Хромель-алюмель тип К
Это один из самых применяемых типов термопар. На протяжении долгого времени измеряет температуры до 1100 0С, в коротком – до 1300 0С. Измерение пониженных температур возможно до -200 0С. Отлично функционирует в условиях окислительной атмосферы и инертности. Возможно применение в сухом водороде, и недолго в вакууме. Чувствительность – 40 мкВ/ 0С. Это самый стойкий тип термопары способный работать в реактивных условиях.
Минусами является высокая деформация электродов и нестабильная ЭДС.
Хромель-алюмель или термопара типа К не применяется в среде с содержанием О2 более чем 3%. При большем содержании кислорода хром окисляется и снижается термическая ЭДС. Тип К с защитным чехлом можно использовать в переменной окислительно-восстановительной атмосфере.
Для защиты термопары ХА применяется оболочка из фарфорового, асбестового, стекловолоконного, кварцевого, эмалевого материала или высокоогнеупорных окислов.
Чаще всего хромель-алюмель выходит из строя из-за разрушения алюмелевого электрода. Происходит это после нагревания электрода до 650 градусов в серной среде. Предотвратить коррозию алюмели можно лишь исключив попадание серы в рабочую среду термопары.
Хром портится из-за внутреннего окисления, когда в атмосфере содержится водяной пар или повышенная кислотность. Защитой является применение вентилируемой защиты.
Преимущества и недостатки термопары хромель-копель
Термопару хромель-копель отличает простота и надежность конструкции, сравнительно высокая степень точности измерения температур. Благодаря тому, что термоэлектродная проволока хромель и копель обладает отличными термоэлектрическими свойствами, малой инерционностью и высокой жаропрочностью, термопара может быть использована в самых разных сферах и средах. Кроме того, термопарная проволока имеет низкую стоимость, что немаловажно с экономической точки зрения для потребителей. Единственный недостаток термопары этого типа — чувствительность к деформациям, что, однако, не оказывает никакого влияния на точность и качество проведения измерений.
Хромель-копель тип L
Это также часто применяемая термопара позволяющая измерять в инертной и окислительной среде. Длительное измерение до 800 0С, короткое – 1100 0С. Нижний предел -253 0С. Длительная работа до 600С. Это самая чувствительная термопара из всех измерительных устройств промышленного типа. Обладает линейной градуировкой. При температуре 600 градусов выделяется термоэлектрической стабильностью. Недостатком является повышенная предрасположенность электродов к деформациям.
Положительным электродом у термопары типа L является хромель, а отрицательным – копель. Рабочая среда – окислительная или с инертно газовой составляющей. Возможно применение в вакууме при повышенной температуре короткое время. Используя хорошую газоплотную защиту ТХК можно использовать в серосодержащей и окислительной среде. В хлорной или фторсодержащей атмосфере возможна эксплуатация, но только до 200 градусов.
Типы термопар и их характеристики
Различные сплавы, используемые для изготовления термопар, обладают разными коэффициентами термо-ЭДС. В зависимости от того, из каких металлов изготовлены термоэлектроды, различают следующие основные типы термопар:
- ТПП13 – платинородий-платиновые (тип R);
- ТПП10 – платинородий-платиновые (тип S);
- ТПР – платинородий-платинродиевые (тип B);
- ТЖК – железо-константановые (тип J);
- ТМКн – медь-константановые (тип T);
- ТНН – нихросил-нисиловые (тип N);
- ТХА – хромель-алюмелевые (тип K);
- ТХКн – хромель-константановые (тип E);
- ТХК – хромель-копелевые (тип L);
- ТМК – медь-копелевые (тип M);
- ТСС – сильх-силиновые (тип I);
- ТВР – вольфрамрениевые (типы A-1 – A-3).
Технические требования к термопарам задаются параметрами определёнными ГОСТ 6616-94, а их НСХ (номинальные статические характеристики преобразования), оптимальные диапазоны измерений, установленные классы допуска регулируются стандартами МЭК 62460, и определены ГОСТ Р 8.585-2001. Заметим, также, что НСХ в вольфрам-рениевых термопарах отсутствовали в таблицах МЭК до 2008 г. На сегодняшний день указанными стандартами не определены характеристики термопары хромель-копель, но их параметры по прежнему регулируются ГОСТ Р 8.585-2001. Поэтому импортные термопары типа L не являются полным аналогом отечественного изделия ТХК.
Классификацию термодатчиков можно провести и по другим признакам: по типу спаев, количеству чувствительных элементов.
Типы спаев
В зависимости от назначения термодатчика спаи термопар могут иметь различную конфигурацию. Существуют одноэлементные и двухэлементные спаи. Они могут быть как заземлёнными на корпус колбы, так и незаземленными. Понять схемы таких конструкций можно из рисунка 5.
Рис. 5. Типы спаев
Буквами обозначено:
- И – один спай, изолированный от корпуса;
- Н – один соединённый с корпусом спай;
- ИИ – два изолированных друг от друга и от корпуса спая;
- 2И – сдвоенный спай, изолированный от корпуса;
- ИН – два спая, один из которых заземлён;
- НН – два неизолированных спая, соединённых с корпусом.
Заземление на корпус снижает инерционность термопары, что, в свою очередь, повышает быстродействие датчика и увеличивает точность измерений в режиме реального времени.
С целью уменьшения инерционности в некоторых моделях термоэлектрических преобразователей оставляют горячий спай снаружи защитной колбы.
Многоточечные термопары
Часто требуется измерение температуры в различных точках одновременно. Многоточечные термопары решают эту проблему: они фиксируют данные о температуре вдоль оси преобразователя. Такая необходимость возникает в химических и нефтехимических отраслях, где требуется получать информацию о распределении температуры в реакторах, колоннах фракционирования и в других ёмкостях, предназначенных для переработки жидкостей химическим способом.
Многоточечные измерительные преобразователи температуры повышают экономичность, не требуют сложного обслуживания. Количество точек сбора данных может достигать до 60. При этом используется только одна колба и одна точка ввода в установку.
Железо-константан тип J
Используется в восстановительной, окислительной, инертной и вакуумной среде. Измерение положительных сред до 1100 0С, отрицательных – до -203 0С. Именно тип J рекомендуется применять в положительной среде с переходом в условия отрицательной температуры. Только в отрицательной среде ТЖК использовать не рекомендуется. На протяжении длительного времени измеряет температуры до 750 0С, в коротком интервале 1100 0С. Минусы: высокочувствительна — 50-65 мкВ/ 0С, поддается деформациям, низкая коррозийная стойкость электрода содержащего железо.
Положительным электродом у термопары типа J есть технически чистое железо, а отрицательным – медно-никелевый сплав константан.
ТЖК устойчива к окислительной и восстановительной среде. Железо при температурах от 770 0С поддается магнитным и ↔- превращениям, влияющим на термоэлектрические свойства. Нахождение термопары в условиях больше 760 0С не способно далее в точности измерять показатели температуры нижеуказанных цифр. В данном случае ее показания не соответствуют градуировочной таблице.
Скоки эксплуатации зависят от поперечного сечения электродов. Диаметр должен соответствовать измеряемым показателям.
В условиях температур выше 500С с содержанием серы в атмосфере рекомендуется применять защитный газоплотный чехол.
Стабильность термопар
Многочисленные исследования показали более высокую стабильность кабельных ТП по сравнению с обычными проволочными. Так, изменение показаний кабельных термопар типа ХК диаметром 4 мм (диаметр электрода 0,85 мм) при 425 ±10°С за 10000 часов не превышает 0,5°С, а за 25000 часов составляет +1,15°С, тогда как для проволочных достигает 1°С за 10000 часов.
Сравнительные испытания термопар типа ХА показали, что изменение термо-э.д.с. кабельной термопары наружным диаметром 3 мм (диаметр термоэлектродов 0.65 мм) при температуре 800°С за 10000 часов составляет примерно 2,5°С, тогда как у обычной термопары ТХА с термоэлектродами диаметром 3,2 мм оно достигает 3°С, а при диаметре электродов 0,7 мм превышает 200–250 мкВ (5-6°С) при тех же условиях.
Изменение термо-э.д.с. кабельных термопар в оболочке из высоко-никелевых сплавов при 980°С также вдвое меньше, чем у обычной термопары при той же температуре за 5000 ч. Изменение показаний проволочной термопары ТХА с электродами диаметром 3.2 мм достигает 11°С за 1000 ч при температуре 1093°С, а при 1200°С – 12,5°С за 200 ч. Повышенная стабильность кабельных термопар объясняется затруднением окисления термоэлектродов из-за ограниченного количества кислорода внутри кабеля, а также дополнительной защитой термоэлектродов от воздействия рабочей среды металлической оболочкой и оксидом магния.
Изменение термо-э.д.с. термопарного кабеля: КТМС-ХА (1) и термопара ХА в обычном исполнении (2) при 800°С. Диаметр электродов – 0,7 мм | Изменение термо-э.д.с. термопарных кабелейКТМС-ХА после нагрева на воздухе при 800°С.Цифры на рисунке — диаметр кабелей, мм |
Вольфрам-рений тип А-1, А-2, А-3
Отлично измеряет температуры до 1800 градусов. В промышленности используется для измерения показателей около 3000 0С. Нижний предел ограничивается – 1300 0С. Можно эксплуатировать в аргоновой, азотной, гелиевой, сухой водородной и вакуумной средах.
Термо-ЭДС при 2500 0С — 34 мВ для измерительных устройств из сплавов ВР5/20 и ВАР5 /ВР20 и 22 мВ, для термопар из сплава ВР10/20, чувствительность – 7-10 и 4-7 мкВ/ 0С.
ТВР характеризуется механической устойчивостью даже в условиях высокой температуры, справляется со знакопеременными нагрузками и резкими тепловыми сменами. Удобна в установке и практически не теряет свойств при загрязнении.
Минусы: низкая производимость термо-ЭДС; при облучениях нестабильная термо-ЭДС ; падение чувствительности при 2400
0С и более.
Более точные результаты у сплавов ВАР5/ВР20 наблюдаются при длительном измерении, что не так характерно для сплавов ВР5/20.
В ТВР электроды изготавливаются из сплавов ВР5 – положительный и ВР20 – отрицательный; ВАР5 – положительный и ВР20 – отрицательный или ВР10 – положительный и ВР20 – отрицательный электрод.
Незначительное наличие О2 способно вывести термопару вольфрам-рений из строя. В окислительной среде используются лишь в быстротекущем процессе. В условиях сильного окисления моментально выходит из строя.
Иногда эта термопара может использоваться в работе высокотемпературной печи совместно с графитовым нагревательным элементом.
В качестве электродных изоляторов применяют керамику. Оксид бериллия можно применять, как изолятор в том случае, когда воздействующая на него температура не превышает температур плавления. При измерении значений меньше 1600 0С электроды защищают чистым оксидом алюминия или магния. Керамический изолятор должен быть прокален для возможности очистки разных примесей. В условиях повышенного окисления используются чехлы из металла и сплавов Mo- Re, W-Re с покрытиями. Измерительный прибор с защитой из иридия можно кратковременно использовать на воздухе.
Как работает термопара хромель-копель
Работа термопары хромель-копель построена на термоэлектрическом эффекте, известном также, как «эффект Зеебека», названном по имени своего первооткрывателя Томаса Иоганна Зеебека (1770-1831 гг.). Суть этого эффекта в том, что если места контактов (спаек) разнородных и последовательно соединенных проводников поддерживать при разных температурах, то в образованной замкнутой цепи возникает термоэлектрический ток. Измерив величину этого тока с учетом термоэлектрических свойств материала проводников, можно узнать температуру измеряемой среды.
Для того, чтобы измерить температуру вещества с помощью термопары хромель-копель, рабочий (горячий) конец термопары (3) погружается в измеряемое вещество, а на другом (холодном) конце (1, 2) поддерживается постоянная температура (обычно 20 °С) при помощи термостата. За счет разницы температур между соединениями разнородных сплавов возникает разность потенциалов и рождается термоэлектродвижущая сила (ТЭДС), в схеме возникает электрический ток.
Спай термопары хромель-копель
Величина возникшего в схеме тока фиксируется электроизмерительным прибором. В роли такого прибора может выступать милливольтметр или потенциометр. Обычно измеритель тока в термопарах снабжается соответствующей температурной шкалой, но если таковой нет, то после получения значения величины тока, ее переводят в единицы измерения тепла. Таким способом с относительно высокой степенью точности узнают температуру измеряемого вещества. Средняя погрешность значения температуры составляет около ± 2-5 °C, но может быть и больше, и меньше, что в немалой степени зависит от диапазона измеряемых температур.
Вольфрам-молибден
Эксплуатируется в инертной, водородной и вакуумной сфере. Температуры измерений – 1400 0С -1800 0С, пределы рабочих показателей — 2400 0С. Чувствительность — 6,5 мкВ/ 0С. Обладает высокой механической прочностью. Не нуждается в химической чистоте.
Минусы: низкая термо-ЭДС; инверсия полярности, повышение хрупкости при повышенных температурах.
Рекомендуется применять в водородной, инертногазовой и вакуумной среде. Окисление на воздухе происходит при 400 градусах. При повышении термической подачи окисление ускоряется. ТВМ не вступает в реакцию с Н и инертным газом до температур плавления. Данный тип термопары лучше не использовать без изоляторов, так как она при повышении температуры может вступать в реакцию с окислами. При наличии керамического изолятора возможно кратковременное применение в окислительной среде.
Для измерения термической составляющей жидкого металла изолируется обычно глиноземистой керамикой с применением кварцевого наконечника.
Применение термопар хромель-копель
Главным образом термопара хромель-копель используется в пирометрии, которая представляет собой совокупность бесконтактных (без контакта термоэлектрода с телом) методов измерения относительно высоких температур различных сред. Основное назначение датчиков на хромель-копелевой термопаре — непрерывный контроль над температурным режимом в промышленных и лабораторных установках с температурой от 200°С до 600°С. Ими измеряют температуру теплового излучения в печах обжига на керамических заводах, нагретых газов, пламени и т.п.
Термопара хромель-копель (ТХК)
Поскольку тела и жидкости при высоких температурах излучают тепловую энергию и удовлетворяют требованиям пирометрии, термопара хромель-копель применяется для измерения температуры плавления легкоплавких металлов, которая, как правило, ниже 600 °C. В их числе галлий (Тпл 30 °С), кадмий (Тпл 321 °С), висмут (Тпл 271 °С), таллий (Тпл 303 °С), цинк (Тпл 419 °С), индий (Тпл 157 °С), олово (Тпл 232 °С) и другие. Такие металлы чаще всего используются в электро- и радиотехнике, должны быть высокого качества, поэтому соблюдение температурного режима их плавления очень важно для итогового результата.
Платинородий-платина типы R, S
Самые распространенные типы термопары для температур до 1600 0С. К данным устройствам относятся платина со сплавом платины и родия 10%-ти или 13%-ным составом. Применяются в инертной и окислительной среде. Длительное использование при 1400С, кратковременное — 1600С. Обладают линейной термоэлектрической особенностью в диапазоне 600-1600 0С. Показатель чувствительности — 10-12 мкВ/ 0С (10% Rh) и 11-14 мкВ/С (13% Rh). Производят высокоточное измерение, обладают высокой воспроизводимостью и стабильностью термо-ЭДС.
Минусы: нестабильность в облучаемой среде, повышенная чувствительность к загрязнениям.
ТПП с хорошим изолятором может применяться в восстановительной среде, и в условиях содержащих мышьяковые пары, серу, свинец, цинк и фосфор.
Практически не используются для измерения отрицательных температур по причине снижения чувствительности. Но, в отдельной сборке возможно измерение значений до -50 градусов. Для значений 300-600 0С применяются в качестве сравнительных показателей. Краткое применение – до 1600 0С, длительное – 1400 0С. С наличие защиты можно длительно эксплуатировать при 1500 0С.
Изоляторами в условиях температуры до 1200 0С применяются кварцевые и фарфоровые материалы или муллит и силлиманит. Образцовые термопары изолируют плавленым кварцем.
При использовании с вырабатываемой температурой в 1400 0С в качестве изолятора лучше применять керамику с окислю Al2O3. При слабоокислительной и восстановительной среде около 1200 0С.
В слабоокислительных и восстановительных условиях с температурой выше 1200 и независимо от условий с температурами выше 1400 0С необходимо в качестве изолятора использовать керамический высокочистый оксид алюминия. В восстановительной среде возможно применение оксида магния.
Обычно внутренний чехол для термопары состоит из того же материала из которого выполнен изолятор. Данные материалы должны быть газоплотными. В условиях разового измерения температур жидкой стали, чтобы защитить рабочий спай измерителя используются кварцевые наконечники.
Вся рабочая длина электродов должна быть заизолирована трубкой из керамики двухканального типа. Места стыка трубки и чехла, электрода и трубки должны иметь зазоры для вентиляции. Электроды должны тщательно очищаться от смазки перед установкой в изолятор. В свою очередь металлический чехол тоже должен быть сухим и чистым. Перед установкой на объект все компоненты термопары должны пройти отжиг. Термоэлектроды не должны выполнять опорную функцию для изолятора. Особенно это важно для вертикальных термопар.
5.6. Термопары. Часть 2
Термопару из вольфрама и сплава, содержащего 75% W и 25% Мо, можно использовать в температурном интервале 2000-3000 °С. Ниже 2000 °С она имеет очень малое значение т.э.с.
Каждую высокотемпературную термопару следует калибровать самостоятельно.
Термопары из тугоплавких неметаллических соединений применяют в лабораторной практике сравнительно редко. Термопара графит — карбид кремния (рис. 98, а) имеет т.э.с. 508 мВ при 1700 °С и работоспособна до 2700 °С. Срок ее службы 115-120 ч, а погрешность ±10 °С.
В окислительной атмосфере графитовый стержень 7 разрушается из-за проникновения газов-окислителей через стенки трубки 4 из SiC. При измерениях температуры выше 1800 ‘С трубка должна быть наполнена аргоном или азотом. Калибровка термопар. Термопары калибруют по опорным реперным точкам Международной практической температуры шкаты 1968 г. (МПТШ-68) для давления 101325 Па (табл. 13). J
Рис. 98. Графит-карбидкремниевая термопара (а) и график функции V = f(t) для нагревания (б) и охлаждения (в) реперного вещества: 1 — графитовый стержень; 2 — пробка из Al2O3, 3 — металлизированный контакт; 4 -трубки из SiC; 5 — пробка из SiC
В качестве высокотемпературных реперных точек принимают температуры плавления (tпл) в oC: Ni (1455), Pd (1554), Rh (1963), Ir (2447), W (3387). Градуировку термопар проводят также по tпл веществ, которые могут быть получены в чистом виде: МnCl2*4Н20 (58,089), нафталин (80,3), йодоформ СН13 (119,0), KNO3 (334,5), K2Cr207 (397,5), КС1 (771), NaCl (801,0) и K2SO4 (1069+3).
Калибровка термопар заключается в построении графика V=f(τ), где τ — время (рис. 98, б, в). Термопару в защитном чехле погружают в порошок реперного вещества, находящегося в тигле, чтобы спай термопары находился в центре массы реперного вещества. Тигель помещают в тигельную печь и медленно повышают температуру, отмечая через каждые 20-30 с показания милливольтметра.
Во время плавления реперного вещества показания прибора не изменяются и на графике V = f(τ) появляется горизонтальная площадка (см. рис. 98, в) отвечающая температуре плавления взятого вещества. Строят четыре-пять таких графиков, меняя реперные вещества. Затем по полученным данным на миллиметровую бумагу наносят калибровочную кривую, связывающую показания милливольтметра для площадок кривых V — Дт) с температурой плавления использованных реперных веществ. По полученной калибровочной кривой данной термопары и находят затем неизвестные температуры по показаниям милливольтметра. После калибровки уже нельзя менять милливольтметр. Если точно известно, из каких металлов или сплавов изготовлена термопара, и есть проверенный милливольтметр, то для определения неизвестных температур используют данные табл. 8-12.
Правильность построения графиков V = f(τ)проверяют, охлаждая расплав реперного вещества и отмечая через равные промежутки времени показания милливольтметра (см. рис. 98, б). Площадки на кривых нагревания и охлаждения должны отвечать одному и тому же показанию милливольтметра. Правда, на кривой охлаждения (см. рис. 98, б) может появиться минимум, вызванный переохлаждением расплава, т.е. запаздыванием начала кристаллизации вещества. Кроме того, по мере удаления спая термопары от центра массы реперного вещества к стенке тигля размер площадки на кривых нагревания и охлаждения, как правило, сокращается, что увеличивает погрешность калибровки термопары. Скорость нагревания и охлаждения тигля с реперным веществом не должна быть больше 5-15 град/мин.
Кривые V = f(τ) удобно записывать не по визуальным наблюдениям, а с помощью саморегистрирующих приборов, позволяющих вести непрерывные измерения.
В интервале температур от -30 до +300 °С калибровку термопар можно проводить по эталонному стеклянному ртутному термометру. Для этого «горячий» спай термопары и термометр помещают в пробирку с силиконовым или минеральным маслом, которую погружают в термостат с заданной температурой. Через 5-10 мин записывают показания гальванометра и термометра. Затем меняют температуру в термостате и проводят новое измерение.
Дифференциальные термопары применяют для измерения разности температур. Термопара состоит из двух ветвей 3 одного и того же- проводника (рис. 99, а), например из сплава константан, и соединительного медного провода 4, если использовать медь-константановую термопару. «Горячие» спаи термопару погружены в сосуды 5 и 6 с разными температурами (t1noeq t2) Показания гальванометра 1 дадут значение разности температур t2~ 1\.
«Холодные» спаи дифференциальной термопары не обязательно помешать в сосуды Дьюара 2 со льдом, достаточно того, чтобы они имели одинаковую температуру.
Батарея термопар. Чувствительность измерения температуры объекта при помощи термопар можно существенно повысить,если их объединить в батарею (рис. 99, б).
Рис 99- Схема установки с дифференциальными термопарами (а) и батарея термопар (б)
Для создания батареи термопары соединяют последовательно, помещая все «горячие» спаи 3 в место измерения температуры К, а «холодные» спаи 2, изолированные друг от друга небольшими пробирками, погружают в сосуд Дьюара с ледяной кашицей (t = 0). Чувствительность батареи повышается примерно во столько раз, сколько взято термопар, если пренебречь увеличением сопротивления всей цепи. Изоляция отдельных спаев термопар друг от друга должна быть надежной. Экспериментаторы, применяющие батарею термопар, часто испытывают затруднения в связи с появлением паразитных токов неизвестного происхождения. Эти токи можно уменьшить, если защитить милливольтметр и проводники, соединяющие его с батареей, тепловой изоляцией. Видимо, появление паразитных токов вызвано не гомогенностью соединительных проводов (примеси, аморфные включения, механические напряжения и т. п.).
Другие части:
5.6. Термопары. Часть 1
5.6. Термопары. Часть 2
К оглавлению
Платинородий-платинородий тип В
Используется в окислительных и нейтральных условиях. Возможна эксплуатация в вакуумной среде. Максимальная температура измерений длительного потока 1600 0С, кратковременная — 1800С. Чувствительность — 10,5-11,5 мкВ/ 0С. Выделяется хорошей стабильностью термического ЭДС. Возможно применение без удлинительных проводов из-за низкой чувствительности в температурном диапазоне от 0 до 100 0С.
Изготавливается из сплава платины и родия ПР30 и ПР6.
В атмосфере восстановительного типа и паров металлического и неметаллического состава необходима надежная защита. В качестве изолятора используется керамическое сырье из чистого Al2O3.
Характеристики эксплуатации и прочностные данные соответствуют термопарам типов R, S. Но, выходят они из строя намного реже по причине низкой подверженности химзагрязнениям и росту зерен.