма токов и напряжений при равномерной активно-индуктивной нагрузке, соединенной треугольником. Построение диаграммы производится следующим образом. В выбранном масштабе строим равносторонний треугольник линейных напряжений сети UAB, UBC И UAC, которые равны фазным напряжениям потребителя. В сторону отставания под углами φAB, φBC, φСА к линейным напряжениям UAB, U BC и UСА строим в масштабе векторы фазных токов IAB, IBC и ICA. Затем, как было указано раньше, определяем линейные токи IА, IB и IС.

Рис. 183. Векторная диаграмма токов и напряжений при равномерной нагрузке, соединенной треугольником

У двигателей и у других потребителей трехфазного тока в большинстве случаев наружу выводят все шесть концов трех обмоток, которые по желанию можно соединять либо звездой, либо треугольником. Обычно к трехфазной машине крепится доска из изоляционного материала (клеммная доска), на которую и выводят все шесть концов.

Схемы соединений обмоток треугольник и звезда для чайников.

Наиболее распространенный вопрос у начинающих изучения устройства трансформаторов или иных электротехнических устройств это «Что такое звезда и треугольник?». Чем же они отличаются и как устроены, попробуем разъяснить в нашей статье.

Рассмотрим схемы соединений обмоток на примере трехфазного трансформатора. В своем строении он имеет магнитопровод, состоящий из трёх стержней. На каждом стержне есть две обмотки – первичная и вторичная. На первичную подается высокое напряжения, а со вторичной снимается низкое напряжение и идет к потребителю. В условном обозначении схема соединений обозначается дробью (например, Y⁄∆ или Y/D или У/Д), значение числителя – соединение обмотки высшего напряжения (ВН), а значение знаменателя – низшего напряжения (НН).

Каждый стержень имеет как первичную обмотку так и вторичную (три первичных и три вторичных обмотки). У каждой обмотки есть начало и конец. Обмотки можно соединить между собой способом звезда или треугольник. Для наглядности обозначим вышеперечисленное схематически (рис. 1)

При соединении звездой, концы обмоток соединяются вместе, а из начал идут три фазы к потребителю. Из вывода соединений концов обмоток, выводят нейтральный провод N (он же нулевой). В итоге получается четырёх – проводная, трёхфазная система, которая часто встречается вдоль линий воздушных электропередач.(рис. 2)

Преимущества такой схемы соединения в том, что мы можем получить 2 вида напряжения: фазное (фаза+нейтраль) и линейное. В таком соединении линейное напряжение больше фазного в √3 раз. Зная, что фазное напряжение дает нам 220В, то умножив его на √3 = 1,73, получим примерно 380В – напряжение линейное. Но что касается электрического тока, то в этом случае фазный ток равен линейному, т.к. что линейный, что фазный токи одинаково выходят из обмотки, и другого пути у него нет. Так же стоит отметить что только в соединении звезда имеется нейтральный провод, который является «уравнителем» нагрузки, чтобы напряжение не менялось и не скакало.

Рассмотрим теперь соединение обмоток треугольником. Если мы конец фазы А, соединим с началом фазы В, конец фазы В соединим с началом фазы С, а конец фазы С соединим с началом фазы А, то получим схему соединения обмотки треугольником. Т.е. в этой схеме обмотки соединены последовательно. (рис. 3)

В основном такая схема соединения применяется для симметричной нагрузки, где по фазам нагрузка не изменяется. В таком соединении фазное напряжение равно линейному, а вот электрический ток, наоборот, в такой схеме разный. Ток линейный больше фазного тока в √3 раз. Соединение обмотки треугольником обеспечивает баланс ампер-виток для тока нулевой

последовательности. Простыми словами, схема соединения треугольником обеспечивает сбалансированное напряжение.

Подведем итоги. Для базового определения схем соединения обмоток силовых трансформаторов, необходимо понимать, что разница между этими соединениями состоит в том, что в звезде все три обмотки соединены вместе одним концом каждой из обмоток в одной (нейтральной) точке, а в треугольнике обмотки соединены последовательно. Соединение звезда позволяет нам создавать два вида напряжения: линейное (380В) и фазное (220В), а в треугольнике только 380В.

Выбор схемы соединения обмоток зависит от ряда причин:

  • Схемы питания трансформатора
  • Мощности трансформатора
  • Уровня напряжения
  • Асимметрии нагрузки
  • Экономических соображений

Так например, для сетей с напряжением 35 кВ и более выгодно соединить обмотку трансформатора схемой звезда, заземлив нулевую точку. В данном случае получится, что напряжение выводов трансформатора и проводов линии передачи относительно земли будет всегда в √3 раз меньше линейного, что приведёт к снижению стоимости изоляции.

На практике чаще всего встречаются следующие группы соединений: Y/Y, D/Y, Y/D.

Группа соединений обмоток Y/Y (звезда/звезда) чаще всего применяется в трансформаторах небольшой мощности, питающих симметричные трёхфазные электроприборы/электроприемники. Так же иногда применяется в схемах большой мощности, когда требуется заземление нейтральной точки.

Группа соединения обмоток D/Y (треугольник/звезда) применяется, в основном в понижающих трансформаторах больших мощностей. Чаще всего трансформаторы с таким соединением работают в составе систем питания токораспределительных сетей низкого напряжения. Как правило, нейтральная точка звезды заземляется, для использования как линейного, так и фазного напряжений.

Группа соединений обмоток Y/D (звезда/треугольник) используется, в основном, в главных трансформаторах больших силовых станций и подстанций, не служащих для распределения.

Источник: www.forwardenergo.ru

Трансформация напряжений при помощи комбинаций звезда и треугольник

При мощности генератора электростанции 500 МВт и напряжении 10 кВ сила тока в проводах составит 50 тысяч ампер. При передаче на большие расстояния провода, как нагрузка, имеют значительное сопротивление. Следовательно, большая часть тока будет уходить впустую на разогрев проводов. Чтобы минимизировать потери при транспортировке электроэнергии единственный действенный способ — увеличение напряжения, что приведет к снижению силы тока. А без распределительных трансформаторов (повышающих и понижающих) этого сделать нельзя.

Сейчас подробно останавливаться на принципе работы трансформатора не будем. Нас больше интересует особенность соединения его обмоток звездой или треугольником.

Моделировать будем в программе Multisim. А начнем отрисовку схемы с трехфазного генератора, обмотки которого соединены в звезду. Заземлим точку соединения обмоток. На этом этапе отметим, что несмотря на то, что генераторы на электростанциях вырабатывают напряжения в тысячи вольт и на всем пути трансформируют его увеличивая и уменьшая, мы возьмем генератор, вырабатывающий понятные нам 220 Вольт. Также не стоит сравнивать приведенные здесь схемы с реальной системой, так как путь от электростанции до потребителя намного сложнее.

Теперь добавим трансформатор. Точнее соберем его из трех трансформаторов таким образом, чтобы первичная обмотка была соединена в звезду, а вторичная — в треугольник. Повышать напряжение не будем, но посмотрим, какая трансформация произошла при соединении обмоток трансформатора по схеме звезда-треугольник.

При переключении со звезды в треугольник обмоток генераторов или вторичных обмоток трансформаторов происходит следующее:

  • Напряжение в сети понижается в 1,73 раза. В нашем случае линейное напряжение понижается с 380 до 220 Вольт.
  • Мощность генератора и трансформатора остается такой же. А все потому что напряжение каждой фазной обмотки остается таким же и ток в каждой фазной обмотке такой же, хотя ток в линейных проводах возрастает в 1,73 раза. Это мы покажем чуть позже, когда замкнем цепь через потребителей. Но прежде добавим в нашу схему еще один трансформатор со схемой треугольник звезда и подключим к нему нагрузку.

При переключении обмоток генераторов или вторичных обмоток трансформаторов с треугольника в звезду происходят обратные явления:

  • Линейное напряжение в сети повышается в 1,73 раза. В нашем случае с 220 до 380 Вольт.
  • Токи в фазных обмотках остаются теми же, токи в линейных проводах уменьшаются в 1,73 раза.

Теперь разберемся в причинах трансформаций простыми словами без использования векторов. Для этого рассмотрим движение свободных электронов в цепи и проанализируем потенциалы в конкретный момент времени. Такого объяснения вы наверно нигде не увидите, но оно, возможно, наиболее простое для восприятия.

Первое в нашей цепи — это генератор. Упрощенно в нем имеется три обмотки статора, смещенные на 120° относительно друг друга. При вращении ротора в обмотках статора возникает периодически изменяющаяся ЭДС с амплитудой приблизительно 312 Вольт. Это амплитудное значение напряжения, и переходить от него к действующему не будем. В момент, когда напряжение на одном из выводов генератора +312 Вольт, на двух других по -156 Вольт. Остановимся на этом моменте и перейдем к напряжениям обмоток трансформатора.

Напряжения в рассматриваемый момент времени как на первичной обмотке, так и на вторичной обмотке соответствуют выделенным выше +312, -156, -156 Вольтам. Так почему же токи в линейных проводах, отходящих от обмоток треугольника увеличиваются в корень из трех раз, а линейное напряжение во столько же раз уменьшается? Весь секрет в особенности соединения обмоток в треугольник, и далее мы наглядно продемонстрируем это перейдя к более упрощенной схеме.

Так как при соединении треугольником начало одной фазной обмотки соединяют с концом следующей, то напряжение обмотки +312 Вольт распределится между обмоткой с напряжением -156 Вольт и выводом. В результате на выводе обмотки с напряжением +312 Вольт будет +156 Вольт, а на выводе обмотки с напряжением -156 Вольт будет 0 Вольт. У нас остается третья обмотка с напряжением -156 Вольт, и на выводе у нее так и останется -156 Вольт. В результате получаем напряжения на выходе в рассмотренный нами момент +156, -156, 0 Вольт (а было +312, -156, -156 Вольт).

Получившееся линейное напряжение +156-(-156) = +312 Вольт (это амплитудное значение). После перевода в действующее значение получим 220 Вольт. Почему не рассматривается 0 Вольт? Нужно понимать что частота 50 Герц ни куда не пропала, и там где ноль, через мгновение будет +156, еще через мгновение -156. И такое чередование будет постоянным. Но вернемся к рассматриваемому моменту времени. С падением линейного напряжения с 380 до 220 Вольт разобрались. Теперь объясним, почему произошло увеличение силы тока. На самом деле все просто. Уменьшив напряжение для передачи первоначальной мощности нам нужно пропорционально увеличить силу тока.

При переходе с треугольника на звезду происходит обратная трансформация. Чтобы это увидеть на схеме, нужно найти напряжения обмоток на втором трансформаторе, подключенном по схеме треугольник звезда. Посчитав разности потенциалов начал и концов обмоток мы вернемся к изначальным +312, -156, -156 Вольт.

Для того чтобы подтвердить наши расчеты и наглядно увидеть сдвиг фаз вернемся к программе Multisim и подключим к фазам осциллограф.

К выводу A осциллографа xsc1 подключена фаза, идущая от генератора с обмотками по схеме звезда. К остальным трем выводам данного осциллографа подключены фазы после трансформации звезда треугольник. Как видно после трансформации синусоида фазы сместилась на 30°. И если подвести курсор к амплитудному значению ≈ +310 Вольт канала A, то на остальных каналах, относящихся к фазам после трансформации будет приблизительно +155, -155 и 0 Вольт. То есть то же, что мы просчитывали ранее, показал осциллограф.

Для анализа обратной трансформации к выводу A осциллографа xsc2 мы подключили ту же фазу от генератора, а остальные выводы соединили с фазами после трансформатора со схемой треугольник звезда. В результате пропал сдвиг и синусоиды фаз вернули свои амплитуды 312 Вольт. Правда если обратите внимание синусоиды фаз после трансформации отразились зеркально по отношению к синусоидам фаз после генератора. Для того, чтобы отразить обратно, достаточно поменять местами выводы обмоток по схеме звезда.

Как видно применяя различные комбинации «звезды» и «треугольника» с одинаковыми индуктивностями первичных и вторичных обмоток можно от одного напряжения переходить к другому. А для того, чтобы все это наглядно увидеть, достаточно воспользоваться программой для моделирования цифровых и аналоговых электронных схем. В нашем случае моделирование производилось в среде программы Multisim.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]