Твердотельное реле OMRON G3MB-202P или делаем WiFi розетку с минимумом компонентов

Электромагнитные реле — электромеханические устройства, работа которых основана на явлениях, известных по экспериментам с электромагнетизмом. Известно, что принцип действия обычных контактных выключателей заключается в том, что металлические элементы соприкасаются и через них может течь ток. Когда они разомкнуты, воздух между ними становится непроходимой преградой для тока. А эти контакты перемещаются электромагнитом, управляемым отдельной схемой.

Электромагнит был изобретен ещё 200 лет назад и с тех пор в его конструкции мало что изменилось. Но теперь есть больше знаний и технологических возможностей для изготовления миниатюрных электромагнитов с низким энергопотреблением, с возможностью питания постоянного или переменного тока и других особенностей. Электромагнитные реле (или просто реле) — это компоненты, которые чаще всего закрываются в прямоугольный корпус с выводами для пайки или установки в разъём. Внутри находится электромагнит, металлический якорь, который перемещает контакты.

Применение

Твердотельные реле используются для контроля за электронными приборами, оборудованием и автоматическими системами, подключенными к электрической сети мощностью от 20 до 480 Ватт.

Применяются в различных сферах:

  • автоматике промышленных процессов;
  • различных бытовых установках;
  • системах регуляции тепла в ТЭНах;
  • в системах регулировки освещения и датчиках движения;
  • электронике автомобилей.

Реле имеется в холодильниках, чайниках, стиральных машинах, нагревательных ТЭНах, бесперебойных источниках питания.

Области использования твердотельных приборов зависят от их конструкции, схем подключения и прочих условий функционирования.

ТТР не нуждаются в постоянном обслуживании, и могут устанавливаться в любые труднодоступные места.

Популярность твердотельных устройств возрастает с каждым днем, благодаря повсеместной автоматизации.

Виды и классификация

По способу монтажа

Выпускаются различные модели ТТР с креплением на опорные поверхности, печатные платы или на DIN-рейки.

Рисунок 3. Прибор для установки на печатную плату.

Для охлаждения реле используются специальные радиаторы, устанавливаемые между опорой и блоком.

Для дополнительной защиты от перегрева на поверхность прибора наносится термопаста, для повышения теплоотдачи, за счет увеличения площади соприкосновения.

Существуют модели, предназначенные для крепления шурупами непосредственно к стене.

Для установки в электрощит выпускаются ТТР с креплениями на ДИН-рейку.

Крепление на рейку.

Для отвода лишнего тепла реле крепится к рейке через кронштейны.

По типу переключения коммутируемой сети

Различаются устройства:

  • С регулятором «через ноль». Срабатывают при нулевом напряжении. Предназначены для устройств со слабыми индуктивными, резистивными или емкостными нагрузками.
  • Мгновенное. Используется при необходимости резкого срабатывания.
  • Фазовое. В таких устройствах при смене значения сопротивления меняется мощность на нагрузке. Применяется для регулировки уровня освещения в лампах накаливания, или температуры — в нагревательных элементах.

По виду рабочего тока

Твердотельные реле могут управляться электрическими цепями с двумя видами тока:

  • постоянным;
  • переменным.

Коммутации постоянного тока применяют при постоянном напряжении до 32 вольт.

Большинство работают на переменных токах. Такие приборы отличаются мгновенным срабатыванием, экономичностью и низкой степенью электромагнитных помех. Рабочие напряжения — 90-250 вольт.

По количеству подключенных фаз

Бывают:

  • Однофазные, работающие в диапазоне 10-100 и 100-500А, устанавливаются в бытовых приборах.
  • Трехфазные, 10-120 А, коммутирующее напряжение сразу на трех фазах.

Управление однофазными приборами выполняются посредством аналогового сигнала и переменного резистора.

Устройство трехфазных реле предполагает реверсивную работу, обеспечивающую регулирование нескольких электрических цепей одновременно.

Чтобы выполнить правильное присоединение при монтаже оборудования к трехфазному реле подключают провода различных цветов.

Виды твердотельных реле

ТТР условно разделяются по двум критериям — принципу действия и конструктивным особенностям. Чтобы упростить классификацию, выделим следующие варианты:

  • По виду сигнала управления — переменный или постоянный I.
  • По типу основного (коммутируемого) напряжения — постоянное или переменное.
  • По числу фаз (для переменного напряжения) — одна, три.
  • По наличию реверса — предусмотрен, не предусмотрен.
  • По тонкостям конструкции — на ДИН-рейке или на поверхности.

Конструкция

Основной элемент твердотельных реле — электронная плата, состоящая из трех главных элементов:

  1. Блока управления, обеспечивающего стабильные уровни напряжения, которое на входе составляет от 70 до 220 Вольт.
  2. Узла развязки, состоящего из элементов, подающих и принимающих световой сигнал. Между передающими и принимающими элементами расположен прозрачный диэлектрик.
  3. Силовых ключей:
  • для постоянного тока — на базе транзисторов.
  • для переменного — на базе

симисторов или тиристоров.

Устройство должно монтироваться после нагрузки, с последующим заземлением, для предотвращения КЗ.

Схемы подключения

Электрические схемы строятся в зависимости от особенностей подключения нагрузки.

К наиболее распространенным схемам относятся:

  1. Разомкнутая или открытая. При наличии управляющего сигнала реле находится под напряжением. При обесточенных входах приборы находятся в отключенном состоянии.
  2. Замкнутая. При отсутствии управляющего сигнала нагрузка реле находится под напряжением. При обесточенных входах подключенные приборы находятся в рабочем состоянии.
  3. Трехфазная — контакты соединяются по схеме «Звезда», «Звезда с нейтралью» или «Треугольник».
  4. Реверсивная— включают два уровня управления. Изготавливается в трехфазном варианте.

Электрические цепи с твердотельными реле собирают точно по схеме, с соблюдением полярности.

Неправильное подключение приборов может привести к удару электричеством, выходу из строя из-за КЗ.

yourmicrowell.ru

Устройство, о котором пойдет речь в этой статье, можно называть по разному: пусковое реле, разгрузочное реле, реле задержки и каждое из этих названий, на мой взгляд, будет правильным. Почему? Это мы выясним позже, а пока остановимся на одном из названий — пусковое реле, и разберемся, для чего оно нужно и как работает.

Из содержания предыдущей статьи, известно, что таймер – регулятор содержит две группы контактов соединенных, между собой последовательно: контакты таймера – K-time и контакты регулятора мощности – K-power. Во время работы микроволновой печи, этим группам приходится коммутировать токи довольно большой мощности – не менее 700Вт. Это ток, приблизительно в 3 ампера при напряжении 220 вольт. А, в печах обладающих функцией гриля, эта цифра будет почти вдвое больше. Коммутация такой большой мощности неизбежно вызывает искрение между контактами в момент их срабатывания, что приводит к выгоранию рабочей поверхности контактной группы и как следствие, отрицательно сказывается на работе печи. Не смотря на заявление изготовителей механических регуляторов о том, что его контакты рассчитаны на довольно большой ток, 10 – 15А. при напряжении 250В. (эти параметры, как правило, указываются на корпусе регулятора) на практике, в печах, не имеющих пускового реле, выход из строя контактов таймера – регулятора встречается горазда чаще, чем в печах оборудованных этим устройством. Сервисные центры, редко утруждают себя ремонтом отдельных узлов и деталей микроволновой печи. По этому, если в вашей микроволновке сгорели контакты таймера – регулятора, в сервисе вам, скорее всего, предложат поменять его целиком, что отрицательно скажется на содержимом вашего кошелька. Для того, чтобы подобные ситуации возникали как можно реже, заводы изготовители стараются разгрузить – обезопасить контакты механического регулятора, оснащая печи такими устройствами, как пусковое реле.

Рисунок 1

На Рисунке 1, изображена схема микроволновой печи с механической панелью управления. Участок схемы, обведенный красной пунктирной линией, и есть пусковое реле. Основным элементом устройства, является, собственно, реле «Р» с контактами «КР». Данное реле, чаще всего, рассчитано на напряжение срабатывания 24 вольта постоянного тока. Остальные элементы схемы образуют однополупериодный, бес трансформаторный источник питания, обеспечивающий работу реле. На схеме, положение контактных групп ключей блокировки: К1, К2 и К3, соответствуют состоянию открытой двери. Давайте мысленно закроем дверь, то есть переведем положение всех ключей в противоположное состояние – замкнуто. Повернем ручку регулятора времени по часовой стрелке, при этом замкнуться контактные группы таймера – регулятора, K-time и K-power, одним словом, мысленно включим печь – подадим напряжение питания в нагрузку. После срабатывания K-time и K-power, через них потечет ток в нагрузку – первичную обмотку высоковольтного трансформатора. Но, так как контакты «КР» реле «Р», в данный момент еще разомкнуты, то ток потечет через гасящий резистор R2. Благодаря своему номиналу, R2 погасит значительную часть тока и напряжения. Той части мощности, которую он пропустит, не хватит для того, чтобы на вторичных обмотках высоковольтного трансформатора сформировались напряжения необходимые для работы магнетрона. Другими словами, в этот момент, печь у нас не работает. С другой стороны, такое ограничение мощности тока, протекающего через контактные группы K-time и K-power, существенно снижает вероятность искрения между их контактами в момент срабатывания. То есть, коммутируя не полную, а ограниченную с помощью R2 мощность, контактные группы регулятора, как бы разгружаются – работают в щадящем режиме. Одновременно с этим, напряжение питания 220 вольт, через ограничительный резистор R3, поступит на выпрямительный диод VD1. VD1 пропустит только положительные полупериоды переменного напряжения, которые поступят на верхнюю – положительную обкладку конденсатора С4. После подачи постоянного напряжения на конденсатор С4, он начнет заряжаться. Напряжение на его обкладках будет расти. При достижении уровня напряжения на С4 равного напряжению срабатывания реле, реле «Р» сработает, контакты «КР» замкнуться и зашунтируют собой резистор R2. В результате на первичную обмотку высоковольтного трансформатора начнет поступать полная мощность. На вторичных обмотках трансформатора возникнут напряжения необходимые для работы магнетрона, печь запустится. Стабилитрон VD2, в этой схеме, выполняет двойную функцию. При росте напряжения на конденсаторе С4, стабилитрон ограничивает его уровень до необходимого (24В), а при обесточивании реле, гасит обратные токи возникающие в этот момент в катушке реле из – за явления самоиндукции. При размыкании K-power или K-time, напряжение перестает поступать на схему пускового устройства, конденсатор С4 разряжается через обмотку реле, реле «Р» размыкает контакты «КР» и тем самым обесточивает нагрузку. Печь выключается. Таким образом, время зарядки конденсатора С4, создает некую паузу, во время которой контактные группы регулятора коммутируют не полное напряжение, а ограниченное резистором R2, что уменьшает, или совсем исключает искрение между контактами, и тем самым значительно продлевает их срок службы.

Конструктивно, пусковое реле, чаще всего выполняется методом печатного монтажа на одной плате вместе с сетевым фильтром. Внутри печи данный блок, как правило, крепится сверху корпуса вентилятора расположенного у задней стенки микроволновки. Но, возможны и другие варианты расположения, например, над или рядом с высоковольтным трансформатором. На рисунке 2, изображен один из примеров выполнения блока пускового реле и сетевого фильтра. Эту плату можно легко отличить от других электронных блоков печи по наличию резисторов большой мощности в керамических корпусах. На приведенной для примера плате, резистор R2 имеет номинал 30 ом, а R3 – 5,4 ком. Оба резистора рассчитаны на 10Вт. рассеиваемой мощности. Применение таких мощных резисторов, обусловлено тем, что для преобразования сетевого напряжения 220В. в напряжение пригодное для питания реле, нужно погасить значительную часть напряжения и тока. При этом погашенная мощность выделяется резисторами в виде тепла. Для повышения надежности данного устройства, производители могут применять составные резисторы. То есть в место одного резистора 5,4 ком мощностью 10Вт, могут быть установлены два резистора 2,7 ком мощностью по 5Вт каждый включенных последовательно. Так, что не удивляйтесь, если при необходимости ремонта данного узла, вы обнаружите на плате не два резистора, а больше.

Принцип действия

Чтобы понять принцип работы твердотельного реле, нужно знать их конструктивные особенности.

Взаимодействие управляемого и управляющего сигнала обеспечивает гальваническая или оптическая развязка.

Одним из основных элементов ТТР является оптоизолятор, или оптопара в виде светодиода и фоточувствительного устройства, изолирующего вход от выхода.

При прохождении электричества через светодиод, подключенный к входной секции твердотельного реле, он загорается. Фокусируясь через зазор, свет передается на фоточувствительный транзистор или семистор.

Принцип действия устройства заключается в замыкании и размыкании контактов, передающих напряжение.

Схема всех твердотельных устройств примерно одинаковая. Незначительные отличия в различных моделях совершенно не влияют на его функции.

Работа механизма заключается в замыкании и размыкании контактных клемм, передающих напряжение.

Технические характеристики

При выборе ТТР руководствоваются характеристиками:

  • габаритные размеры;
  • величина напряжения на входе и выходе;
  • перегрузочная способность;
  • потребляемая мощность;
  • материал изготовления;
  • тип монтажа;
  • прочность изоляции и пр.

Характеристики твердотельных реле могут отличаться, в зависимости от вида устройства.

Таблица 1. Усредненные характеристики ТТР.

Наименование Показатель
Токи срабатывания не больше 7.5 мА
Сопротивление изоляции >50 МОм/500В DC
Метод управления в реле для постоянного тока мгновенно через оптрон
Метод коммутации в реле для переменного тока при переходе через «ноль»
Перегрузочная способность до 10 номинальных токов в течение 10 мс
Встроенная защита сменные предохранители
Прочность изоляции 2,5 кВ АС в течение 1 минуты

Микроэлектронные реле корпорации OMRON

3 марта 2008

Основными достоинствами микроэлектронных реле, по сравнению с электромеханическими, являются:

  • долговечность;
  • высокая надежность;
  • малые размеры;
  • бесшумная бесконтактная работа;
  • отсутствие необходимости технического обслуживания.

Корпорация OMRON выпускает два типа микроэлектронных реле — твердотельные реле и MOSFET-реле.

Твердотельные реле

Реле этого типа способны коммутировать переменный ток в варианте оптосимистора или постоянный — в варианте оптотиристора. Опционально, оптосимисторы могут иметь функцию включения выходного сигнала при переходе через ноль, а также встроенные варисторы для подавления коммутационных помех.

В таблице 1 приведены основные параметры некоторых семейств твердотельных реле с различными выходными элементами.

Таблица 1. Основные параметры некоторых семейств твердотельных реле с различными выходными элементами

ПараметрG3DZG3MG3MBG3MCG3R/RDG3S/SD
Выходной элементФотодиодная сборкаФотосимисторФотосимистор/Фотопара
Напряжение нагрузки, В (AC)3…26475…13275…13275…13275…26475…264
3…12575…26475…26475…264
Напряжение нагрузки, В (DC)3…1253…26
3…52,8
Ток нагрузки, A0,62; 3; 521; 21,5; 21; 1,1; 1,2
Входное напряжение, В (DC)5, 12, 24
Напряжение изоляции, В (AC)2500
Температурный диапазон, °С— 30…80
Замена электромеханического релеG6DG6B

Одной из важных особенностей подобных реле является возможность замены некоторых типов электромеханических реле, производимых OMRON, на твердотельные без переделки печатной платы, то есть они pin-to-pin совместимы.

Для справки: www.omroncomponents.com/home/products/Relays/SolidStateRelays.

MOSFET-реле

MOSFET реле OMRON изготовлены с учетом последних достижений микроэлектроники и воплощают в себе множество современных технологий в области светодиодной и фотодиодной техники, а также полевых транзисторов. Как следствие, это позволило достигнуть минимальных размеров микросхем и их потребляемой мощности. Все модели реле содержат двойную цепь нагрузки MOSFET, обеспечивающую полную универсальность их использования, так как для этих устройств неважно, подключена ли нагрузка переменного или постоянного тока, и в каком направлении. Примеры коммутации выводов реле для различных видов напряжений приведены на рисунке 1.

Рис. 1. Варианты коммутации выводов реле для различных видов напряжений

Встроенная функция ограничения тока широко используется в телекоммуникационном оборудовании для ограничения чрезмерно высокого тока при неисправности, а также для противодействия нарастанию тока при переходных режимах. Эти реле идеально подходят для использования в мини-АТС для решения задач занятия и переключения линии, для организации доступа к данным, для управления линейными трансформаторами и т.д.

Реле, в зависимости от возможного применения делятся на следующие группы:

  • Общего назначения;
  • Специального назначения, как правило, низковольтные;
  • Предназначенные для применения в телекоммуникационном оборудовании с повышенной диэлектрической прочностью или встроенной функцией ограничения тока;
  • Высококачественные с уменьшенным сопротивлением канала в открытом состоянии.

Кроме того, у каждого типа реле существуют варианты, как с нормально разомкнутыми контактами, так и с нормально замкнутыми.

Маркировка MOSFET-реле показана в таблице 2.

Таблица 2. Маркировка MOSFET-реле

G3VM — xxxxНапряжение нагрузки, ВВид контактовТип корпусаДополнительные функции
2…20 4…40 6…60 8…80 10…100 20…200 25…250 35…350 40…400 60…6001 — SPST-NO 2 — DPST-NO 3 — SPST-NC 4 — DPST-NC 5 — SPST-NO + SPST-NCA — DIP 4 B — DIP 6 C — DIP 8 D — SMD 4 E — SMD 6 F — SMD 8 G — SOP 4 H — SOP 6 J — SOP 8 L — SSOP 4L — с функцией ограничения тока R — с низким сопротивлением канала Y — с повышенной диэлектрической прочностью > 2,5 кВ

В целом, система обозначения достаточно прозрачна, и любой разработчик может подобрать себе необходимое реле, исходя из требуемых параметров.

Далее в таблице 3 приведены параметры некоторых типов наиболее популярных MOSFET-реле с выходом на полевых транзисторах.

Таблица 3. Параметры некоторых типов MOSFET-реле

ПараметрG3VM-351AG3VM-353AG3VM-61G1G3VM-62C1G3VM-354CG3VM-355CRG3VM-355JR
Тип контактаНЗ*НР**НЗДве группы НЗДве группы НРОдин НЗ, один НРОдин НЗ, один НР
Выходное напряжение, В (AC)3503506060350350350
Ток нагрузки, мА12015040050015012090
Входное напряжение светодиода, В (DC)5
Напряжение изоляции, В (AC)2500150025001500
Температур- ный диапа- зон, °C-40…85
Максималь- ный ток срабатыва- ния светодиода, мА3
Максимальное время вкл/выкл, мс1/11/32/0,52/0,51/31/11/3

* НЗ — нормально замкнутый контакт ** НР — нормально разомкнутый контакт

Для обеспечения разработчиков электронной техники подробной информацией OMRON выпускает полный каталог продукции с приведенными data sheets, CD-ROMы с аналогичной информацией и наглядные брошюры с основными параметрами реле. Кроме того, справочную информацию можно получить по электронному адресу https://www.omroncomponents.com/home/products/Relays/MOSFETRelays/ или на сайте компании https://www.omroncomponents.com/ .

Ответственный за направление в КОМПЭЛе — Александр Райхман

Получение технической информации, заказ образцов, поставка — e-mail

Дополнительные возможности датчика прикосновения B6TS

Инженеры компании OMRON разработали 16-ти канальную версию датчиков прикосновения для уже существующей серии B6TS. Новый B6TS-16LF способен управлять 16-ю различными кнопками при помощи одного чипа, при этом обладает более высокой чувствительностью и возможностью программирования.

Датчик B6TS реагирует на большинство непроводящих материалов: резину, дерево, стекло, различные пластики и даже на мрамор, что позволяет использовать эти материалы в качестве декоративного покрытия элементов управления. К устройствам, где применим B6TS (автоматы по продаже товаров, лифты, разнообразные системы доступа), предъявляются повышенные требования по внешнему виду и дизайну. Инженеры Omron предоставили конструкторам большую свободу проектирования за счет возможности построения собственных электрических цепей и независимой электродной конфигурации.

•••

Наши информационные каналы

Отличие твердотельных реле от электромагнитных

Электромагнитные модели имеет катушку управления и подвижную контактную группу.

На катушку подается напряжение от кнопочного поста или системы управления.

Электричество, протекая через катушку, создает электромагнитное поле, притягивающее якорь с контактной группой. Контакты замыкаются.

Основное отличие твердотельных реле — отсутствие катушки управления и подвижной силовой контактной группы.

В зависимости от сферы применения, функции силовых контактов выполняют транзисторы, тиристоры, симисторы и другие полупроводниковые ключи.

В связи с отсутствием движущихся деталей, твердотельные реле не подвержены механическому износу.

Рисунок 7. Прибор в разобранном виде.

Подключение твердотельного реле

Принцип подключения прост. В приборе предусмотрены управляющие входы (на них подается напряжение с четким соблюдением полярности) и выход для подключения нагрузки. Важный момент — качество соединения. Здесь применяется винтовой способ (пайка исключена).

Чтобы избежать повреждения ТТР, важно исключить попадание на контакты пыли, а также посторонних механических элементов. Стоит предусмотреть меры, препятствующие негативному воздействию на кожух прибора (во включенном или отключенном состоянии).

После включения запрещено прикасаться к корпусу, который может быть горячим. Обратите внимание, чтобы ТТР не располагалось вблизи легковозгораемых материалов. Кроме того, в процессе подключения убедитесь, что коммутация выполнена без ошибок.

Если после включения изделие набирает температуру выше 60 градусов Цельсия, установите на него радиатор для охлаждения (причины и особенности этой защитной меры рассмотрены выше).

Если ничего не предпринять, при достижении 80 градусов Цельсия прибор перестанет работать. Управление осуществляется при помощи цепочки с различными вариантами исполнения.

Достоинства и недостатки

К преимуществам твердотельных моделей относятся:

  • отсутствие шума и вибрации;
  • компактные размеры;
  • широкая сфера применения;
  • мгновенная скорость коммутации (тысячные доли миллисекунд);
  • отсутствие электромагнитных помех при включении;
  • продолжительный ресурс, благодаря отсутствию движущихся деталей;
  • постоянность выходного сопротивления в течение всего срока эксплуатации;
  • минимальное потребление электрической энергии;
  • возможность регулирования нагрузки;
  • низкая чувствительность к вибрациям, повышенной влажности, запыленности, воздействию магнитных полей.

Ресурс переключений твердотельных реле в тысячу и более раз выше, чем у электромагнитных аналогов.

При работе таких приборов исключена возможность появления искр при переключении, что позволяет использовать устройства на взрыво- и пожароопасных объектах.

Основные недостатки твердотельных реле:

  • нагревание прибора, связанное с высоким сопротивлением в цепи p-n перехода;
  • частое ложное срабатывание при скачках напряжения;
  • возможность выхода из строя силового ключа, при перегрузках и коротких замыканиях;
  • высокая стоимость.

У ТТР имеется ток утечки, из-за которого фазный провод может находиться под напряжением даже при отключенном реле.

Приборы, рассчитаны на работу в условиях постоянного тока, требуют строгого соблюдения полярности при подключении выходных цепей.

Твердотельные реле периодически проверяют на предмет целостности корпуса и изоляции.

Конструкция и принцип работы твердотельного реле

По технологии создания твердотельные реле можно отнести к гибридным устройствам. Функцию контактной группы в твердотельных реле берёт на себе электронный силовой ключ. Это позволяет избежать возникновения дуги в процессе коммутации. Такое качество незаменимо при эксплуатации узла на участках сильного химического загрязнения.

Среди других плюсов элемента можно выделить:

  • сверхбыструю реакцию на поступивший сигнал (тысячные доли миллисекунд);
  • отсутствие гистерезиса;
  • большой диапазон рабочих температур;
  • бесшумное изменение параметров цепи.


Свою основную функцию твердотельные реле выполняют за счёт полупроводниковых элементов. Процесс действия схож с классическим реле, которое, как мы знаем, включает в себя управляющие катушки и специальные контакты. При подаче напряжения происходит замыкание, либо размыкание контактов. Альтернативой этим контактам и являются полупроводниковые приборы.

Чаще всего в составе твердотельных реле таковыми являются симисторы, тиристоры и транзисторы. Приборы, выпускаемые в массовом производстве, имеют в составе такие элементы, которые дают возможности регулировать ток до 100+ А.

Выбор твердотельного реле

Перегрузочные свойства ТТР, коммутирующих ток переменный, значительно выше, чем у приборов, коммутирующих ток постоянный.

Таблица 2. Перегрузочная способность реле.

Тип тока Допустимая максимальная перегрузка(Ампер) в теч. 10 мс.
Постоянный 90 250 380
Переменный 120 300 410

При выборе нужно учитывать следующие аспекты:

Способы коммутации

Наибольшей популярностью пользуются устройства, в которых управление выполняется при переходе через «0».

Такой тип коммутации подходит для нагрузки резистивного типа. Способ позволяет исключить помехи, создаваемые при включении.

Фазовое управление

Фазовый метод применяется в резистивных схемах управления освещением, трансформаторах инфракрасных излучателях.

Процесс регулирования при фазовом управлении отличается плавностью и безразрывностью. Недостаток способа в появлении помех при переключении.

Реле с фазовым управлением.

Реле с фазовым регулятором можно распознать по условному изображению на корпусе, в области расположения входных клемм.

Параметры и типы нагрузок

Ток нагрузки — один из важнейших параметров при выборе реле.

Для надежной работы выбирают реле с запасом:

  • 30-40% —при активной нагрузке (нагреватели);
  • 6-10% — для асинхронных электродвигателей;
  • 8-12% — для ламп накаливания;
  • 4-10% — для катушек электромагнитных реле.

Особое внимание уделяют параметрам:

1. Предельному току нагрузкисоставляющему от 10 до 500 ампер
2. Коммутируемому уровню напряжения
  • 5-220В — для постоянного тока;
  • 24-380В; 48-480В; 24-480В — для переменного.
3. Сигналу управления
  • от 80-280В, от 100 до 280В — для переменного тока;
  • 3-32В — для постоянного;

Для подключения индуктивной нагрузки(например, электродвигателя), следует учесть пусковой ток, превышающий номинальный на 600-100%

Наличие охлаждения

Надежность работы твердотельных реле зависит от его рабочей температуры.

Нельзя допускать превышения температуры свыше 60°С.

На температурный режим реле влияют различные факторы:

  • температура окружающей среды;
  • место монтажа;
  • существующие нагрузки;
  • наличие циркуляции воздуха.

При использовании реле на больших токах следует отводить лишнее тепло на охлаждающие радиаторы, предусмотреть вентиляторы или другие варианты охлаждения.

При нагреве на каждые 10°С уменьшается пропускная способность устройства на 20-25%. При нагреве твердотельных реле до 80° изделие выходит из строя.

Защита

Существуют различные варианты защиты твердотельных реле:

  1. RC-цепь—от ложного срабатывания при работе на индуктивной нагрузке.
  2. Варисторы — для защиты от кратковременных скачков напряжения со стороны нагрузки. Приборы подбираются с учетом величины коммутируемого напряжения (от 1,6 до 2).
  3. Полупроводниковые предохранители — обеспечивают защиту от перегруза. Следует учитывать, что ток прибора составляет до 30% номинального.
  4. Шунтирующие резисторы, монтируемые в параллель к нагрузке, обеспечивают корректную работу при небольших токах.

Сигнальные реле серии IM

Реле серии IM представляют собой последнее, четвертое поколение сигнальных реле. Главным их преимуществом являются миниатюрные габариты и улучшенные параметры изоляции и быстродействия. Реле серии IM применяются в системах связи и телекоммуникации, офисном, медицинском оборудовании, сфере автоматизации и сигнализации, в контрольно-измерительной технике и маломощной интерфейсной схемотехнике, бытовой электронике и др. Данный вид используется в аппаратуре с минимальным потреблением энергии в режиме StandBy. Реле этой серии отвечают требованиям стандартов для оборудования 4G telecom.

На настоящий момент существует шесть вариантов исполнения: моностабильные версии 1 FORM A, 1 FORM B, 2 FORM A, 2 FORM B; бистабильные версии 1 FORM C, 2 FORM C.

По сравнению с серией P2, прочность изоляции «катушка-контакты» увеличена до 1800 В, а типовое время включения и выключения сокращено до 1 мс (таблица 3).

Таблица 3. Параметры сигнальных реле серии IM

ПараметрТип
IMIMAIMBIMCIMDIME
Тип контактной группыбистабильное 2 FORM C1 FORM A1 FORM Bбистабильное 1 FORM C2 FORM A2 FORM B
Форма контактовсдвоенные
Материал контактовPdRu, покрытие Au. Версия «D» AgNi, покрытие Au
Максимальный постоянный ток, А2 (5 для версии «D»)
Максимальный коммутируемый ток, А2 (5 для версии «D»)
Максимальное коммутируемое напряжение, В220 (VDC), 250 (VAC)
Максимальная коммутируемая мощность60 Вт/62.5 В·А
Сопротивление контактов (10 мА/20 мВ), мОм<50<100<50
Время включения/выключения, мс1 (типовое), 3 (максимальное)
Дребезг, мс1 (типовое), 5 (максимальное)
Количество переключений (электрическая износостойкость контактов)≤30 мВ ≥10 мАболее 2.5×106
125 В (DC)/0.24 А – 30 Втболее 5×105
220 В (DC)/0.27 А – 60 Втболее 1×105
250 В (AC)/0.25 А – 62.5 В/Аболее 1×105
30 В (DC)/1 А – 30 Втболее 5×105
3 В (DC)/2 А – 60 Втболее 1×105
Механическая износостойкость контактовболее 1×108
Начальная электрическая прочность изоляции (для стандартной версии), Vrmsмежду открытыми контактами1000…2500
между контактами и катушкой1500…4000
Рабочая температура, °С-40…85
Степень пылевлагозащитыIP67
Габаритные размеры, ДхШхВ, мм10х6х5.65

В наличии имеются катушки трех вариантов исполнения: стандартные, с повышенной чувствительностью и с высокой чувствительностью. Диапазон номинальных напряжений составляет 1.5…24 В. Мощность управления варьируется от 50 до 200 мВт для различных вариантов.

TE Connectivity предлагает все стандартные варианты исполнения корпусов и выводов как для монтажа в отверстия, так и для поверхностного монтажа (рисунок 6).

Рис. 6. Варианты корпусного исполнения реле серии IM

Самые востребованные исполнения реле IM поддерживаются на складе КОМПЭЛ и приведены в таблице 4.

Таблица 4. Складские позиции реле серии IM

НаименованиеКаталожный номерКонтактная группаМагнитная системаКатушка, ВИсполнение катушкиТип выводов
IM46GR6-1462037-72 Form Cбистабильная12стандартSMT gull wing
IM41TS5-1462037-33THT standard
IM23GR2-1462039-9моностабильная5повышенной чувствительностиSMT gull wing
IM22TS2-1462039-84.5THT standard
IM21GR2-1462039-63SMT gull wing
IM13GR1462039-45SMT gull wing
IM07TS3-1462037-024стандартTHT standard
IM07GR4-1462037-724SMT gull wing
IM07JR4-1462037-824SMT J-leg
IM06TS2-1462037-712THT standard
IM06NS1-1462038-612THT narrow
IM06GR2-1462037-312SMT gull wing
IM05TS2-1462037-29THT standard
IM05GR3-1462037-49SMT gull wing
IM03TS1-1462037-85THT standard
IM03GR1-1462037-45SMT gull wing
IM01TS1462037-43THT standard
IM01GR1462037-13SMT gull wing

Защита от коротких замыканий

КЗ могут возникнуть при повреждении изоляции в электрической цепи, внешних воздействиях или перегрузке сети.

Для защиты от КЗ используют быстродействующие плавкие предохранители, разработанные специально для твердотельных реле. Такие устройства способны разорвать цепь значительно быстрее, чем произойдет пробой входного элемента.

Важнейшим показателем плавких предохранителей является скорость срабатывания.

Значения номинальных токов плавких вставок указываются производителем в технической документации. Они должны быть выше максимальных токов защищаемых устройств.

После срабатывания плавкие предохранители подлежат замене.

Подключение ТТР

При подключении реле необходимо строго соблюдать полярность.

Напряжение подается на управляющие входы. К выходным клеммам подключаются нагрузки. Соединения выполняются посредством винтовых соединений (без пайки).

При подключении напряжения следует убедиться в правильности выполнения коммутации.

Не допускается размещение приборов вблизи легко воспламеняющихся материалов.

Корпус реле может нагреваться в процессе работы. При наборе температуры выше 60°С, монтируют ТТР через радиатор охлаждения.

Схема подключения

Рекомендации по выбору

Чтобы правильно выбрать твердотельное реле, а также быть уверенным в его качественной и надежной работе в течение продолжительного срока службы, важно ориентироваться на следующие аспекты.

СПОСОБЫ КОММУТАЦИИ

Спросом пользуются приборы, в которых управление происходит при переходе через ноль. Плюс метода заключается в том, чтобы исключить помехи, которые создаются в процессе включения.

Минус варианта заключается в прерывании сигнала на выходе и недоступности применения ТТР в цепи с высокоиндуктивной нагрузкой. Главное применение этого тип коммутации подходит для нагрузки резистивного типа.

Кроме того, ТТР используются применительно к слабоиндуктивным и емкостным нагрузкам.

ФАЗОВОЕ УПРАВЛЕНИЕ

Плюс фазовой методики в том, что процесс регулирования проходит плавно и без разрывов. Благодаря этому удается менять напряжение на выходе (корректировать параметр мощности). Минус способа — в появлении помех в момент переключения.

Метод подходит для резистивных схем управления, подразумевающих нагрев, для переменных резистивных и индуктивных нагрузок (ИФ излучателей и трансформаторов соответственно). Сюда же стоит отнести управление освещением (подключение ламп накаливания).

ПАРАМЕТРЫ НАГРУЗКИ (ХАРАКТЕР И ТИП)

При выборе стоит обращать внимание на нагрузочный ток. От него зависит надежность и продолжительность эксплуатации установленного ТТР. Важно, чтобы устройство имело запас по I.

При покупке стоит учесть не только рабочий ток, но и токи, возникающие в процессе пуска и превышающие номинальный параметр в несколько раз. По заявлению производителей ТТР выдерживает десятикратную токовую перегрузку кратковременно — до 10 мс.

Если твердотельное реле устанавливается для подачи напряжения на нагреватель (активный тип нагрузки), I должен превышать номинальный нагрузочный ток на 35-40%.

Если планируется подключение нагрузки, имеющей индуктивный характер (электрический двигатель), стоит учесть пусковые токи, которые в этом случае превышают номинальный на 600-1000 процентов.

Подведем краткие итоги по рекомендуемому току:

  • Для ТЭНов — на 30-40% больше I номинального.
  • Для АД — 6-10 крат.
  • Для лампочек накаливания — 8-12 крат.
  • ЭМ реле — 4-10 крат.

НАЛИЧИЕ ОХЛАЖДЕНИЯ

В процессе выбора стоит учесть фактор снижения температуры. Выше отмечалось, что твердотельное реле имеет свойство перегреваться при прохождении больших токов. Лишнее тепло, которое выделяется в процессе работы, отводится на специальные радиаторы охлаждения.

ТТР способно проводить указанный производителем ток в случае, если температура не превышает 40 градусов Цельсия. В случае роста параметра уменьшается способность пропускать I — на 20-25 процентов при нагреве на каждые десять градусов. Следовательно, при нагреве ТТР до 80 градусов Цельсия оно не способно пропускать ток — изделие ломается.

На температуру прибора влияет множество факторов, среди которых место монтажа, сезон, нагрузка, наличие обдува воздухом и другие. Если устройство применяется для подключения мощного оборудования, например, для пуска АД, рекомендуется предусмотреть дополнительное охлаждение.

Для решения этой задачи ставится радиатор с большими габаритами. Для повышения эффективности обдува устанавливается вентилятор.

Популярные модели

К наиболее популярным моделям относятся следующие серии твердотельных реле:

  • SSR-40 DAH — мощное недорогое 1-фазное реле производства FOTEK;
  • HTH-6044.ZD3, 60А, 3-32V DC —твердотельное реле, предназначенное для управления однофазной нагрузкой до 60А;
  • HD-1044.ZA2 10А, 90-250V AC— однофазное твердотельное реле производства KIPPRIBOR для сигналов управления переменного напряжения;
  • MD-1544.ZD3 15А, 3-32V DC — 1-фазное реле в корпусе уменьшенного размера, предназначено для управления однофазной нагрузкой до 15А;
  • G3PA 24-240V AC/DC — трехфазное реле производства OMRON, выходным напряжением от 24 до 480В.

Пример обозначения: SSR – 40 D A H расшифровывается:

  • SSR обозначает однофазную модель, (TTR – трёхфазную);
  • 40 — нагрузка в Амперах;
  • D — сигнал на входе при постоянном токе, соответствующий 3-32 В; (V — сопротивление при переменном токе 80-250 В);
  • А — входное напряжение на переменном токе (D – на постоянном).
  • Н — диапазон выходных напряжений, соответствующий 90-480 В.
Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]