Электрическая энергия в промышленных масштабах не может передаваться в виде однофазного переменного тока. С этой целью применяется трехфазный ток, а для его передачи используются трехфазные трансформаторы. Одним из способов трансформации трехфазного тока служит применение трех однофазных трансформаторов.
Соединение первичных и вторичных обмоток в этих устройствах осуществляется в одну из трехфазных систем – звезду или треугольник. Именно по этому принципу происходит работа мощных однофазных трансформаторов, которыми оборудуются крупные электростанции. Их первичные обмотки соединяются с соответствующими фазами генераторов, а вторичные обмотки, соединенные звездой, подключаются к соответствующим фазам линий электропередачи.
Принцип действия трехфазного трансформатора
Как видно из приведенной схемы, вместо трех однофазных устройств может быть использован один трехфазный трансформатор. В состав его магнитопровода входят три стержня, которые замыкаются ярмами сверху и снизу. На каждый стержень наматывается первичная и вторичная обмотка, соединяемые затем звездой или треугольником. Каждый стержень с обмотками по своей сути является однофазным трансформатором. Одновременно, он выполняет функцию отдельной фазы трехфазного трансформатора.
Под действием тока первичной обмотки во всех стержнях происходит появление магнитного потока. Следует учитывать принадлежность каждой такой обмотки к одной из фаз, входящих в трехфазную систему. Поэтому токи, протекающие по этим обмоткам, а также приложенные напряжения, относятся к трехфазным. Поэтому сформированные магнитные потоки тоже являются трехфазными.
Ранее считалось, что движение магнитного потока осуществляется по замкнутой траектории, то есть, проходя по стержню, он возвращается к его началу. В трехфазных трансформаторах такой обратный путь отсутствует, в нем просто нет необходимости, при условии одинаковой нагрузки фаз. Кроме того, отсутствует и необходимость нейтрального соединения в звезду.
Силовые трансформаторы 10(6)/0,4 кВ. Области применения разных схем соединения обмоток
Отсутствие у изготовителей и заказчиков чёткого представления о принципиальных отличиях свойств силовых трансформаторов малой мощности с разными схемами соединения обмоток приводит к ошибкам в их применении. Причём неправильный выбор схемы соединения трансформаторных обмоток не только ухудшает технические показатели электроустановок и снижает качество электроэнергии, но и приводит к серьёзным авариям.
Об этом напоминают нижегородские проектировщики Алевтина Ивановна Федоровская и Владимир Семенович Фишман, которые в своём материале акцентируют внимание на разнице в реакции трансформаторов на несимметричные токи, содержащие составляющую нулевой последовательности.
Алевтина Федоровская, технический директор
Владимир Фишман, главный специалист Группы Филиал «Энергосетьпроект — НН — СЭЩ», г. Нижний Новгород
Схемы соединения обмоток и свойства трансформаторов
В соответствии с ГОСТ 11677-85 [1] силовые трансформаторы 10(6)/0,4 кВ мощностью от 25 до 250 кВА могут изготавливаться со следующими схемами соединения обмоток:
— «звезда/звезда» – Y/Yн;
— «треугольник–звезда» – D/Yн;
— «звезда–зигзаг» – Y/Zн.
Принципиальное отличие технических характеристик трансформаторов с различными схемами соединений обмоток заключается в разной реакции на несимметричные токи, содержащие составляющую нулевой последовательности. Это прежде всего однофазные сквозные короткие замыкания, а также рабочие режимы с неравномерной загрузкой фаз.
Как известно, силовые трансформаторы 6(10)/0,4 кВ имеют трёхстержневой стальной сердечник, на каждом стержне которого располагаются первичная и вторичная обмотки соответствующей фазы – А, В и С. Магнитные потоки трёх фаз в симметричных режимах работы циркулируют в стальном сердечнике трансформатора и за его пределы не выходят.
Что происходит при нарушении симметрии с преобладанием нагрузки одной из фаз на стороне 0,4 кВ? Такие режимы работы исследуются с использованием теории симметричных составляющих [2]. Согласно этой теории любой несимметричный режим работы трёхфазной сети представляется в виде геометрической суммы трёх симметричных составляющих тока и напряжения: это составляющие прямой, обратной и нулевой последовательностей.
Рассмотрим режим максимальной однофазной несимметрии – режим однофазного короткого замыкания (ОКЗ) на стороне 0,4 кВ трансформатора со схемой соединения обмоток D/Yн.
Картина токов симметричных составляющих в обмотках в этом режиме представлена на рис. 1. В неповреждённых фазах на стороне 0,4 кВ геометрическая сумма трёх симметричных составляющих тока равна нулю (рабочей нагрузкой фаз пренебрегаем), а в повреждённой фазе эта сумма максимальна и равна току ОКЗ. Его величина определяется известной формулой:
(1)
где Uл
– линейное напряжение;
R1
,
R0
,
X1
,
Х0
– соответственно активные и реактивные сопротивления прямой и нулевой последовательности.
Сопротивление прямой последовательности
Сопротивления прямой последовательности R1
и
X1
трансформаторов с разными схемами соединения обмоток определяются одними и теми же формулами и отличаются незначительно:
Заглянув в каталоги, нетрудно убедиться, что входящие в эти формулы известные величины Ркз
и
Uк
от схем соединения обмоток трансформатора практически не зависят, а следовательно, от них не зависят и сопротивления прямой последовательности.
В отличие от этих сопротивлений, сопротивления нулевой последовательности трансформаторов с разными схемами соединения обмоток отличаются принципиально.
Сопротивления нулевой последовательности
Рассмотрим картину векторов токов и магнитных потоков в трансформаторе со схемой соединения обмоток D/Yн (рис. 2).
В таких трансформаторах токи прямой, обратной и нулевой последовательностей протекают как в первичной, так и во вторичной обмотках. При этом токи нулевой последовательности в первичной обмотке замыкаются внутри неё и в сеть не выходят. Создаваемые токами нулевой последовательности первичных и вторичных обмоток намагничивающие силы (ампер-витки) направлены встречно и почти полностью компенсируют друг друга, что обуславливает небольшую величину реактивных сопротивлений трансформатора. При этом сопротивления прямой и нулевой последовательностей приблизительно равны: R1
= R0; Х1 = Х0
.
В трансформаторах со схемой соединения обмоток Y/Zн в аналогичном режиме ОКЗ токи нулевой последовательности протекают лишь по вторичной обмотке трансформатора, однако магнитного потока нулевой последовательности они не создают, что объясняется особенностью схемы Zн – «зигзаг».
Эта особенность состоит в том, что на каждом стержне трансформатора расположено по одной вторичной полуобмотке двух разных фаз (рис. 3). В режиме ОКЗ намагничивающие силы, создаваемые токами нулевой последовательности в этих полуобмотках, направлены встречно и друг друга взаимно компенсируют. При этом токи нулевой последовательности в первичной обмотке отсутствуют. В таких трансформаторах сопротивления нулевой последовательности оказываются меньше сопротивлений прямой последовательности: R0 < R1; Х0 < Х1
.
Рис. 1. Токи симметричных составляющих в обмотках трансформатора в режиме однофазного короткого замыкания
IA21
,
IA22
,
IA20
,
IB21
,
IB22
,
IB20
,
IC21
,
IC22
,
IC20
– токи фаз А, В, С прямой, обратной и нулевой последовательностей вторичной обмотки;
IA11
,
IA12
,
IA10
,
IB11
,
IB12
,
IB10
,
IC11
,
IC12
,
IC10
– токи фаз А, В, С прямой, обратной и нулевой последовательностей первичной обмотки.
Рис. 2. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток D/Yн
Рис. 3. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Zн
Как следует из формулы (1), это обеспечивает большую величину тока ОКЗ у трансформаторов со схемами Y/Zн по сравнению с трансформаторами со схемами D/Yн.
Теперь обратимся к трансформаторам со схемой соединения обмоток Y/Yн. Как известно, в обмотках, соединённых в звезду без выведенной нулевой точки, токи нулевой последовательности протекать не могут. Поэтому в режиме ОКЗ токи этой последовательности протекают только во вторичной обмотке трансформатора.
Совпадающие по фазе магнитные потоки нулевой последовательности, создаваемые токами вторичной обмотки, выходят за пределы магнитного сердечника и замыкаются через металлический кожух трансформатора (рис. 4). Это определяет значительно большую величину сопротивлений нулевой последовательности таких трансформаторов: R0 >> R1; X0 >> X1
.
Рис. 4. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Yн
Следует отметить, что в отличие от сопротивлений прямой последовательности трансформаторов, которые можно рассчитать, сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн расчёту не поддаются. Их можно определить только экспериментально. Величина этих сопротивлений во многом зависит от конструкции кожуха трансформатора, от величины зазоров между сердечником и кожухом и т. п.
Схема замера сопротивлений нулевой последовательности приведена в ГОСТ 3484.1-88 [3]. К сожалению, в этом документе указано, что такие замеры предприятия-производители проводят по просьбе заказчиков. Вероятно, в последние годы таких просьб от заказчиков не поступает, а изготовители эти замеры самостоятельно не производят, считая, что в них нет необходимости. В результате проектировщики при выполнении расчётов пользуются старыми справочными данными. Однако использовать устаревшую информацию надо чрезвычайно осторожно, ведь конструкции современных трансформаторов, в частности кожухов, а также материалы, из которых они изготовлены, существенно изменились.
Кроме того, имеющиеся на сегодня данные по сопротивлениям нулевой последовательности трансформаторов крайне скудны и противоречивы. Так, согласно замерам Минского трансформаторного завода, выполненным много лет назад, реактивные сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн превышают сопротивления прямой последовательности в среднем в 10 раз. В то же время в ГОСТ 3484.1-88 имеется фраза о том, что эти сопротивления могут отличаться на два порядка. И этим сегодня противоречия не исчерпываются [4].
Почему необходимо знать знать реальные значения сопротивлений
Реальные значения сопротивлений нулевой последовательности знать необходимо, поскольку они определяют величину тока ОКЗ. Чем больше эти сопротивления, тем меньше ток ОКЗ, соответственно труднее осуществить защиту трансформатора.
В нормальных режимах работы большие сопротивления нулевой последовательности при неравномерной загрузке фаз трансформатора на стороне 0,4 кВ приводят к ухудшению качества электроэнергии у потребителя.
Так, если принять R1 = R0, X1 = X0
, что характерно для трансформаторов со схемами соединения обмоток D/Yн, то получим:
(2)
Таким образом, при этих условиях ток ОКЗ на выводах 0,4 кВ трансформатора будет равен току трёхфазного КЗ.
Однако, если R0>>R1
и
X0>>X1
, что характерно для трансформаторов со схемами соединения обмоток Y/Yн, то величина тока ОКЗ оказывается значительно меньше тока трёхфазного КЗ, то есть
Iокз << I3фкз
. Какие при этом могут возникнуть трудности с защитой, особенно если она выполнена со стороны обмотки ВН предохранителями 6(10) кВ, можно показать на конкретном примере.
На рис. 5 изображена схема подключения трансформатора 100 кВА, 6/0,4 кВ питания собственных нужд (ТСН) ПС 110/35/6 кВ. На ПС с переменным оперативным током такие трансформаторы устанавливаются на ОРУ и подключаются к воздушному вводу, идущему от силового трансформатора к вводной ячейке ЗРУ-6(10) кВ. Защита трансформатора, включая кабель 0,4 кВ до щита 0,4 кВ, выполняется предохранителями 6 кВ. Токи КЗ в конце защищаемой предохранителями зоны – при вводе на щит 0,4 кВ приведены в табл. 1. Как из неё видно, минимальное значение тока КЗ через предохранители 6 кВ имеет место при однофазном замыкании на стороне 0,4 кВ.
Таблица 1. Токи короткого замыкания в конце защищаемой предохранителями зоны за трансформатором 100 кВА, 6/0,4 кВ, D/Yн при вводе на щит 0,4 кВ
Рис. 5. Схема подключения трансформатора 100 кВА, 6/0,4 кВ для питания собственных нужд ПС 110/35/6 кВ
Согласно существующим рекомендациям по условиям отстройки от броска тока намагничивания трансформатора мощностью 100 кВА номинальный ток предохранителей принимается равным Iн.пр = (2 ÷ 3) Iн.тр
. В данном случае
Iн.пр 2 ·10 А 20
. Принимаем
Iн.пр = 20 А
.
Минимальный отключаемый ток предохранителем типа ПКТ-6 кВ, 20 А согласно каталожным данным составляет Iмин.откл.пр = 240 А
, что значительно больше токов КЗ, приведенных в табл. 1.
Таким образом, защита предохранителями типа ПКТ 6 кВ оказывается нечувствительной. Более того, при протекании тока КЗ ниже минимально отключаемого, предохранитель не только не защищает оборудование, но и разрушается сам, вызывая аварию.
В качестве защитного аппарата можно рассмотреть возможность использования предохранителей зарубежных фирм, например марки Merlin Gerin. Номинальный ток предохранителя специалисты компании рекомендуют выбирать из условия Iпр.0,1с
12 Iном.тр
. Пользуясь времятоковой зависимостью, приведенной в [5], определяем, что этому условию удовлетворяет предохранитель Fusarc c номинальным током 20 А, минимальный ток отключения которого равен 55 А. Казалось бы, этот предохранитель надёжно защищает электрооборудование, т. к. минимально отключаемый им ток меньше минимального тока КЗ: 62 А 55 А. Однако время отключения данным предохранителем тока КЗ, равного 62 А, составляет 7 с. При таком длительном времени необходимо учитывать эффект спада тока, вызванный увеличением активного сопротивления кабеля вследствие его нагрева [6]. В результате спада тока его значение приближается к минимальному току отключения предохранителя –55 А, что делает защиту ненадёжной.
Улучшить надёжность защиты можно путём применения силового трансформатора 6/0,4 кВ со схемой соединения обмоток Y/Zн. В этом случае минимальный ток короткого замыкания через предохранители увеличивается до 80 А, а время его отключения предохранителем сокращается до 0,6 с и защита становится достаточно надёжной.
Если же в рассмотренном примере будет применён трансформатор со схемой соединения обмоток Y/Yн, то минимальный ток КЗ через предохранители составит лишь 22 А. Очевидно, что защитить электрооборудование предохранителями 6 кВ при таком токе невозможно. Недостатки трансформаторов со схемой соединения обмоток Y/Yн проявляются и в нормальных режимах работы при неравномерной загрузке фаз. Потери напряжения в более загруженной фазе могут резко возрасти по сравнению с менее загруженными фазами, особенно при большой загрузке трансформатора и низком cos j нагрузки.
Однако означает ли всё вышесказанное, что трансформаторы со схемой соединения обмоток Y/Yн не должны изготавливаться вообще? Представляется, что это не так. Не всегда большая величина сопротивления нулевой последовательности трансформатора является недостатком. Например, при применении трансформаторов более 1000 кВА может возникнуть проблема устойчивости однофазной коммутационной аппаратуры 0,4 кВ к току ОКЗ. В этом случае большая величина сопротивления нулевой последовательности трансформатора со схемой Y/Yн поможет решить эту проблему.
Что же касается защиты таких трансформаторов, то она решается с помощью релейной защиты и выключателя 6(10) кВ, а с низкой стороны – с помощью вводного автомата.
Выводы
Для трансформаторов малой мощности (от 25 до 250 кВА), защищаемых предохранителями со стороны ВН, безусловное преимущество имеет схема соединения обмоток Y/Zн. Несколько меньший эффект даёт схема D/Yн. Схему Y/Yн для таких трансформаторов применять не следует.
Схема соединения обмоток трансформаторов Y/Yн может применяться в сравнительно редких случаях для более мощных трансформаторов при необходимости ограничения тока однофазного КЗ с целью повышения устойчивости коммутационной аппаратуры.
Предприятиям-изготовителям силовых трансформаторов следует в обязательном порядке производить замеры их сопротивлений нулевой последовательности.
Литература
1.
ГОСТ 11677-85. Трансформаторы силовые. Общие технические условия.
2.
Ульянов С. А. Короткие замыкания в электрических системах. – М.: Госэнергоиздат, 1952. – 280 с.
3
. ГОСТ 3484.1-88 (СТ СЭВ 1070-78). Трансформаторы силовые. Методы электромагнитных испытаний.
4.
Справочник по проектированию электроснабжения, линий электропередачи и сетей / Под ред. Большама Я. М., Круповича В. И., Самовера М. Л. и др. – М.: Энергия, 1975. – 696 с.
5.
Каталог на предохранители Fusarc Merlin Gerin (стандарт DIN).
6.
ГОСТ 28249-93. Короткие замыкания в электроустановках. Методы расчёта в электроустановках переменного тока напряжением до 1 кВ.
Как передается трехфазный ток
Первичным источником питания в большинстве случаев является электрическая сеть. Ее напряжение представлено в виде синусоиды с частотой 50 Гц. Однако в тех случаях, когда линии электропередачи обладают большой протяженностью, происходит излучение передаваемой энергии в окружающее пространство, что приводит к дополнительным потерям. Поэтому в цепях электропитания высокой мощности применяется трехфазное напряжение.
Для того чтобы уменьшить излучение, сумма напряжений на всех трех фазах в любое время должна быть равна нулю. С этой целью производится сдвиг синусоидального напряжения по фазе в каждом проводе относительно друг друга на 120 градусов. В таком состоянии передача электроэнергии может осуществляться в двух вариантах: с помощью четырех или трех проводов линии передачи. Условные схемы каждого варианта отображены на рисунке.
Четырехпроводная линия позволяет выдавать потребителю два вида напряжения: фазное (220 В) и линейное (380 В). Трехпроводная схема позволяет выдавать лишь линейные напряжения. Формирование линейного напряжения описывается с помощью векторной диаграммы напряжений фаз. При положительном чередовании фаз, они условно увеличиваются по часовой стрелке. Для соединения обмоток трехфазных трансформаторов используются два основных способа – звезда и треугольник.
Соединение звездой
Данный вид соединения рекомендуется рассматривать на примере схемы «звезда-звезда». В этом случае источник тока и нагрузка соединяются методом звезды.
На рисунке обозначение фазных напряжений, вырабатываемых вторичными обмотками трансформатора, выполнено символами UA, UB, и UC. От фазных обмоток до нагрузки идут проводники, выполняющие функцию линейных проводов. Следует учитывать наличие напряжения не только между нулевым и линейным проводами, но и между двумя линейными проводниками. Такое напряжение называется линейным и обозначается UAC или UCA.
Значение линейного напряжения всегда превышает фазное. Разница между ними составляет √3 раза, поскольку представляет собой векторную разность фазных напряжений. Таким образом, трехфазная линия электропередачи позволяет получить не только 380 В, но и 220 В, в зависимости от того по какой схеме включена нагрузка.
Что такое группа соединения?
На рисунке 1 изображены 10 трансформаторов, обмотки которых соединены по-разному, причем это далеко не все из возможных соединений. Не рассматривая пока, в чем состоят различия, обратим внимание на помещенные рядом со схемами векторные диаграммы, которые расположены в следующем порядке: слева – векторная диаграмма напряжений первичной обмотки, в середине – векторная диаграмма напряжений вторичной обмотки, справа – векторные диаграммы напряжений обеих обмоток совмещены (в часах). Их «центры тяжести» находятся в центре циферблата часов. Минутная стрелка часов совпадает с направлением одного из векторов напряжений первичной обмотки (на рисунке 1 с вектором B). Часовая стрелка совпадает с вектором напряжения вторичной обмотки одноименной фазы, то есть с вектором b.
Рисунок 1. Примеры образования групп соединений трансформаторов. Начала первичных обмоток обозначены A, B, C, концы X, Y, Z. Начала вторичных обмоток a, b, c концы x, y, z.
Обратите внимание на то, что сравнивается расположение векторов первичной и вторичной звезд. Поэтому в случае соединения обмотки в треугольник надо, перед тем как определять группу соединения, вписать в треугольник звезду. После этого, рассматривая звезды, стрелки направляют вдоль векторов звезд в вершины B и b (A и a, C и c).
По рисунку 1 легко убедиться в том, что несколько схем, несмотря на различие в соединениях, дают одинаковый сдвиг векторов одноименных напряжений, что отчетливо видно по соответствующим им «часам», так как они указывают одно и то же время.
Несколько схем, дающих одинаковый сдвиг, образуют группу соединения. Иными словами, вторичные напряжения одноименных фаз всех трансформаторов, имеющих одну и ту же группу соединения, совпадают по фазе. Поэтому их можно соединять параллельно, не рискуя получить уравнительный ток.
Основных групп может быть двенадцать (1 ч, 2 ч, …, 12 ч) – по числу цифр на циферблате. Это объясняется тем, что векторы первичных и вторичных напряжений в зависимости от схемы соединения обмоток и их расположения на стержнях могут иметь сдвиги, кратные 30°. Таким образом, группе 1 ч соответствует сдвиг 30°, группе 2 ч – 60°, 3 ч – 90°, 4 ч – 120° и так далее. Сдвиг в 360° (или, что то же, отсутствие сдвига, так как 360° и 0° – это одно и то же) имеет группа 12 или 0 ч. При сдвиге 6 ч векторы напряжений одноименных фаз первичных и вторичных обмоток направлены прямо противоположно.
Четные группы (2, 4, 6, 8, 10, 12) получаются, если обе обмотки высшего напряжения (ВН) и низшего напряжения (НН) имеют одинаковые соединения – обе в звезду или обе в треугольник. Соединение одной обмотки в зигзаг – звезду при другой обмотке, соединенной в треугольник, дает четные группы.
Нечетные группы (1, 3, 5, 7, 9, 11) получаются, если одна обмотка соединена в звезду, другая – в треугольник, а также, если одна обмотка соединена в зигзаг – звезду, а другая – в звезду.